文档库 最新最全的文档下载
当前位置:文档库 › 高速公路路基工后长期沉降稳定判别

高速公路路基工后长期沉降稳定判别

高速公路路基工后长期沉降稳定判别
高速公路路基工后长期沉降稳定判别

高速公路软基路基沉降观测及变形观测技术探讨

高速公路软基路基沉降观测及变形观测技术探讨 摘要:在沿海地区修建高速公路,常常会遇到软土地基问题。由于软土地基的压缩性高、透水性低以及固结变形持续时间长,因此软土地基沉降量及其速率的预估就成了工程施工中的主要问题。沉降量及其速率的预估是在沉降观测的基础上进行的,所以,我国所有的高速公路项目在修建过程中都必须进行沉降观测。 关键词:软基路基,路基沉降,变形观测 Abstract: in coastal areas built highway, often encounter problems of soft soil foundation. Because of the soft soil foundation, low permeability of high compactness and consolidation deformation lasted for a long time, so soft soil foundation settlement rate and its estimate of the engineering construction is the main problem. The settlement and its estimate of the rate in settlement observation is conducted on the basis of, so, our country all the highway project in the process of building to the settlement observation. Keywords: soft foundation of roadbed, embankment settlement, deformation observation

路基工后沉降分析

路基工后沉降标准资料分析 随着高速铁路的发展,对路基工后沉降的要求越来越高。路基的工后沉降包括:路堤填筑部分的沉降和地基的沉降。一般路基施工完成后的工后沉降,路堤填筑部分的沉降极小,主要是地基的沉降。各国对路基工后沉降的要求是考虑线路维修养护条件及路基不均匀沉降差对线路的影响。 法国高速铁路对于有碴轨道不均匀沉降差为20mm/10m,最大沉降量为5cm;对于无碴轨道不均匀沉降差为30mm/20m,最大沉降量为5cm。 德国高速铁路对于无碴轨道考虑扣件调整范围为20mm,在保证轨道线形的情况下,路基工后最大沉降量为3倍的扣件允许调整量,则路基工后最大沉降量为6cm。 日本高速铁路对于无碴轨道考虑路基工后最大沉降量为3cm。 韩国高速铁路考虑路基工后沉降最大沉降量为7cm。(可能为有碴轨道) 台湾高速铁路考虑路基工后沉降标准是采用法国标准。 目前各国高速铁路在制定路基工后沉降标准时主要是考虑线路的维修养护标准,特别是考虑了无碴轨道结构对路基沉降的高标准要求,其工后沉降较小。从高速铁路线路平顺性考虑,路基应控制沉降差和最大沉降量。我们认为高速铁路路基是免维修的,而实际上高速铁路路基是处于常维护的状态(每天要对线路状况进行检查,按日常养护维修标准对其进行调整)。高速铁路的每2年要进行一次大的维修养

护。高速铁路的养护维修模式与一般铁路有了质的变化。 对于路基工后沉降应提出路基工后沉降差和最大沉降量的标准,供设计和施工考虑。路基工后沉降从轨道养护维修标准考虑,路基工后沉降差应考虑线路短波不平顺和扣件可调值,路基工后最大沉降量应考虑线路长波不平顺和钢轨位置的可调整量。 着国民经济的发展和人民生活水平的不断提高,旅客对于乘坐车辆舒适度和速度的要求越来越高,具体到客运专线而言,即是对路桥结构变形和强度指标的要求越来越高。从德、法、日三国针对我国高速铁路设计咨询结果来看,德、法强调控制路基的不均匀沉降,其追求沉降的目标是不均匀沉降为零;工后沉降5cm或3cm的指标相对而言较为严格,如何确保路基沉降变形满足质量标准要求成为路基工程的重点课题。我国很早开始对高速铁路基础关键技术进行了一系列的研究,在借鉴国外高速铁路大量理论、试验和建设实践的基础上,相继制定了有关设计暂行规定和设计指南,初步形成了我国客运专线技术体系。为保证列车高速、平稳、舒适、安全运行,我国相关规定路基工后沉降量不应大于5cm,沉降速率应小于2cm/年,桥台台尾过度段路基工后沉降量不应大于3cm;无蹅轨道路基工后沉降量不大于15mm,不均匀沉降变形20mm/20m。详见表1-1。 二、路基沉降的概念 1.工后沉降:在铺轨工程完后(指有蹅轨道工程竣工或无蹅轨道道床工程完后,下同)以后,基础设施产生的沉降量。工后沉降标准与项目建设速度目标、轨道类型、施工类型、施工日期、轨道维修养护标准和维修周期、工程投资大小等因素相关,同时也与地质勘探试验、沉降计算、沉降观测、工后沉降预测等的方法和精度密切相关,表1-1正是上述思想的反映。 2.均匀沉降:铺轨工程完成后,一定区域范围内路基沉降量的相同性及其分布。 3.不均匀沉降:铺轨工程完成后,一定区域范围内不同测点路基沉降量的差异大小及其分布。 4.台后沉降:铺轨工程完成后,桥台台尾过渡段路基工后沉降量。 5.差异沉降:铺轨工程完成后,路基与桥台、隧道等结构物间的沉降变形量差。 三、路基沉降的组成 路基的变形主要由路基本体和地基基础的变形组成;路基本体的变形通常指机床表层、机床底层和基床下路堤的变形。路堤结构各部的沉降组成见表3-1。 1、基床表层:通常由级配碎石或级配砂砾石组成。基床表层的变形在填筑完成约1周后基本自调完毕,该变形量可以忽略不计。

公路路基沉降观测方案总结

路基沉降变形观测专项方案 1.工程概况 *********工程起点位于**市外环路北端附近的国道321上,里程为K0+000~K6+624.054。K0+000~K1+400为市政道路,一般路基宽度为60m,跨***高速路的分离式立交桥宽为50米。在K0+700~K0+786.5处设置变宽段,此处压缩人行道和非机动车道的绿化带,渐变为50米宽,与桥梁宽度一致,车行道保持不变。K1+000 ~K1+200处设置渐变段,该路段内路幅宽度逐渐变化,路基宽度从50m渐变为24.5m。由于该路段正好处于圆曲线上,因此在K1+200~K1+400段设置过渡段,该路段范围内路幅宽度为24.5m,设计时速为60Km/h,过渡段后路段按一级公路设计,设计时速为80Km/h。线路通过区域有鱼塘、水田、菜地,地基沉载力较差,设计要求进行地基加固处理;路堑高边坡地段设计要求进行锚杆框架及方格浆砌片石防护处理。 为及时掌控路基填挖方的沉降、位移情况,指导路基施工过程,保证工后沉降满足设计要求和路基稳定性,有效控制路基工程质量,制定本方案。 2.编制依据 2.1《公路路基设计规范》 2.2《路基工程施工图设计》

2.3《工程测量规范》 2.4《公路路基横断面图》 3.路基沉降变形监测的目的 3.1控制和保证路基过程质量,确保工后沉降满足设计要求(一般地段不大于15cm,年沉降速率小于4cm/年,涵背过渡段不大于8cm)。 3.2.通过连续、正确、完整、系统的观测和分析,预测沉降趋势,验证和指导施工,正确控制路堤填筑速率,以确保路基和路面的完成时间。 3.3确保路基稳定和施工安全 4路基沉降变形观测方案 4.1 观测内容 根据设计及规范要求,确定观测的主要内容有:填方段的基底沉降观测、水平位移观测、路基本体沉降观测;挖方段的水平位移观测;路隧、桥涵、路堤的过渡段沉降观测。 4.2观测断面设置 4.2.1基底沉降观测 根据设计要求,沿线路方向每隔50m设置一个观测断面,路堤填筑施工前,在基底地面的线路中心线位置埋设一个沉降板,并进行首

高速公路路基沉降观测方案

高速公路路基沉降观测方案 溆浦至怀化高速公路 (1-20合同段) 路基沉降与稳定观测方案 目录 1 目的和意义………………………………………………………… 1 2 沉降与稳定观测的依据…………………………………………… 2 3 观测内 容........................................................................3 4 沉降与稳定观测点的布设 (3) 4.1 布置原则.....................................................................3 4.2 沉降与稳定观测点布设步骤.............................................5 4.3沉降与稳定观测点布设方法 (6) 5 溆怀路重点观测断面的选择................................................9 6 沉降与稳定观测控制指标和精度 (10) 6.1 沉降观测..................................................................10 6.2稳定性观测 (11)

7 沉降与稳定观测的周期......................................................11 8 提交成果 (11) 8.1 提交的成果报告............................................................11 8.2 成果报告的应用 (11) 9项目的组织和管理 (12) 9.1 项目的组织结构及主要参加人员.......................................12 9.2 拟投入的仪器设备和计算软件..........................................13 9.3 有关部门的协调配合 (13) 10 项目经费预算………………………………………………………14 附表(溆怀高速公路路基沉降与稳定测点分布一览表) 溆怀高速公路路基沉降与稳定观测方案 1 目的和意义 复杂多变的地形、地貌、地质条件是高速公路路基施工和长期稳定所面临的共同课题,对这些问题的了解程度和处理成功与否将直到公路的整体质量,这其中,软土地基、特殊土路基、高填方路堤、半填半挖路堤、陡坡路接影响堤、岩溶地基、填切交界频繁等不利因素更是路基修筑的棘手问题。

公路路基沉降观测方案

州群众服务中心一级主干道工程二标段路基沉降变形观测专项方案 编制: 审核: 日期:

1.工程概况 麻新城区群众服务中心一级主干道工程是黔东南苗族侗族自治州群众服务中心主要干道。本项目的建设将促进和拓展经济开发区和凯麻新城区的城市发展空间,为后续城市建设起到重要作用。凯麻新城区州群众服务中心一级主干道起于开司大道,于开司大道左侧相交90°。路线全长3163.394道路主干道标准建设,设计车速为60km/h。 为及时掌控路基填挖方的沉降、位移情况,指导路基施工过程,保证工后沉降满足设计要求和路基稳定性,有效控制路基工程质量,制定本方案。 2.编制依据 2.1《公路路基设计规范》 2.2《路基工程施工图设计》 2.3《工程测量规范》 2.4《路基横断面图》 3.路基沉降变形监测的目的 3.1控制和保证路基过程质量,确保工后沉降满足设计要求(一般地段不大于15cm,年沉降速率小于4cm/年,涵背过渡段不大于8cm)。 3.2.通过连续、正确、完整、系统的观测和分析,预测沉降趋势,

验证和指导施工,正确控制路堤填筑速率,以确保路基和路面的完成时间。 3.3确保路基稳定和施工安全 4路基沉降变形观测方案 4.1 观测内容 根据设计及规范要求,确定观测的主要内容有:填方段的基底沉降观测、水平位移观测、路基本体沉降观测;涵洞、路堤的过渡段沉降观测。 4.2观测断面设置 4.2.1基底沉降观测 根据《公路路基施工技术规范》要求,沿线路方向每隔100~200m 设置一个观测断面,路堤填筑施工前,在基底地面的线路中心线位置埋设一个沉降板,并进行首次观测。 4.2.2路堤水平位移观测 根据《公路路基施工技术规范》要求,沿线路方向每隔100~200m,在路堤两侧坡脚外2m、10m处各设置水平位移观测桩,路基填筑前埋桩并进行首次观测。 4.2.3路基本体沉降观测

浅谈铁路路基沉降的控制办法

浅谈铁路路基沉降的控制办法 摘要: 随着我国铁路建设事业的蓬勃发展,建设高等级铁路的规模不断加大, 提升铁路建设的科技含量是铁路建设工作者义不容辞的责任。本文从路基沉降观测,路基沉降的原因进行了分析,并针对易发生路基沉降的部位提出了一些预防方法。 关键词:路基沉降控制 为满足铁路运输需要, 保证运输安全, 提高铁路路基质量, 铁道部建设公司近十几年先后几次对铁路路基设计规范进行了修订, 在我国铁路跨越式发展时提出了“强本简末”的要求, 设计标准有了很大提高。随着国家铁路的第六次大提速的完成, 快速铁路对路基的基床承载力与沉降变形要求更高, 仅局限于选线时尽量绕避不良地质地段, 避免高填深挖是不够的, 铁路路基的填料选择、沉降控制与观测、提高路基的防排水能力、加强过渡段设计及加强路基支挡防护设计显得更加重要。其中, 铁路路基的填料种类、压实标准与铁路路基的沉降控制有着密切的联系, 因此,本文就铁路路基的填料选择与沉降控制这两方面谈一下自己的看法及建议。 1、路基填料 1.1 路基填料适用性判别 高等级铁路的路基填筑标准及对路基工后沉降的要求均远高于普通铁路。因此必须特别重视对路基填料的勘察、鉴定、分类工作, 慎重对待取土场的选择。对填料需严格把关, 在勘察设计阶段就应当作为一项专门的工作来进行, 对其工程特性,适用性进行必要的试验工作后作出专门的评价, 以确定该取土场的填料用作路基本体或基床底层是否合格, 否则需考虑改良土方案或变更取土场。 由于地区不同, 路基填料也千差万别根据《铁路路基设计规范》相关规定, 对于巨粒土、粗粒土填料根据颗粒组成, 颗粒形状, 颗粒级配、细粒含量、抗风化能力等来分为A、B、C 、D组, 细粒土填料根据液限含水量ωL进行填料分组, 当ωL<40%时为粉土, 为C组,当ωL≥40%时为黏性土,为D组, 有机土为E组。 1.2 特殊填料在路基中的应用 在比较平坦的地区, 铁路路基取土较困难, 传统做法是在考虑经济成本与可行性的同时, 采取部分填料外运与集中挖坑取土或者薄取相结合, 在集中挖坑取土后, 再对取土场进行生态恢复, 如将取土坑留给当地百姓进行养鱼等经济生产。或者沿线与排水沟相结合, 挖深拓宽排水沟。这两种传统方法由于简单便于实施,得到了人们广泛的认同, 并在很多类似线路中得以应用。

公路路基沉降病害及施工控制技术 郭胜利

公路路基沉降病害及施工控制技术郭胜利 发表时间:2019-08-06T14:17:46.627Z 来源:《房地产世界》2019年4期作者:郭胜利 [导读] 在高速公路的施工阶段,需要全面提升工程施工技术,有效解决所存在的路基沉降问题,大大提升了公路工程的建设施工速度。济宁鲁南公路工程公司山东济宁 272000 摘要:路基沉降问题是当前高速工程中非常常见的病害问题,出现该问题之后,就会导致工程结构的稳定性下降,如果未能采取有效的措施来处理这一问题,就会导致工程无法正常进行,严重者会造成重大的滑塌事故,安全隐患比较大,建筑工程的施工也会受到很大影响。因此在高速公路的施工阶段,需要全面提升工程施工技术,有效解决所存在的路基沉降问题,大大提升了公路工程的建设施工速度。 关键词:公路工程;路基沉降;病害 引言 随着社会的发展,大型民生项目建设的步伐也在加快。公路是关系国家竞争力和人们生活质量提高的关键项目,长时间以来始终受到政府部门和人们的广泛重视。而在公路施工中,唯有做好路基项目建设工作,方可为后期公路施工进度打好基础。所以,研究公路路基建设的质控对策是十分重要的,唯有科学合理的结论,方可更好提升公路建设质量。 1公路路基项目常见病害 1.1填料缺少适宜性 路基建设中,因为员工缺少必要的实践经验,在购置施工材料时极易忽视其性质,选取不合适的填料,下降了填料的适宜性,进而影响着路基建设质量,这样既会增多路基建设成本,甚至会延迟工期,影响着工程总体收益。 1.2中线移位现象 受到工作人员素质、工艺技术等因素的制约,路基施工阶段极易产生导线点破坏等现象。而且,目前工作人员忽视中线复查工作,也没有重视对控制桩的维护,进而造成中线偏移现象,与《路基施工标准》的内容相违背。 1.3存在安全生产问题 公路项目的建设环境比较复杂,尤其是地形环境,在施工阶段极易出现淤泥路段、软弱地基以及斜坡等,若未对这些地方采用科学的处理方法,将会导致路基出现严重的安全隐患,在后续投运过程容易产生滑坡、局域沉降等情况。 2公路产生路基沉降的原因 2.1地理因素导致的路基沉降 此处所指的地理因素主要就是地形与地势方面的因素。当前我国的公路建设数量持续的增大,公路网持续的扩张,很多复杂地形中也在大力开工建设高速公路项目,特别是很多的山岭与丘陵的地区中,地势变化非常明显,为了使整个高速公路项目运行更加的稳定,很多情况下都需要将路基建设得比较高。在这种情况之下,路基的高度逐渐提升,就容易发生沉降的问题,难以进行有效控制。 2.2水文因素导致的路基沉降 水文因素的影响是当前路基沉降中比较普遍的影响因素,目前我国的高速公路施工项目周边区域都存在地下水与江河水,路基表面也会直接受到这些水源的侵蚀或者冲击,路基底层也会因为地下水的移动而存在严重的冲击,进而导致路基出现沉降的问题,因此在进行高速建设施工的过程中,对于临近水源的工程施工项目需要多加注意,且进行准确的路基沉降监测和控制,从而可以保证公路工程的质量达到使用的需要。 2.3气候因素导致的路基沉降 这一方面的因素一般都是出现在我国的北方地区中,南方的昼夜温差比较大的地区也容易出现这一问题。具体分析,主要就是自然环境中的霜雪、严寒以及温差过大的情况下对于路基产生不良的影响,从而出现沉降问题。比如,气候比较寒冷的地区中进行路基的建设施工,很多情况下水源会冻结,只要温度上升,冰雪融化就会导致路基结构内部含水量的提升,承载性能自然会有所下降,路基沉降问题就会出现。这种路基沉降问题通常需要进行施工时间的调整来控制,但是因为高速公路施工周期一般比较长,要想全面消除这一问题难度比较高。 2.4土壤因素导致的路基沉降 土壤主要就是路基建设过程中所应用的工程材料土壤。从成本方面来考虑,也要考虑到工程的便捷性,路基施工的土壤需要从施工周边区域中进行选取,但是很多情况,施工周边的区域中土壤未必能够满足路基施工的需要,特别是要求比较高的高速公路施工项目。如果工程中应用大块的红砂岩,该种材料压实度会非常低,风化与渗透都比较强,所以整个土体结构的稳定性都非常差,未能够有效的调配就应用到工程中,就会导致路基出现沉降的问题。的控制,该方面容易受到工程机械、填筑施工的速度以及施工工艺方面的影响。 2.5设计因素导致的路基沉降 设计因素对于路基沉降的影响是非常直接的,主要是因为设计错误所导致的。高速公路设计方案确定的过程中,首先就是要进行交通量的预估,然后才能进行承载载荷的计算,从而确定路基的承载能力。但是如果交通量超出了规定的要求,公路路基需要长期承受汽车动载荷的影响,预期之外的路基沉降也会出现。这种沉降多数都是在公路施工结束之后所存在的,具备有明显的滞后性,所以控制难度较高。 1.6施工因素导致的路基沉降 从上文中可以发现,施工的过程中需要进行路基沉降的控制,该方面容易受到工程机械、填筑施工的速度以及施工工艺方面的影响。比如,目前我国很多的高速公路为了严格的控制含水量参数,为进行路基的沉降控制,很多情况下都是进行水平填筑施工,施工效果比较高。填筑施工的速度选择与控制要结合工程的沉降来控制。 3高速公路路基沉降及施工控制技术 3.1沉降监控技术 沉降监测是进行路基沉降与变形控制的方法,具体的施工流程如下所示:施工准备→观测布点→结构的统计和分析→结果综合分析→

工后沉降报告01

泉州市滨江路(39号路~南环路)新建道路工程(第一合同段:K11+600~K12+250)软土路基预压 工后沉降预估报告 福建省建专岩土工程有限公司 2011年9月30日

目录 1 工程概况 (2) 1.1、道路概况 (2) 1.2、处理方案 (2) 1.3、施工工况 (2) 2 监测成果 (3) 2.1监测点的布设 (3) 2.2 监测时间及成果 (3) 3 工后沉降计算 (6) 3.1双曲线法估算 (6) 3.2AsaoKA法估算 (7) 3.3路面结构荷载沉降估算 (7) 3.4工后沉降值 (7) 4 结语 (8)

1 工程概况 1.1道路概况: 泉州市滨江路(39号路~南环路)新建道路工程属于滨江路(324国道~南环路段)的一部分,位于泉州市城东片区,沿洛阳江西岸布置,总体线型基本为南北走向,沿岸主要地貌有冲海积平原,山前冲洪积扇,坡地,滨海漫滩等,地势相对平坦,地面高程一般为3~20m。设计路线全长4.099814km。 1.2处理方案: 本道路软基加固处理路段里程桩号为:K11+600~K12+250,其中K11+600~K12+240采用了塑料排水板-堆载预压配合反压,K12+240~K12+250采用抛石挤淤处理。 塑料排水板采用B型,粘合式结构,厚度4mm,宽度10cm。采用正方形布置,路堤范围内间距1.10m,反压坡道范围内间距为1.30m,塑料排水板应插入粉质粘土或残积砾质粘土不小于0.50m,深度距中砂层顶面不大于1.50m, 路堤采用“薄层轮加法”进行填筑,即由监测控制加载速率的分层加载法,每层加载厚度按0.50m控制,每级荷载加载间歇期为7~10d,填土一般按每月不超过1.50m等速加载进行。 填土速率控制标准为:路堤中心沉降速率小于15mm/d,测斜管侧向位移速率小于3mm/d,位移边桩侧向位移速率小于5mm/d,加载期间单级孔压系数小于0.6,综合孔压系数小于1.0,当单级孔压系数0.4或单级孔压系数增量消散大于50%时可加下一级荷载。观测结果应结合沉降和

公路沉降观测方案

318国道南浔至吴兴段改建及配套工程南浔段 路基沉降观测方案 项目负责:汪道静 编写: 邱良鹤 审核:王志刚 审定:郭云飞 提交单位:中交一航局二公司湖州项目部 提交时间:二〇一五年九月

318国道南浔至吴兴段改建及配套工程南浔段路基 沉降观测方案 ?1工程概况 318国道南浔至吴兴段改建工程起点在江苏、浙江两省交界处,项目起点与老318国道(桩号约为K119+000)相交,向北通过南浔跨线桥与规划道路相接,向南通过南浔五桥互通跨长湖申Ⅲ级航道,终点接湖州申苏浙皖至申嘉湖高速公路连接线,与湖盐公路相交,终点桩号为K33+164,主线全长33.164公里,旧馆连接线长约2.3公里,升山连接线约1.0公里。设计速度主线为80公里/小时,连接线为60公里/小时。 ? 2 技术标准及依据 1、《工程测量规范》(GB50026-2007); 2、《建筑变形测量规范》(JGJ8-2007); 3、《公路路基施工技术规范》(JTGF10-2006)。 ? 3 水准基点的布设、施测 水准基点是整个观测工作的基准,其高程系统采用独立高程基准,各路段由其水准基点构成水准闭合环。本工程按三等水准测量精度要求,使用Trimble Dini0.3mm型电子水准仪,配合条码式铟瓦水准钢尺进行施测,内业使用NASEW V3.0软件进行平差。 3.1水准基点的布设 为保证观测值的可靠性,在施工区域外的位臵进行埋设。水准基点标识设臵如下所示: 3.2水准基点的施测 本工程采用单程双测的方法对各路段的水准基点进行闭合水准测量,

将外业采集的数据下载至计算机,使用NASEW V3.0软件进行平差。 数据分析表明,本次水准观测精度完全满足三等水准测量精度要求,所有水准基点在观测期间均稳定可靠,未发生任何失稳现象,为观测数据的准确性提供了可靠依据。 ?4沉降观测 4.1沉降板的布设 沉降观测采用布设沉降板进行观测,沉降板布臵在左路肩、路中、右路肩三处。桥头路段布设1-2个观测断面;箱涵路段布设1个观测断面;一般路段布设间距为100-200m。沉降板布设示意图如下: 沉降板由有底管、接头、连接管、管堵组成,材料为A3钢;护套筒的组成与沉降板相同,材料也为A3钢。焊接均采用连续焊接,焊缝高度大于连接板厚度。沉降板,测杆连接高度4m,倾斜度小于1度。 在埋设点时,挖一500×500×200mm左右的土坑,坑内用30至50mm黄砂垫

路基变形监测及工后沉降观测方案

路基变形监测及工后沉降观测方案 1.变形监测 ⑴沉降观测的组织准备 ①建立沉降观测管理体系。成员单位应包括建设、设计、施工、监理单位,各单位应确定工作组织(人员)、指定工作负责人(联系人)。 ②建立沟通联系工作制度,保证沉降观测工作协调、有序开展。 ③沉降观测工作启动前,对有关人员进行必要的技术培训或交底。 ④施工单位按沉降观测设计方案要求布设沉降观测点及观测断面,埋设观测元器件,配备适应测量要求的有关仪器设备。观测工作启动前,施工单位应报请监理单位对测点布置、元器件埋设、测量仪器等准备工作进行检查验收,以确保观测测量工作具备合格的工作基础。 ⑵沉降监测网的建立 沉降监测网的建立方式是在在全线二等精密高程控制测量布设的基岩点、深埋水准点及一般水准点的基础上,按照国家二等水准测量的技术要求进一步加密水准点或设置工作基点以满足工点垂直位移监测需要。 ⑶路基沉降观测 路基填筑完成后应有不少于设计要求的观测和调整期。观测数据不足以评估或工后沉降评估不能满足设计要求时,应延长观测或采取必要的加速或控制沉降的措施。 路基沉降观测以路基面沉降观测和地基沉降观测为主。 沉降观测分为三阶段进行,每个阶段的沉降观测的频次应根据沉降的发生与发展规律及沉降大小确定,一般应按照如下观测频度进行: 第一阶段:路基填筑施工期间的观测,主要观测路基填土施工期间地基与堤身的沉降变形以及路堤坡脚边桩位移与沉降。本阶段沉降观测应与施工配合,每填筑一层应观测一次,同时应保证不超过3天观测1次。 第二阶段:路基填筑施工完成,自然沉落期的沉降观测,该阶段应对路基顶面的沉降及路基基底沉降进行系统的观测,直到工后沉降评估可满足路面施工的要求为止。 实际工作进行时,观测时间的间隔还要看地基的沉降值和沉降速率,两次连续

影响高速公路路基沉降的因素与防治措施

影响高速公路路基沉降的因素与防治措施 在路面的施工中最根本的是路基,在建筑高速路中,要把会对路基的稳定性以及强度产生作用的各个要素开展具体的解析,实施一定的手段,保证路基稳定性以及强度的建筑。文章主要讲述了路基发生下沉现象的原因,同时给出了治理办法。 标签:公路路基;沉降因素;防治 1 路基沉降的影响因素 1.1 路基土的应力对沉降的影响 通常软体能够区分为正常以及超常固结两种形式。压密土具有早期固结压力Pc。只有在外部施加的负荷高过压力Pc之后,土才能够被压密,剪应力形状变化的作用才越来越显著。针对还没有固结的土,因为早期凝固的应力比现在的自身重量轻,换句话讲,在自身重力应力影响下还没有全部的凝固,在地基上方没有施加的外力符合情况下,土里的有用应力在增长,当有用应力比自身重力的应力大时,才能够全部凝结。超常固结土,在早期其自身重力的应力就比凝结的应力小,如果外部施加的负荷产生的应力和自身重力产生的应力加起来比早期固结应力小,其变形情况就小。 1.2 填土高度对路基沉降的影响 填筑土越高,地基的下沉以及侧向移动也就越厉害。所以在策划路堤时,大多要规定出其高度,降低自身的重量,借此来降低路基的下沉。经过观察检测得到的数据解析,路基填筑土不多时,其下沉的情况和填筑土的高度不成正比。 1.3 路基填土压实度的影响 填筑土压实不够,就会出现土体早起凝固应力比自身重力的应力以及外加负荷产生的应力之和小,在自身重力应力的影响下会出现形状改变的现象,这些外加负荷主要有:车辆载重,特别是超载的现象;水分的变化会使土体的容量随之产生变化;地下水位的变化会使浮力产生变化;土体饱和情况的变化,会使孔缝水分压力产生变化。这些外加的负荷产生的应力会使土体应力产生变化,进而使土体的形状产生变化。土体压实不够还会使填筑路基侧向产生形状的改变。现在使用的地基下沉算计方式是假设其侧向不变,只有竖向产生改变,但是在实际的建筑中侧向也有形状改变的现象,其会导致土体下沉。 1.4 地下水位变化对路基沉降的影响 由于地下水位下降引起的地基荷载的增加,其稳定状态下的大小是土层由浮容重变成天然容重后引起的自重应力的增加。所以,地下水位下降到稳定状态下

高铁路基沉降观测方案

DK887+~DK889+段路基工程 观测、检测方案 一、观测方案 1、路基变形监测控制技术措施 高速铁路路基作为变形控制十分严格的土工构筑物,沉降变形监测应作为路基施工中的重要工序,贯穿整个路基施工始终。 路基沉降变形监测主要是测定每一层填料填筑过程中的地基沉降及整体水平位移和路基成型后的地基沉降及路堤本身的沉降值。在填筑施工期间,填土速率根据观测情况确定,如地基稳定情况良好可以酌情加快,反之减缓填土速率,当边桩横向位移大于5mm/d,地面沉降超过10mm/d时,停止填土。路堤填筑完成后,根据观测的数据绘制时间和沉降曲线,预测总沉降和剩余沉降。 该段路基沉降变形监测主要是路堤基底沉降监测和路基面沉降监测。 路基沉降变形监测施工工艺流程见图1。 2、监测测试项目 以路基中心沉降监测为重点,其他包括路基面位移监测、基底沉降位移监测、路堤本体沉降监测、深厚层第四系地层的深层沉降监测,另外还有软土或松软土地段的边桩位移监测等。 ⑴路堤基底沉降监测 每10~100m设一个监测断面,桥路过渡段必须设置。每个监测断面预埋1~3个沉降板(软弱地基时3个)。路堤填筑前,于路堤基

底地面预埋沉降板进行监测,每个监测断面预埋3个沉降板。沉降板 满足要求 图1 路基沉降变形监测施工工艺流程图

由沉降板、底座、测杆(ф=20mm钢管)及保护测杆的ф=49mmPVC 塑料管组成。随着填土的增高,测杆与套管亦应相应加高,每节长度不超过100cm,接高后的测杆顶面应高于套管上口,在填土施工中应采取措施保护测沉设施。 沉降板安装前应先将地面整平(可铺设0.1m厚中粗砂),注意保持底板的水平及垂直度。填土高度小于2.0m时,每两天观测一次,超过2.0m后,要求每天观测一次,在沉降速率较大的情况下,还应加密观测。地面沉降量用仪器测量,精度要求准确到±1mm。每天的观测数据都要及时整理并绘制“填土高~时间~沉降量”关系曲线图。 ⑵路基面沉降监测 路堤地段每50m设一个监测断面,桥路过渡段必须设置,且应加密。每断面3个监测点。分别于路基中心、两侧路肩各设一个监测桩(包桩),路基成形后设置。监测桩采用C15混凝土方桩或圆桩(边长或直径0.1m),其中埋设ф16mm钢筋一根,桩长0.6m,埋入基床表层以下0.55m。 ⑶测量的精度及频度 观测频率应与位移速率相适应,位移越小,观测频率也可减慢,反之位移越大,观测频率越要加快。当位移曲线骤然变大时,更要跟踪观测,分析原因,并考虑是否需要采取措施。 测量精度按二级水准测量标准;测量频度:在路堤填筑期间,每天监测一次,各种原因停工期间,前2天每天监测一次,以后每3天测试一次。填筑施工完成后,前15天内每3天监测一次,第15~30天每星期监测一次,第30~90天每15天监测一次,以后每个月监测

路基的沉降控制标准[综述]

路基的沉降控制标准[综述] 1、沉降问题的提出 我国的高速公路有相当部分达不到设计使用年限,与国外相比有很大的差距。造成这种现象的原因很多,路基的差异沉降是其中之一。 我国路面设计仅考虑路基的模量,在路面基层弯拉应力的计算中不考虑因路基的差异沉降变形所引起的附加应力,这种计算方法与国外基本相同,但我国的路基与国外差别很大。我国农村人口占全国的2/3,在高速公路密集的中东部地区,为方便高速路两侧村庄的通行,必须留有一定高度的通道,间距往往只有数百米,为满足纵坡要求,路基高度很难降低,高速公路路基高度一般在2~3M。在南非、欧洲等高速公路发达地区,公路的视线很好,道路基本上是顺着地形贴着地表走,路基的沉降几乎为零,虽然这可能导致道路的纵坡较大,但国外良好的车况抵消了这种影响,这在南非最典型。在意大利北部与奥地利等多山国家,多采用架桥或分离式路基,很少有高填方路基。另外国外以柔性路面居多,柔性路面对路基差异沉降的承受能力明显要高于半刚性基层。因此在国外不必考虑的因素在我国可能必须加以考虑。因路基差异沉降引起路面开裂的例子较多,预想性路面对路基模量值很高,但过大的工后沉降引起了路面十多处开裂,所以说强度与变形是路基的两个同样重要的控制指标。我国传统的观念往往将路基视为简单的土石方工程,这在低级路面时代问题不大,但对高速公路这种观念将带来严重的后果,路基是路面的基础,服务于路面,可以说是路面的一个组成部分。

2、我国路基的沉降控制标准 路基的沉降指标主要有:总沉降量、沉降速率、差异沉降率。所谓差异沉降率是指道路任意两点间在单位时间内的沉降差值与这两点间的距离之比。 我国路基设计规范对软土地区路基变形的控制是彩工后总沉降量(对高速公路则是通车后15年内的总沉降量),即对一般路段的工后沉降量不大于30cm,涵洞、箱涵、通道处不大于20cm,桥台与路堤相邻不大于10cm。从已建高速公路的调查分析,彩总沉降量指标并不能完全消除路面的开裂,在一些鸡爪沟地形的山区,路基的总沉降量也许不大,但其差异沉降率较大引起了路面的开裂,在软土地区也因路基的差异沉降率过大而引起路面开裂与波浪起伏,因此对于路基的变开控制除采用总沉降量外还应考虑采用差异沉降率控制。总沉降量、沉降速率、差异沉降率这三者之间有一定的相关性,但并不完全呈对应关系,总沉降量小并不意味着沉降速率或差异沉降率小,反之亦然。 3、沉降控制标准的确定 对于路基的沉降控制标准,主要从如下3个方面进行探索。 3.1工程经验的总结 交通部公路科研所对太旧路进行全面调查后认为两点间的差异沉降率应控制在0.6%以内,超过此值则有可能引起路面开裂。我国东部沿海地区的许多高速公路存在软土地基,软基深,路基沉降量大,时间长。为了确保新铺筑的路面不因路基沉降而引起开裂,我国各条

高速公路路基沉降观测方案

溆浦至怀化高速公路 (1-20合同段) 路基沉降与稳定观测方案

目录 1 目的和意义 (1) 2 沉降与稳定观测的依据 (2) 3 观测内容 (3) 4 沉降与稳定观测点的布设 (3) 4.1 布置原则 (3) 4.2 沉降与稳定观测点布设步骤 (5) 4.3沉降与稳定观测点布设方法 (6) 5 溆怀路重点观测断面的选择 (9) 6 沉降与稳定观测控制指标和精度 (10) 6.1 沉降观测 (10) 6.2稳定性观测 (11) 7 沉降与稳定观测的周期 (11) 8 提交成果 (11) 8.1 提交的成果报告 (11) 8.2 成果报告的应用 (11) 9项目的组织和管理 (12) 9.1 项目的组织结构及主要参加人员 (12) 9.2 拟投入的仪器设备和计算软件 (13) 9.3 有关部门的协调配合 (13) 10 项目经费预算 (14) 附表(溆怀高速公路路基沉降与稳定测点分布一览表)

1 目的和意义 复杂多变的地形、地貌、地质条件是高速公路路基施工和长期稳定所面临的共同课题,对这些问题的了解程度和处理成功与否将直到公路的整体质量,这其中,软土地基、特殊土路基、高填方路堤、半填半挖路堤、陡坡路接影响堤、岩溶地基、填切交界频繁等不利因素更是路基修筑的棘手问题。 溆浦至怀化高速公路是我省“五纵七横”高速公路网中的第三横——娄底至怀化高速公路的西段。本项目地处湖南省中部向西部的过渡地带,雪峰山脉的北东向延伸区,呈东西向纵贯怀化地区,路线起于溆浦县北部,与新化至溆浦高速公路顺接,西至怀化市北部鹤城区黄金坳枫木坪,与包茂国家高速吉首至怀化段相接(通过黄金坳枢纽互通转换)。走廊带全部位于怀化地区,主要通过怀化的溆浦县、辰溪县、中方县、怀化市鹤城区。主线路线全长91.781km。路线沿线风化剥蚀较强烈,属于丘陵地貌,地形受岩性、构造控制较显著,沟壑纵横,存在大量高填路基、半填半挖路基及陡(斜)坡路基。地质构造较为复杂,断层、褶皱构造发育,亦存在多处采空区、岩溶、软基等不良地质路段。因此,路基在填筑过程中,产生局部小滑塌、变形及不均匀沉降的可能性较大。 以上这些不利因素给溆怀高速公路路基修筑带来了很大的难度,为了优质高效建好溆怀高速公路,就必须密切关注不同工程地质条件下路堤填筑过程中或填筑后的路基变形动态,也就是必须进行不同支撑条件下路基沉降和稳定的动态观测,为指导施工及时提供可靠的参考数据,同时,基于为今后湖南省新建高速公路(特别是山区、丘陵区高速公路)的建设提供基础数据,提高设计水平和指导施工,在溆怀路选择一些关键工点进行全断面长期沉降及稳定观测是非常有必要的,这是工程实际的客观要求和提升技术水平的必然途径,其经济意义及理论价值不言而喻。 本次沉降及稳定观测分为普通沉降观测和重点断面沉降观测两个方面,其中普通沉降及稳定观测目的如下: (1) 以观测结果指导现场施工,正确控制路堤施工填筑速率,合理确定预压卸载时间和结构物及路面施工时间,并提供施工期间的沉降土方计量依据,进行信息化施工; (2) 根据监测结果及时发现危险的先兆,分析原因,判断工程的安全性,采取必要的工程措施,防止发生工程破坏事故和环境事故,确保路堤施工中的安全和稳定,控制和保证高

路基沉降观测方法

路基沉降观测方法集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

目录 目录 路基沉降观测实施方法 1.编制依据 根据铁道部京沪高速铁路建设总指挥部2008年5月《京沪高速铁路线下工程沉降变形观测及评估实施方案》,结合本工班管段路基工程的具体情况制定实施细则。 2.任务范围及工作内容 2.1任务范围: 商合杭一分部管段路基总长614.11米,分为三段如下表: 第一段:DK674+162.92-DK674+433.98路基全长271.08。 第二段:DK680+980.19-DK681+101.27路基全长121.08。

2.1工作内容: 路基工程沉降变形观测。 3.参照执行的标准及规范 (1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号); (2)《客运专线铁路无砟轨道测量技术暂行规定》(铁建设[2006]189号); (3)《国家一、二等水准测量规范》(GB12897—2006); (4)《建筑沉降变形测量规程》(JGJ/T8-2007); (5)《铁路客运专线竣工验收暂行办法》(铁建设[2007]183号); (6)《客运专线无砟轨道铁路施工技术指南》(TZ216-2007); (7)《工程测量规范》(GB0026-93); (8)《全球定位系统(GPS)铁路测量规程》(TB10054-97); (9)《客运专线无砟轨道铁路设计指南》(铁建设函[2005]754号); (10)路基工程设计图纸 沉降变形监测网建立及测量技术要求 沉降监测网的建立、精度要求等符合《客运专线无碴轨道铁路工程测量暂行规定》的要求;根据《商杭合铁路线下工程沉降变形观测及评估实施方案》规定,沉降变形测量点分为基准点、工作基点和沉降变形观测点。其布设按下列要求: (1)每段路基均建立独立的监测网,设置1个稳固可靠的基准点。基准点设在沉降变形 影响范围以外便于长期保存的稳定位置,与相邻桥梁共用。 (2)工作基点选在比较稳定的位置。工作点除使用普通水准点外,按照国家二等水准测 量的技术要求进一步加密水准基点或设置工作基点至满足工点垂直位移监测需要。加密后的水准基点(含工作基点)间距200m左右时,可基本保证线下工程垂直位移监测需要。(3)沉降变形观测点设立在沉降变形体上能反映沉降变形特征的位置,具体点位布设详 见5.2。 4.1沉降变形监测测量工作基本要求 水准基点使用时首先作稳定性检验,并以稳定或相对稳定的点作为沉降变形的参考点。

高填方路基沉降观测专项方案

京台高速公路南平段A10合同段高填方路基沉降及位移观测专项方案

中交第二公路工程局有限公司 南平京台高速公路A10合同段项目经理部南平京台高速公路A10合同段 高填方路基沉降及位移观测 专项方案 施工单位:中交第二公路工程有限公司 编制: 审核: 审批: 中交二公局南平京台高速公路A10项目部

2012年11月18日 目录 一、工程概况 (3) 二、相关技术要求 (3) 三、时间安排 (3) 四、施工观测内容 (3) 五、施工观测人员及设备 (4) 六、施工观测方法 (4) (一)、位移桩埋设及观测 (4) (二)、沉降管设置及观测 (5) (三)、基桩的设置 (6) (四)、观测的管理 (7)

一、工程概况 本合同段路基填方48.054万 m3,基底采用清淤换填透水性材料21450 m3,路基填方主要集中在K59+925~K60+135段,最大填土高度28.543 m,属高填方路基;路基填料主要采用隧道洞渣进行填筑,基底为粘质性淤泥,采用换填透水性材料(隧道洞渣)进行回填处理。 防护工程主要有:M7.5浆砌片石拱形骨回护坡1020.1 m3,浆砌片石挡土墙5316.2m3,三维土工网垫边坡防护7135.7㎡,TBS护坡12344㎡。 二、相关技术要求 1、京台线建瓯至闽侯高速公路南平段路基土建工程A10合同段招标文件、设计图纸、补遗书、答疑书等有关内容。 2、南平京台高速公路A10合同段路基部分施工图; 3、《公路工程质量检验评定标准》(JTG_F80-2004); 4、《公路工程施工技术规范》(JTJ 032)。 5、《公路路基施工技术规范》相关规定与《工程测量规范》; 三、时间安排 计划于该段软基处理结束后,路基开始填筑时预埋沉降检测管及位移桩,并在路基施工全过程进行观测,直至工程竣工。 四、施工观测内容 1、稳定性观测,在路堤趾部(距路堤坡脚4m处)埋设位移桩,观测其位移情况; 2、沉降观测,在路基中线上埋设沉降观测管,沉降板置于路堤底部,

路基沉降观测方法

目录 目录 1.编制依据 (1) 2.任务范围及工作内容 (1) 2.1.1任务范围: (1) 2.1.2工作内容: (1) 3.参照执行的标准及规范 (1) 4.沉降变形监测网建立及测量技术要求 (2) 4.1.1沉降变形监测测量工作基本要求 (2) 4.1.1每次沉降变形观测时遵循以下要求: (3) 4.1.2沉降变形监测观测(二等水准测量)技术要求 (3) 5.沉降观测实施方案 (5) 5.1.1(一)一般规定 (5) 5.1.2(三)沉降观测断面和观测点的布置 (5) 5.1.4.观测方法.精度及要求 (7) 5.1.5.(五)沉降观测频度 (9) 5.1.6.(六)沉降评估 (10) 6.2.(二)过渡段的沉降评估 (13) 6.2.1沉降评估所需资料 (13)

路基沉降观测实施方法 1.编制依据 根据铁道部京沪高速铁路建设总指挥部2008年5月《京沪高速铁路线下工程沉降变形观测及评估实施方案》,结合本工班管段路基工程的具体情况制定实施细则。 2.任务范围及工作内容 2.1任务范围: 商合杭一分部管段路基总长614.11米,分为三段如下表: 第一段:DK674+162.92-DK674+433.98 路基全长271.08。 第二段: DK680+980.19-DK681+101.27路基全长121.08。 第三段: DK681+237.65-DK681+459.60路基全长221.95。 2.1工作内容: 路基工程沉降变形观测。 3.参照执行的标准及规范 (1)《客运专线铁路无砟轨道铺设条件评估技术指南》(铁建设[2006]158号); (2)《客运专线铁路无砟轨道测量技术暂行规定》(铁建设[2006]189号);

相关文档
相关文档 最新文档