文档库 最新最全的文档下载
当前位置:文档库 › 高中数学奥数培训资料之二项式定理与多项式

高中数学奥数培训资料之二项式定理与多项式

高中数学奥数培训资料之二项式定理与多项式
高中数学奥数培训资料之二项式定理与多项式

兰州成功私立中学高中奥数辅导资料

(内部资料) §17二项式定理与多项式

1.二项工定理

∑=-∈=+n

k k

k n k n n

n b a C b a 0*)()(N

2.二项展开式的通项

)0(1n r b a C T r

r n r n r ≤≤=-+它是展开式的第r+1项.

3.二项式系数

).0(n r C r

n ≤≤

4.二项式系数的性质

(1)).0(n k C C k

n n k n ≤≤=-

(2)).10(1

11-≤≤+=---n k C C C k n k n k n

(3)若n 是偶数,有n

n n n

n n

n

n C

C

C

C C >>><<<-1210 ,

即中间一项的二项式系数2n

n

C

最大.

若n 是奇数,有n

n

n n n n

n n

n

n

C C C

C

C C >>>=<<<-+-1212110 ,即中项二项的二项式系数21

2+n n

n

n

C

C 和相等且最大. (4).2210n

n n n n n C C C C =++++

(5).21

531420-=+++=+++n n n n n n n C C C C C C

(6).1111----=

=k n k

n k n k n C k

n C nC kC 或 (7)).(n k m C C C C C C m

m k n m k n m k m n m n m k k n ≤≤=?=?+---- (8).1

121++++++=+++++n k n n k n n n n n n n C C C C C

以上组合恒等式(是指组合数m

n C 满足的恒等式)是证明一些较复杂的组合恒等式的基 本工具.(7)和(8)的证明将在后面给出. 5.证明组合恒等式的方法常用的有

(1)公式法,利用上述基本组合恒等式进行证明.

(2)利用二项式定理,通过赋值法或构造法用二项式定理于解题中.

(3)利用数学归纳法.

(4)构造组合问题模型,将证明方法划归为组合应用问题的解决方法.

例题讲解

1.求7)1

1(x

x ++的展开式中的常数项.

2.求62)321(x x -+的展开式里x 5的系数.

3.已知数列)0(,,,0210≠a a a a 满足 ),,3,2,1(211 ==++-i a a a i i i 求证:对于任何自然数n ,

n

n n n n n n n n n n n n n x

C a x x C a x x C a x x C a x C a x p +-++-+-+-=-----)1()1()1()1()(111222211100 是x 的一次多项式或零次多项式.

4.已知a ,b 均为正整数,且,

sin )(),2

0(2sin ,2222θπθθn b a A b

a a

b b a n n ?+=<<+=>其中求证:对一切*N ∈n ,A n 均为整数.

5.已知y x ,为整数,P 为素数,求证:)(m od )(P y x y x P P P +≡+

6.若)10*,,()25(12<<∈+=++ααN m r m r ,求证:.1)(=+ααm

7.数列}{n a 中,)2(3,311≥==-n a a a

n n ,求2001a 的末位数字是多少?

8.求N=1988-1的所有形如b a d b

a

,(,32?=为自然数)的因子d 之和.

9.设8219)22015()22015(+++=x ,求数x 的个位数字.

10.已知),2,1(8,1,01110 =-===-+n a a a a a n n n 试问:在数列}{n a 中是否有无穷多个能被15整除的项?证明你的结论.

课后练习

1.已知实数βα,均不为0,多项ββαα++-=x x x x f 2

3

)(的三根为321,,x x x ,求 )111)((3

2

1

321x x x x x x ++++的值.

2.设

d cx bx ax x x f ++++=234)(,其中d

c b a ,,,为常数,如果

,3)3(,2)2(,1)1(===f f f 求)]0()4([4

1f f +的值.

3.定义在实数集上的函数)(x f 满足:).(,1)1()(x f x x xf x f 求+=-+

4.证明:当n=6m 时,.033325

531=-?+?+?- n n n n C C C C

5.设n x x )1(2++展开式为n n x a x a x a a 222210++++ ,求证:.31630-=+++n a a a

6.求最小的正整数n ,使得n y x xy )2173(-+-的展开式经同类项合并后至少有1996项.

7.设493)12()1()(+-+=x x x x f ,试求: (1))(x f 的展开式中所有项的系数和. (2))(x f 的展开式中奇次项的系数和.

8.证明:对任意的正整数n ,不等式n

n

n

n n n )12()2()12(-+≥+成立.

例题答案:

1.解:由二项式定理得

77)]1

(1[)11(x

x x x ++=++

77

772271707)1()1()1()1(x

x C x x C x x C x x C C r r ++++++++++= ①

其中第)70(1≤≤+r r 项为r r

r x

x C T )1(71+=+ ②

在r

x

x )1(+的展开式中,设第k+1项为常数项,记为,1+k T

则)0(,)1(2,1r k x C x

x C T k

r k r k k r k r k ≤≤==--+ ③

由③得r -2k=0,即r=2k ,r 为偶数,再根据①、②知所求常数项为

.39336672747172707=+++C C C C C C C

评述:求某一项时用二项展开式的通项. 2. 解:因为6

662)1()31()321(x x x x -+=-+

].

1][)3()3()3(31[6

665564463362261666633622616x C x C x C x C x C x C x C x C x C x C +-+-+-?++?+?+?+= 所以6

2)321(x x -+的展开式里x 5的系数为26

363362624616563)(33)(1C C C C C C C ?+-+?+- .16813)(35

6516464-=?+-?+C C C

评述:本题也可将62)321(x x --化为6

2)]32(1[x x -+用例1的作法可求得.

3. 分析:由}{211n i i i a a a a 知=++-是等差数列,则),,2,1(01 =+=+=-i id a d a a i i 从而可将)(x p 表示成d a 和0的表达式,再化简即可.

解:因为),3,2,1(211 ==++-i a a a i i i 所以数列}{n a 为等差数列,设其公差为d 有),3,2,1(0 =+=i id a a i 从而

n

n n n n n n n n x

C nd a x x C d a x x C d a x C a x P )()1()2()1()()1()(022*******+++-++-++-=-- ],

)1(2)1(1[])1()1([222111100n n n n n n n n n n n n n n x nC x x C x x C d x C x x C x C a ++-+-?+++-+-=--- 由二项定理,知

,1])1[()1()1()1(222110=+-=++-+-+---n n

n n n n n n n n x x x C x x C x x C x C 又因为,

)]!

1()1[()!1()!1()!(!!1

1--=-----?=-?

=k n k n nC k n k n n k n k n k kC 从而n

n n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(

])

1()1[(12111----++-+-=n n n n x x x C x nx .])1[(1nx x x nx n =+-=- 所以.)(0ndx a x P +=

当x x P d 为时)(,0≠的一次多项式,当为时)(,0x P d =零次多项式.

4. 分析:由θn sin 联想到复数棣莫佛定理,复数需要θcos ,然后分析A n 与复数的关系.

证明:因为.sin 1cos ,,20,2sin 2

2222

22b a b a b a b a ab +-=-=><<+=θθπθθ所以且

显然n

i n )sin (cos sin θθθ+为的虚部,由于n

i )sin (cos θθ+

.)()

(1)2()(1)2(2222222222222n n n n bi a b a abi b a b a i b a ab b a b a ++=+-+=+++-= 所以.)()s in (co s )(222n n bi a n i n b a +=++θθ从而n n n bi a n b a A 222)(sin )(++=为θ的虚部.

因为a 、b 为整数,根据二项式定理,

n

bi a 2)(+的虚部当然也为整数,所以对一切*N ∈n ,

A n 为整数.

评述:把A n 为与复数n

i )sin (cos θθ+联系在一起是本题的关键.

5. 证明:P P p P P P P P P P y xy C y x C y x C x y x +++++=+----11

22211)(

由于)1,,2,1(!

)

1()1(-=+--=

P r r r p p p C r

P 为整数,可从分子中约去r !,又因为P 为

素数,且p r <,所以分子中的P 不会红去,因此有).1,,2,1(|-=P r C P r

P 所以 ).(m od )(P y x y x P P P +≡+

评述:将P

y x )(+展开就与P

P

y x +有联系,只要证明其余的数能被P 整除是本题的关键.

6. 分析:由已知1)()25(12=++=++αααm m r 和 猜想12)25(+-=r α,因此需要求出

α,即只需要证明1212)25()25(++--+r r 为正整数即可.

证明:首先证明,对固定为r ,满足条件的α,m 是惟一的.否则,设1112)25(α+=++m r

],),1,0(,*,,[2121212122ααααα≠≠∈∈+=m m m m m N

则)1,0()0,1(,,021212121?-∈-∈-≠-=-ααααZ m m m m 而矛盾.所以满足条件的m 和

α是惟一的. 下面求α及m .

因为1221

2212211212012121222)

5(2)5()5()25()25(+-++++++++?+?+=--+r r r r r r r r r C C C ]22)

5(2)5()5([1221

2212211212012+-++++-+?+?--r r r r r r r C C C

*

]2

5

25

25[2]22)

5(2)5([21

21

2121

23

1

31

21

1

2123223122112N ∈+++??+?=++?+?=+--+-+++-++r r r r r r r

r r r r r r C

C

C

C C

又因为)1,0()25(),1,0(2512∈-∈-+r 从而

所以)22

52525(2121

2121231312112+--+-+++??++??+??=r r r r r r r r r C C C m 12)25(+-=r α

故.)

25()(1

2+-=+r m αα .1)45()25(1212=-=+++r r 评述:猜想12121

2)25()25(,)

25(+++-+-=r r r 与α进行运算是关键. 7. 分析:利用n 取1,2,3,…猜想n n a a 及的末位数字. 解:当n=1时,a 1=3,36427333

21+?====a a 27)81(3)81(3)3(333

6363643642732

?=?=?====+?a a ,因此32,a a 的末位数字都

是7,猜想,.*,34N ∈+=m m a n 现假设n=k 时,.*,34N ∈+=m m a k

当n=k+1时, 34341)14(33

+++-===m m a k k

a

3

4034342412434124134034034)

1(4)1(4)1(4)1(4++++++++++-??+-??++-??+-?=m m m m m m m m m m C C C C ,3)1(414+-=-=T T 从而*)(34N ∈+=m m a n 于是.27)81(33

341?===++m m a n n

a 故2001a 的末位数字是7.

评述:猜想34+=m a n 是关键.

8. 分析:寻求N 中含2和3的最高幂次数,为此将19变为20-1和18+1,然后用二项式定理展开.

解:因为N=1988-1=(20-1)88-1=(1-4×5)88-1

=-88

8888888787878833388222881885454545454??+??-+??-??+??C C C C C

)552(225525

65-=?+?-=M M 其中M 是整数.

上式表明,N 的素因数中2的最高次幂是5. 又因为N=(1+2×9)88-1

888888

8822288188929292??++??+??=C C C

=32×2×88+34·P=32×(2×88+9P )其中P 为整数. 上式表明,N 的素因数中3的最高次幂是2.

综上所述,可知Q N ??=2532,其中Q 是正整数,不含因数2和3. 因此,N 中所有形如b

a

32?的因数的和为(2+22+23+24+25)(3+32)=744.

9. 分析:直接求x 的个位数字很困难,需将与x 相关数联系,转化成研究其相关数. 解:令])22015()22015[(,)22015()22015(82198219+++=+-+-=y x y 则

])22015()22015[(8219-+-+,由二项式定理知,对任意正整数n.

)2201515(2)22015()22015(22

+??+=-++-n n n n n C 为整数,且个位数字为零.

因此,x +y 是个位数字为零的整数.再对y 估值,

因为2.0255220155220150=<+=-<, 且19

88)22015()22015(-<-,

所以.4.02.02)22015(201919

评述:转化的思想很重要,当研究的问题遇到困难时,将其转化为可研究的问题.

10. 分析:先求出n a ,再将n a 表示成与15有关的表达式,便知是否有无穷多项能被15整除.

证明:在数列}{n a 中有无穷多个能被15整除的项,下面证明之.

数列}{n a 的特征方程为,0182

=+-x x 它的两个根为154,15421-=+=x x ,

所以n n n B A a )154()154(-++= (n=0,1,2,…) 由,15

21,15

211,010-

==

==B A a a 得 则],)154()154[(15

21n n n a --+=

取),2,1,0(2 ==k k n ,由二项式定理得

])15(42)15(421542[15

211133311----??++??+??=

n n n n n n n n C C C a

),

(1542)1544(154154154415

4154

4

12212232321212122323212122

23

3

1

1为整数其中T T k C C C C C C C C C k k k k

k k k k k k k k k k k n n n

n n

n n

+?=??++?+?=??++??+?=??++??+?=-----------

由上式知当15|k ,即30|n 时,15|a n ,因此数列}{n a 中有无穷多个能被15整除的项. 评述:在二项式定理中,n

n

b a b a )()(-+与经常在一起结合使用

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

(完整版)二项式定理典型例题解析

二项式定理 概 念 篇 【例1】求二项式(a -2b )4的展开式. 分析:直接利用二项式定理展开. 解:根据二项式定理得(a -2b )4=C 04a 4+C 14a 3(-2b )+C 24a 2(-2b )2+C 34a (-2b )3 +C 44(- 2b )4 =a 4-8a 3b +24a 2b 2-32ab 3+16b 4. 说明:运用二项式定理时要注意对号入座,本题易误把-2b 中的符号“-”忽略. 【例2】展开(2x - 223x )5 . 分析一:直接用二项式定理展开式. 解法一:(2x -223x )5=C 05(2x )5+C 15(2x )4(-223x )+C 25(2x )3(-223x )2+C 35(2x )2(-2 23x )3+ C 4 5 (2x )(-223x )4+C 55(-2 23x )5 =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 分析二:对较繁杂的式子,先化简再用二项式定理展开. 解法二:(2x -223x )5=105 332)34(x x =10321x [C 05(4x 3)5+C 15(4x 3)4(-3)+C 25(4x 3)3(-3)2+C 35(4x 3)2(-3)3+C 45(4x 3)(-3)4+ C 55(-3)5 ] = 10 321 x (1024x 15-3840x 12+5760x 9-4320x 6+1620x 3-243) =32x 5-120x 2+x 180-4135x +78405 x -10 32243x . 说明:记准、记熟二项式(a +b )n 的展开式是解答好与二项式定理有关问题的前提条件.对较复杂的二项式,有时先化简再展开会更简便. 【例3】在(x -3)10的展开式中,x 6的系数是 . 解法一:根据二项式定理可知x 6的系数是C 4 10. 解法二:(x -3)10的展开式的通项是T r +1=C r 10x 10- r (-3)r . 令10-r =6,即r =4,由通项公式可知含x 6项为第5项,即T 4+1=C 410x 6(-3)4=9C 410x 6. ∴x 6的系数为9C 410. 上面的解法一与解法二显然不同,那么哪一个是正确的呢? 问题要求的是求含x 6这一项系数,而不是求含x 6的二项式系数,所以应是解法二正确. 如果问题改为求含x 6的二项式系数,解法一就正确了,也即是C 4 10. 说明:要注意区分二项式系数与指定某一项的系数的差异. 二项式系数与项的系数是两个不同的概念,前者仅与二项式的指数及项数有关,与二项

二项式定理(通项公式).

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=, 即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++=++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

二项式定理 练习题 求展开式系数的常见类型

二项式定理 1.在()103x -的展开式中,6 x 的系数为 . 2.10()x -的展开式中64x y 项的系数是 . 3.92)21(x x -展开式中9x 的系数是 . 4.8)1(x x - 展开式中5x 的系数为 。 5.843)1()2 (x x x x ++-的展开式中整理后的常数项等于 . 6.在65 )1()1(x x ---的展开式中,含3x 的项的系数是 . 7.在x (1+x )6的展开式中,含x 3项的系数为 . 8.()()8 11x x -+的展开式中5x 的系数是 . 9.72)2)(1(-+x x 的展开式中3x 项的系数是 。 10.54)1()1(-+x x 的展开式中,4x 的系数为 . 11.在6 2)1(x x -+的展开式中5x 的系数为 . 12.5)212(++x x 的展开式中整理后的常数项为 . 13.求(x 2+3x -4)4的展开式中x 的系数.

14.(x 2+x +y )5的展开式中,x 5y 2的系数为 . 15.若 32()n x x -+的展开式中只有第6项的系数最大,则n= ,展开式中的常数项是 . 16.已知(124 x +)n 的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数. 17.在(a +b )n 的二项展开式中,若奇数项的二项式系数的和为64,则二项式系数的最大值为________. 18.若2004200422102004...)21(x a x a x a a x ++++=-)(R x ∈,则展开式的系数和为________. 19.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,则a 1+a 2+…+a 7的值是________. 20.已知(1-2x +3x 2)7=a 0+a 1x +a 2x 2+…+a 13x 13+a 14x 14.求:(1)a 1+a 2+…+a 14; (2)a 1+a 3+a 5+…+a 13.

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?+ +?=+-. 3、组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈ 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

二项式定理典型例题

二项式定理典型例题-- 例1 在二项式n x x ?? ? ??+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T 为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 例2 求62)1(x x -+展开式中5x 的系数. 分析:62)1(x x -+不是二项式,我们可以通过22)1(1x x x x -+=-+或)(12x x -+把它看成二项式展开. 解:方法一:[]6 262)1()1(x x x x -+=-+ -+++-+=4 4256)1(15)1(6)1(x x x x x 其中含5x 的项为55145355566C 15C 6C x x x x =+-. 含5 x 项的系数为6. 例3 求证:(1)1212C C 2C -?=+++n n n n n n n ;

(2))12(1 1C 11C 31C 21C 1210 -+=++++++n n n n n n n n . 分析:二项式系数的性质实际上是组合数的性质,我们可以用二项式系数的性质来证明一些组合数的等式或者求一些组合数式子的值.解决这两个小题的关键是通过组合数公式将等式左边各项变化的等数固定下来,从而使用二项式系数性质 n n n n n n 2C C C C 210 =++++ . 解:(1)11C )!()!1()!1()!()!1(!)!(!!C --=+--?=--=-? =k n k n n k n k n n k n k n k n k n k k ∴左边111101C C C ----+++=n n n n n n n =?=+++=-----11111012)C C C (n n n n n n n 右边. (2))! ()!1(!)!(!!11C 11k n k n k n k n k k k n --=-?+=+ 11C 1 1)!()!1()!1(11+++=-++?+=k n n k n k n n . ∴左边112111C 1 1C 11C 11++++++++++= n n n n n n n =-+=++++=+++++)12(11)C C (C 111112111n n n n n n n 右边. 例4 展开5 2232??? ? ?-x x . 例5 若将10)(z y x ++展开为多项式,经过合并同类项后它的项数为( ). A .11 B .33 C .55 D .66 分析:10)(z y x ++看作二项式10])[(z y x ++展开. 解:我们把z y x ++看成z y x ++)(,按二项式展开,共有11“项”,即 ∑=-?+=++=++100101010 10)(])[()(k k k k z y x C z y x z y x . 这时,由于“和”中各项z 的指数各不相同,因此再将各个二项式k y x -+10)(展开, 不同的乘积k k k z y x C ?+-1010) ((10,,1,0 =k )展开后,都不会出现同类项. 下面,再分别考虑每一个乘积k k k z y x C ?+-1010)((10,,1,0 =k ). 其中每一个乘积展开后的项数由k y x -+10)(决定,

最新二项式定理练习题(含答案)

二项式定理 1 单选题 2 (x+1)4的展开式中x的系数为3 A.2 B. 4 C. 6 D.8 4 答案 5 B 6 解析 7 分析:根据题意,(x+1)4的展开式为T r+1=C 4 r x r;分析可得,r=1时,有x 8 的项,将r=1代入可得答案.9 解答:根据题意,(x+1)4的展开式为T r+1=C 4 r x r; 10 当r=1时,有T 2=C 4 1( x)1=4x; 11 故答案为:4. 12 故选B. 13 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 14 2 (x+2)6的展开式中x3的系数是 15 A.20 B.40 C.80 D. 160 16 答案 17 D 18 解析 19 分析:利用二项展开式的通项公式求出通项,令x的指数为3求出展开式中20 x3的系数. 21 解答:设含x3的为第r+1, 22 则Tr+1=C6rx6-r?2r, 23

24 令6-r=3, 25 得r=3, 26 故展开式中x3的系数为C63?23=160. 27 故选D. 28 点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工29 具 30 3在(1+数学公式)4的展开式中,x的系数为 31 A.4 B.6 C.8 D.10 答案 32 33 B 34 解析 35 分析:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r;分析可36 得,r=2时,有x的项,将x=2代入可得答案. 37 解答:根据题意,数学公式的展开式为Tr+1=C4r(数学公式)r; 当r=2时,有T3=C42(数学公式)2=6x; 38 39 故选B. 40 点评:本题考查二项式系数的性质,特别要注意对x系数的化简. 4(1+x)7的展开式中x2的系数是 41 42 A.21 B.28 C.35 D.42 43 答案 A 44 45 解析

二项式定理典型例题

二项式定理典型例题-- 典型例题一 例1 在二项式n x x ??? ? ?+421的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=??? ??= 前三项的.2,1,0=r 得系数为:)1(8141C ,2121C ,1231 21-=====n n t n t t n n , 由已知:)1(8 1123 12-+=+=n n n t t t , ∴8=n 通项公式为 1431681,82,1,021C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为228889448541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类似地,1003)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 17页 系数和为n 3. 典型例题四 例4 (1)求103)1()1(x x +-展开式中5x 的系数;(2)求6)21(++x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项:

二项式定理典型例题

高考数学专题复习二项式定理练习题 1.在二项式(仮的展开式中,前三项的系数成等差数列, 求展开式中所有有理项. I 2仮丿 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 前三项的r =01,2. 1 1 1 1 得系数为:1 =1,上 2 =。;一 =— n,t 3 = cn — = —ng-1 ), 2 2 4 8 1 由已知:2t 2 =匕 叫 3 n= 1 + — n(n —1), 8 ??? n =8 通项公式为 _ 16 J3r 1 --- TF=c8-rx 4 r =0,1,2" 8,Tr + 为有理项,故 16 —3r 是 4 的倍数, 2 /. r =0,4,8. 依次得到有理项为「= X 4 ,丁5 = C ; —4 X =— X ,T 9 = c 8 A x° =—— x 2 ? 2 8 2 256 说明:本题通过抓特定项满足的条件, 利用通项公式求出了 r 的取值,得到了有理项.类 似地,(J 2 +3 /3)100 的展开式中有多少项是有理项?可以通过抓通项中 系数和为3n . 2. (1)求(1 —x )3 (1+x )10 展开式中X 5 的系数;(2)求(x + 1 +2)6 展开式中的常数 项. X 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题, 视为两个二项展开式相乘; (2)可以经过代数式变形转化为二项式. 解:(1 ) (1-x )3 (1 +x )10 展开式中的X 5 可以看成下列几种方式得到,然后合并同类项: 用(1 —X )3 展开式中的常数项乘以 (1 +x )10 展开式中的 X 5 项,可以得到 C lo X 5 ;用 “c"严k 丿 2n J3r =c n 2^ x 4 r 的取值,得到共有 (1)可以

二项式定理(基础+复习+习题+练习)

课题:二项式定理 考纲要求: 1.能用计数原理证明二项式定理 2.会用二项式定理解决与二项展开式有关的简单问题. 教材复习 1.二项式定理及其特例: ()101()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈, ()21(1)1n r r n n n x C x C x x +=++ ++ + 2.二项展开式的通项公式:r r n r n r b a C T -+=1210(n r ,,, = 3.常数项、有理项和系数最大的项: 求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. 4.二项式系数表(杨辉三角) ()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式 系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和. 5.二项式系数的性质: ()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量 的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图) 6.()1对称性. 与首末两端“等距离”的两个二项式系数相等(m n m n n C C -=).直线2 n r = 是图象的对称轴. ()2增减性与最大值: 当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值 ()3各二项式系数和:∵1(1)1n r r n n n x C x C x x +=++ ++ +, 令1x =,则012 2n r n n n n n n C C C C C =+++ ++ +

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

(完整版)二项式定理典型例题

1. 在二项式n x x ??? ? ? +4 21的展开式中,前三项的系数成等差数列,求展开式中所有有理项. 分析:本题是典型的特定项问题,涉及到前三项的系数及有理项,可以通过抓通项公 式解决. 解:二项式的展开式的通项公式为: 4324121C 21)(C r n r r n r r n r n r x x x T --+=?? ? ??= 前三项的.2,1,0=r 得系数为:)1(8 141C ,2121C ,123121-=====n n t n t t n n , 由已知:)1(8 1 12312-+=+=n n n t t t , ∴8=n 通项公式为 14 3168 1,82,1,02 1C +- +==r r r r r T r x T Λ为有理项,故r 316-是4的倍数, ∴.8,4,0=r 依次得到有理项为22 888944 8 541256 121C ,83521C ,x x T x x T x T =====-. 说明:本题通过抓特定项满足的条件,利用通项公式求出了r 的取值,得到了有理项.类 似地,100 3)32(+的展开式中有多少项是有理项?可以通过抓通项中r 的取值,得到共有 系数和为n 3. 2.(1)求10 3 )1()1(x x +-展开式中5x 的系数;(2)求6)21 (++ x x 展开式中的常数项. 分析:本题的两小题都不是二项式展开,但可以转化为二项式展开的问题,(1)可以视为两个二项展开式相乘;(2)可以经过代数式变形转化为二项式. 解:(1)10 3)1()1(x x +-展开式中的5x 可以看成下列几种方式得到,然后合并同类项: 用3)1(x -展开式中的常数项乘以10)1(x +展开式中的5x 项,可以得到5 510C x ;用 3)1(x -展开式中的一次项乘以10)1(x +展开式中的4x 项可得到54104410C 3)C )(3(x x x -=-;

高中数学知识点总结---二项式定理

高中数学知识点总结---二项式定理 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项; ② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项. n b a ) +(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+. ⑶二项式系数的性质. ①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第 12 +n 项,它的二项式系数2 n n C 最大; II. 当n 是奇数时,中间项为两项,即第2 1+n 项和第 12 1++n 项,它们的二项式系数212 1+-=n n n n C C 最大. ③系数和: 1 314 201 2 2-=+ +=+++=+++n n n n n n n n n n n C C C C C C C C 附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项........... 时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组1 111 1(,+-+-+???≤≤???≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数 的绝对值)的办法来求解. ⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中 , ,,N r q p ∈且 n r q p =++把 n n c b a c b a ] )[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+) (中含有q b 的项为 q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为 r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --== ---?-= ! !!!)! (!)! ()!(!! . 2. 近似计算的处理方法.

高考二项式定理典型例题

二项式定理 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的 次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系 数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

相关文档
相关文档 最新文档