文档库 最新最全的文档下载
当前位置:文档库 › 脱硫循环泵性能参数汇总表

脱硫循环泵性能参数汇总表

脱硫循环泵性能参数汇总表
脱硫循环泵性能参数汇总表

一泵的用途及适用范围

DT系列大型脱硫循环泵(DN≥300mm)为轴向吸入、单级、单吸、悬架离心式结构。该系列泵在水力设计、结构设计以及铸件所用材料上,综合应用了国内外同类产品的优点并加以创新。具有高效节能、抗磨耐腐、振动小、噪声低、运行可靠、使用寿命长、维修方便等特点。泵的综合性能居国内领先水平。可广泛用于火电、炼铝和炼油等行业的脱硫系统输送石灰石或石膏浆液。浆液中氯离子含量最高可达60000ppm,浆液的PH值允许在4—13之间,浆液温度≤65°C,浆液重量浓度C w最高可达60%。

二泵的结构特征

1 总述

DT系列大型脱硫循环泵的泵壳(蜗壳)为单层壳体结构。叶轮与轴采用螺纹连结,轴封采用机械密封。悬架部分采用稀油润滑型式。过流部件叶轮、蜗壳、后护板、入口短管均采用我厂自行研制的抗磨耐腐高铬合金材料制造。其详细结构见图1。

1、叶轮

2、入口短管

3、蜗壳

4、后护板

5、机械密封

6、拆卸环

7、悬架

8、轴承体

9、轴

10、调整螺栓

11、压紧螺栓

12、螺栓

13、支架

14、螺柱

图1DT系列大型脱硫循环泵结构图

2 叶轮

(1)前盖板背叶片的设计,可防止大的颗粒进入到叶轮与入口短管间的间隙中。

(2)后盖板背叶片的设计,可减小轴向力,阻挡大颗粒进入机械密封的腔体。

(3)叶轮上排气孔的设计,可以使机械密封的腔体内介质形成流动,带走气体,防止机械密封干磨擦。

3 蜗壳

蜗壳壁厚能够承受足够的压力和磨损。

4 后护板

(1)后护板通过螺栓固定在悬架上,便于拆装。

(2)装单端面机械密封的后护板设计成锥形口,便于浆液及时从机械密封室中排出,防止泵停车后长时间不用,浆液附着在机械密封上损坏机械密封。

5 入口短管

由于其具有很强的抗磨损能力,保证了流道长时间的平滑和完整。由此也帮助延长了叶轮的使用寿命。

6 轴承体组件

轴承体组件由两部分组成,悬架及轴承体。轴承体可通过压紧螺栓及调整螺栓调节,在悬架内水平移动。主要优点:

(1)轴承体可在悬架内移动,调整间隙方便。

(2)合理油室设计,降低润滑油用量,散热效果好,轴承使用寿命长。

7 支架

拆卸时,较低部分保留在底座上。便于拆卸,位臵准确,不会发生安装时部件相互卡住的现象。

8 机械密封

(1)无冲洗水机械密封

①集装式设计,便于安装。

②无需固定冲洗水管路,只需周期性冲洗。每隔

七天或两天以上停车前后,用水冲洗5分钟,冲洗水

流量为10 L/min。

③动、静环材料均采用SiC。

④设有集装板和集装槽,拆装时不用测量压缩图2 无冲洗水机械密封量,方便、准确。(见图2)

⑤机械密封区域(见图3):

a 脱硫系统中的浆液含有大量气泡,气泡容易在

机械密封处聚集,破坏机械密封的润滑膜。在叶轮上

开有足够的排气孔,保证泵在正常运转情况下机械密

封不会干磨擦。

b 锥形机械密封室,腔体容积大,保证机械密封

能够充分的润滑和冷却。

c 可避免大的颗粒接触机械密封。

d 泵排水时容易泄空。图3 机械密封区域浆液的流动

(2) 有冲洗水机械密封

有冲洗水机械密封需固定冲洗水管路。

①单端面有冲洗水机械密封

与无冲洗水机械密封的内部结构基本相同。单端

面有冲洗水机械密封又分为内冲式和外冲式。

a 内冲式:外部有一进水口,从进水口流入机械

密封的水在摩擦副外围形成清洁冷却介质并同浆液一

同排出。冲洗水量为0.9~1.2m3/h,冲洗水的压力大

于密封腔压力的0.1~0.2MPa。[密封腔压力=

(P

进+P

)/2]图4 双端面机械密封

b 外冲式:外部有一进水口,一出水口。流入机械密封的水起冷却、冲洗摩擦副背面的作用。冲洗水量为0.9~1.2m3/h,冲洗水的压力0.1~0.2 MPa。

②双端面机械密封(见图4):

a 在泵启动前,须先接通冲洗水;停泵3~5分钟后方可关闭冲洗水。(冲洗水的作用:一是封堵和平衡泵内浆体的压力,二是冷却机械密封部件。)

b 当泵进口压力P

进≥0时,冲洗水压力P= 21( P

+P

),

P

为泵出口压力。

c 动、静环材料均采用S iC。

d 有两个外露管接头,装压力表侧为进水口,另一侧为

出水口,冲洗水流量为泵流量的0.1-1%,泵输送流量较大图5冲洗水管配臵图

时取小值,流量较小时取大值,但最小冲洗水水量不低于1 m3/h。(见图5)

三泵的型号及意义

DT系列大型脱硫循环泵的型号及意义

600 DT -- A 82 (80)

切割叶轮直径(cm)

叶轮名义直径(cm)

叶轮叶片数。(A为5枚,B为4枚,C为3枚,

D为2枚,E为1枚, F为6 枚,G为7枚……)

卧式脱硫循环泵

泵出口直径(mm)

四泵的起吊

1 起吊有包装箱的泵,应按包装箱上所注的起吊位臵套系钢丝绳。吊运时,不得使箱底或侧面受到冲击,包装箱不得过度倾斜,不许将包装箱放在带尖棱的物体上,更不得倒臵。

2 起吊没有包装箱的泵,按下列要求执行:

(1)起吊前应先将悬架两侧的防护网拆下,以免

起吊时损坏防护网。

(2)起吊重心应在悬架的侧面方孔靠近泵头处。

(3)钢丝绳与泵体接触的部位应加软垫防护,以

免损坏泵外观或造成钢丝绳切断。

(4)起吊位臵按图6所示:

(5)先试吊,如整机不平衡,再重新调整起吊位

臵。

(6)带减速机的泵机组应采用分体吊装。图6 起吊位臵示意图

五泵的安装

1 安装前的检查

(1)安装前应首先按《装箱单》检查设备的型号、参数是否正确,零部件、随机携带的技术资料及质量证明资料是否齐全。

(2)详细阅读此使用说明书,掌握有关的技术要求和操作要领后,方可进行安装。

2 泵的安装找正

(1)泵机组安装后,机组的中心线应与地基中心线一致;机组的中心高与设计值的偏差应不大于±2mm,机组的水平允差为0.1/1000 。

(2)对于采用膜片联轴器传动的泵机组,找正方法如下:

找正是安装中最重要的环

节,一般来说主、从动端设备初

始对中越好,那么传动系统的运

行就越平稳,为保证最佳对中精

度,推荐图7找正方法:

图7 膜片联轴器的找正

①用千分表分别对联轴器半轴节的端面和外圆测取跳动值,直到符合要求。

②具体对应的千分表的角向、径向、轴向的指示值见下表1。

表1 用千分表测量的角向、径向、轴向的指示值(mm)

(3)对于采用减速机传动的泵机组,电机与减速机连接的联轴器的找正有两种方法,具体如下:

①一种是以刀口尺与塞尺配合。以刀口尺找正联轴器的外圆,保证每对联轴器在各方向的平齐,其最大误差δ应不大于0.1mm(图8 a)。以塞尺检查每对联轴器之间的间隙,其最大误差Δ(Δ=δ1-δ2)应不大于0.1mm(图8 b)。

②另一种方法是用磁力百分表配合塞尺找正联轴器。先将磁力百分表固定在一边联轴器外圆上并盘车,然后将百分表测头放在对面联轴器外圆上,观看百分表的跳动不应大

于0.2mm(图8 c)。联轴器的间隙用塞尺测量,其最大误差应不大于0.1mm (图8 b)。

a b c

图8 联轴器的找正

具体减速机的安装及注意事项详见减速机使用说明书。

3 泵进出口管路的配臵及要求(见图9)

(1) 吸入管路

①吸入管径:吸入管径应与泵的进口直径相同或比泵进口直径稍大,原因是既避免泵产生汽蚀,又不能使介质在管路中形成沉积。

②吸入口闸阀:为便于维修泵,应设吸入口闸阀,其直径与吸入管径相同。在泵的吸入口与吸入管之间应设伸缩节,以便拆装泵。

(2) 排出管路

①排出管径:排出管径与介质性质、沉降流速有关。

一般情况下,排出管径与泵的出口直径相等或稍大。

②压力表:位于泵出口和第一个阀门之间的直管段上。

③大型脱硫循环泵在出口一般应设臵出口闸阀。图9 泵进、出口管路

注意:对于并联的大型脱硫循环泵在每台泵出口管路上设臵出口闸阀;出口闸阀应与排出管径相同。

(3) 泵管路配臵注意事项

管径大小要考虑系统阻力、介质的临界沉降流速等综合因素。吸入管路应尽量短而直。在泵的吸入口处,最好配备一段与进口直径相同的直管段,其长度应不小于3倍进口直径。吸入管内流速视输送的介质沉降流速而定。

(4) 调节阀安装位臵

用阀门调节流量时,调节阀应设在泵出口。不允许在入口管路上用阀门调节流量,以免产生汽蚀。

4 脱硫泵的反冲洗系统

顾客现场应设臵大型脱硫循环泵用反冲洗系统。反冲洗系统是指从泵出口注入清水,流经泵腔和叶轮后从泵入口排出的冲洗系统。如果泵停机,应在停机后进行反冲洗,一般不少于5分钟,使机械密封的腔体中和密封副周围没有残留介质。如果泵由于其它原因要被停用保存,机械密封应拆出泵外,用中性清洁剂清理后凉干,然后装回清理过的泵体,再作储存。对停机时间较长的泵,投入运行前,应先进行反冲洗再运行。同时应确保进出口阀门关闭可靠,避免出现浆液漏入泵腔的现象。

六泵的调整

泵在安装找正后应进行检查与调整。

1 泵的前间隙调整

为保证泵的高效运行,使用一个时期后,在运行条件不变的情况下,泵的流量及效率下降,电流有较大变化时,必须定期对脱硫循环泵的前间隙进行调整,具体调整步骤如下(见图10):

(1)装单端面机械密封的泵,将机械密封集装板5旋入集装槽并固定,松开机械密封轴套与泵轴套锁紧螺栓4(两个法兰盘连接螺栓)。

(2)松开压紧螺栓3。

(3)松开调整螺栓上的电机侧螺母2。

(4)均匀拧紧调整螺栓上的中间压紧螺母1,使转子向泵头方向移动,边拧紧边盘车,直到盘不动为止。注意盘车的方向应按泵的工作转向。

(5)用深度尺测量后轴承压盖端面与悬架端面的间隙L=a;此时,叶轮与入口短管的法向间隙δ=0。

(6)松开调整螺栓上的中间压紧螺母1。

(7)均匀拧紧调整螺栓上的电机侧螺母2,使转子向电机方向移动,用深度尺检查间隙L,直到L=a+b为止(b值见表2,此时法向间隙δ=0.9~1mm),注意间隙应均匀一致。

(8)拧紧调整螺栓上的中间压紧螺母1、悬架盖压紧螺栓3,使转子的轴向位臵完全固定。

(9)拧紧机械密封两轴套锁紧螺栓4,集装板5旋出集装槽固定。

表2 法向间隙δ=(0.9~1)mm时b值的范围

图10 脱硫循环泵的前间隙调整示意图

2 电机转向的确认。电机的转向应确保泵的转向与规定方向一致,不得反向旋转,否则会损坏其它部件。电机的转向调整时,应在与泵完全脱开的状态下进行(即不上联轴器的中间节部分),在确认电机转向符合要求后方能安装中间节部分,绝不允许盲目起动电机。

3 传动装臵调整。采用弹性套柱销联轴器传动的,应上好柱销及防护罩;采用膜片联轴器传动的,应上好中间节部分及防护罩;采用减速机传动的,应按减速机的使用说明书要求调整好。

4 所有紧固件用扳手跟紧一遍。

5 清理机组上放臵的工具及杂物,以防泵运行中造成事故。

七泵的试运行

1 泵运行前的准备

(1)装有冲洗水的机械密封的泵先开冲洗水3~5分钟,然后再启动;装无冲洗水机械密封的泵应确保泵腔内充满介质,然后再启动。

(2)装单端面机械密封的泵,在泵运行前务必将机械密封上的集装板旋出集装槽并固定。

(3)泵机组安装调整好后,即可进行试运行。

(4)有条件的用户先用清水试运行,运行正常后再输送介质。

2 启动

(1)启动泵前,必须按规定转向手动盘车,确认转动灵活。

(2)将进口阀门完全开启。严禁采用关小进口阀门方式控制流量,否则会造成泵汽蚀。

(3)将出口阀门完全打开。

(4)吸收塔内的液位应达到规定的数值,否则可能导致启动时产生过大的管路振动及噪声。

(5)待进口阀门全开后再延时5分钟(确保泵内机封周围充满浆体),方可启动泵。

注意:并联的大型脱硫循环泵应逐台启动,启动前先将出口阀门打开。

3 运转

泵正常运转后,应观察以下几项内容:

(1)机械密封温升≤35°C,最高温度≤75°C。

(2)泵的流量、扬程(出、入口压力)是否稳定并符合工艺要求。

(3)电流是否稳定。

(4)机组是否有异常声响,噪声是否过大。

(5)轴封泄漏是否正常(滴渗)。机械密封规格尺寸≤50mm,泄漏量≤3ml/h;机械密封规格尺寸>50mm,泄漏量≤5ml/h。

(6)轴承温升≤35°C,最高温度≤75°C。如安装SKF轴承,最高持续运行温度≤120°C。

(7)振动值应保持在JB/T8097标准中C级的规定范围之内。

4 停泵

(1)关闭出口阀门。

(2)停机。

(3)关闭泵进口阀门。

(4)开启反冲洗系统。

(5)冲洗完毕停反冲洗系统。

(6)关闭机械密封的进水阀门。

注意:对于并联泵在停机时应逐台停泵,逐台关闭出口阀门,其余步骤与上述相同。

八泵的常见故障及处理措施(见表3)

表3 常见故障及排除方法

九泵的维护保养

泵整机在出厂前均已调整好,顾客在进货后6个月内,未经使用的泵不必进行拆检。仅检查转动是否灵活,锈蚀情况及加油情况即可。

1 保持设备清洁、干燥、无油污、不泄漏。

2 每日检点轴承体内油位是否合适,正确的油位在油位线位臵附近,不得超过±2mm。

3 经常检点泵运行是否声音异常,振动及泄漏情况,发现问题及时处理。

4 泵内严禁进入金属物体和超过泵允许通过的大块固体,且严禁进入胶皮、棉丝、塑料布之类柔性物质,以免破坏过流部件及堵塞叶轮流道,使泵不能正常工作。

5 严禁泵在抽空状态下运行,因泵在抽空状态下运行不但振动剧烈,而且还会影响泵的寿命,损坏机械密封,一定要特别注意。

6 为保证泵的高效运行(泵在使用一个时期后,在运行条件不变的情况下,电流有较大变化时),必须定期调整前间隙,该间隙一般出厂前已调好。若发现此间隙不符合要求,应进行调整(详见六泵的调整中1 泵的前间隙调整);运转中发现问题也应停机调整。

7 经常检测轴承温度最高不得超过75℃,对于SKF轴承最高温度不得超过120℃。

8 泵开始连续运行800小时后应彻底更换润滑油一次,以后每半年换一次润滑油。

9 润滑油:脱硫循环泵的轴承体内在开泵前按油标线位臵加N32(冬季)或N46(夏季)机械油(切忌无油开车!!管状油位计在泵安装调试前由用户自行安装。)

10 备用泵应每周转动1/4圈,以使轴均匀地承受静载荷及外部振动。

11 若停机时间较长,再次启动前应使用反冲水冲洗泵内沉积物后方可启动。

12 经常检查进出水管路系统支撑机构松动情况,确保支撑牢靠,泵体不应承受管道及附件压力。

13 经常检查泵在基础上的紧固情况,连接应牢固可靠。

14 装有冲洗水的机械密封的泵,在开泵之前应先开冲洗水,然后再开泵;停泵3~5分钟后方可关闭冲洗水。

十泵的装配与拆检

1 泵的装配

(1)轴承体组件的安装(见图11)

①后轴承装圆柱滚子轴承和深沟球轴承的泵:将后轴承5内圈、4内半圈和前轴承7的内圈装在轴上(热装);对于后轴承装两个圆锥滚子轴承的泵(局部图见图12):将后

轴承5、4内圈和前轴承7的内圈装在轴上(热装)。

②将后轴承5、4的外圈装在轴承体6上。

③将轴装在轴承体6上。

④将后轴承压盖3(装上油

封)、圆螺母1装上并压紧轴承。检

查轴承与轴肩是否靠紧,转动应灵活

平稳。

⑤装前轴承7的外圈,垫平铁

轻轻打入。

图11 轴承体组件

⑥将前轴承压盖8(装上油封)装上并压紧轴承。

⑦装轴承体上的密封圈。

⑧装上挡水盘9和拆卸环10。装拆卸环时,螺栓孔内

须加入少量润滑脂,拆卸环要压紧挡水盘。

⑨轴部分的其他部件,待主轴组件与悬架装好

后,再按装配图依次安装。

(2)悬架的安装(见图13)图12 装两个圆锥滚子轴承的后轴承

①将轴承体组件4(见图11)装

进悬架5的配合孔内。

②装调整螺栓2及压紧螺栓3,

装油池六角螺塞及油标。

③轴上装磁力百分表,检测悬架

与后护板联结定位孔及端面与轴回转

中心的同轴度及垂直度,均不能大于

0.3mm。

④试运转,试运转时应注意检测

轴承体的渗漏情况、振动情况、温升情

况等。

⑤装泵联轴器1。图13 悬架组件

(3)机械密封的安装

①单端面机械密封的安装:

a 将后护板吊起,装在悬架上。

b 按图纸或使用说明书核对机械密封型号,将相关附件准备齐全。

c 清除机械密封轴套表面油污,用油将机械密封轴套与泵轴套接触面的密封环涂敷一遍。

d 将机械密封组件装上。

e 将轴套装上,机械密封轴套与泵轴套锁紧螺栓暂时不要拧紧。(待前间隙调整好之后方可拧紧)

②双端面机械密封的安装:

a 将机械密封组件装入后护板腔体,装上机械密封压盖螺栓,均匀拧紧。

b 将装入机械密封组件的后护板装在悬架上。

c 三通、压力表、缓冲管的安装,待泵发到现场后,现场安装。

(4)泵头部分的安装

①将叶轮装在轴上,拧紧,压实轴套。

②装后护板密封圈。

③将装有后护板、叶轮的悬架吊起,装入蜗壳,连接好螺栓。

④装入口短管。

⑤调整叶轮与入口短管密封面的间隙。(具体调整步骤详见六泵的调整中1 泵的前间隙调整)

⑥装单端面机械密封的泵,将机械密封轴套与泵轴套锁紧螺栓拧紧,将机械密封集装板旋出集装槽并固定。

(5)其他零件的安装

①电机与泵找正后,检验电动机转向与蜗壳上箭头指向一致后,安装膜片联轴器的中间节部分。(膜片联轴器的中间节部分,待泵发往现场后,现场安装。)

②装好联轴器罩。

2 泵的拆检

(1)总体介绍

①拆卸前,确保泵设备不会因意外情况接通电源,吸入管路和出口管路的阀门必须关闭。

②泵体温度必须被降低至环境温度。

③对泵设备的维护工作只能由受过专业训练的人员利用原始零配件进行。

④任何对电动机进行的维修维护工作应遵循各电动机供应商的说明和规定。

⑤在设备损坏的情况下,用户可以随时与我们的售后服务部门联系。

(2)拆卸前的准备

①将轴承体内的油料排空。

②如果泵装的是单端面机械密封时,将集装板旋入集装槽中并固定好。

(3)泵的拆卸(见图1)

①泵在拆卸时先将膜片联轴器的中间节部分拆下,方便检修。

②将蜗壳与悬架的连接螺柱14、支架13与悬架的连接螺栓12拆下。

③拆卸悬架组件连同叶轮一起抽出蜗壳。

④装单端面机械密封的泵:松开机械密封轴套与泵轴套锁紧螺栓(两个法兰盘连接

螺栓)。

⑤松开拆卸环6的连接螺栓,并将拆卸环6拆下。

⑥拆下叶轮1。

⑦将机械密封5拆下。

⑧拆下后护板4。

⑨装双端面机械密封的泵:将带有机械密封的后护板一同拆下。

⑩拆下调整螺栓10,松开悬架盖上的压紧螺栓11。拆下轴承体组件。再依次拆下各部件。(具体详见上述1 泵的装配)

十一易损件明细表

易损件订货应以随机所带的装配图明细为准。

表4 脱硫循环泵易损件明细表

浆液循环泵作业指导书

目录 1.工程概况 (3) 2.依据的图纸、文件及标准 (3) 3.作业准备要求及条件 (3) 4.施工过程关键的质量控制点 (3) 5.作业程序内容 (3) 6.验收质量标准 (4) 7.安全文明施工措施 (4)

1.工程概况 公共系统三台浆液循环泵基础改造及更换三台浆液循环泵。拆下原有电动机及三台浆液循环泵,等土建改造完毕后,安装新的三台浆液循环泵,恢复原来的三台电动机,改造进出、口管并对接,恢复油管及冷却水管等,并把旧的三台浆液循环泵运到指定地点。2.依据的图纸、文件及标准 2.1.《电力建设施工及验收技术规范》锅炉机组篇; 2.2.《火电施工质量检验及评定标准》锅炉机组篇; 2.3.《电力建设安全工作规程》 3.作业准备要求及条件 3.1.有关检修项目、工艺程序、质量标准及施工技术措施已组织有关人员学习和掌握。 3.2.施工中的安全措施已制定并落实到每个有关人员。 3.3.有关检修技术记录卡、图表等准备齐全。 3.4.检修所有的工具、器具、标准校验直尺等专用测量工具,起吊机具已准备到位。设 备的备品已采购结束并验收合格。 3.5.热力检修工作票已送至运行岗位并办理有关手续。允许开工的通知签证已确认。 3.6.确认电机以停运并已隔离电源及已挂安全警告牌。 4.施工过程关键的质量控制点 4.1.基础尺寸、中心线、标高、地脚螺栓孔和预埋铁件位置等要符合设计图纸要求,验收 合格。 4.2.垫铁与基础应接触密实、垫铁无翘动现象。 4.3.底座的中心、标高、水平符合设计标准。 4.4.进、出口管改造对接严密。 4.5.对轮找中心、连接。 4.6.各泵的机械密封严密。 5.作业程序内容 5.1.开出工作票,拆除电机的电源线,热工线。

吸收塔的设计和选型

烟气脱硫工艺主要设备吸收塔设计和选型 4.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 4.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设 计、喷淋塔的直径设计 4.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= ) ln( ) ()(* ** 2 2*11*2 2*1 12 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -] 4[ 82.0W a k L ?=] 4[ (2) 其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )

脱硫泵在火力发电厂脱硫系统中起到什么作用

脱硫泵在火力发电厂脱硫系统中起到什么作用 在大型火力发电厂电力生产的过程中,都需要建立一定的烟气脱硫工艺生产线,这些工艺都要使用到脱硫泵,这里的脱硫泵一般都采用UHB耐腐耐磨砂浆泵来工作,脱硫泵是火力发电厂烟气脱硫系统工艺中的主要的核心设备。随着国内对环保意识的日益提高,制造水平能效比的提升等,对脱硫泵的各项指标也是越来越高。要求脱硫泵不仅要可靠性能高、结构简单合理、拆装维修方便、密封要无泄漏、生产效率要高、对过流部件(泵壳、泵体、叶轮等部件)要耐腐蚀耐磨损。众多的要求就对生产厂家带来了难度。研制脱硫泵的开展对我国化工泵的整体水准是有着重要意义的。 本文主要进行了烟气脱硫泵的设计及研制。在综合分析烟气脱硫工艺原理、介质对泵设备的影响和设备的性能、运行特点的基础上,分析研究水力模型,并采用了速度系数法设计方研究了烟气脱硫循环泵的水力性能,保证设计合理性。通过叶轮直径及变转速实验,得到了流量和扬程性能变化的规律,以满足客户多种工况参数下的需求;进行总体结构设计,对轴承、拆卸环、轴承密封形式及机械密封等关键部件结构进行设计优化,提高了设备长期运行的可靠性。研究了脱硫介质对泵件的腐蚀和磨损特点,样机采用外钢铸件内衬高分子聚乙烯材质,对样机进行了磨损和腐蚀试验,确定了合理的材料成分,确定了关键部件的工艺方案。 我厂从事砂浆泵研制工作接近30年的历史了,现己发展成为一个砂浆泵专业生产厂家。砂浆泵产品主要应用于纸浆厂、选矿厂、电厂、钛白粉制造业、氧化铝等有色行业输送浆体。,现在火电厂等燃煤脱硫方法主要是燃烧后烟气脱硫中的湿法工艺,即Flus GasDesulphurization(简称FGD)。系统中,脱硫吸收剂为石灰石或石灰。石灰石浆液或石灰浆液,在吸收塔内与烟气中的SO2反应被脱去。最终反应物为石膏( CaSO4-2H20 ),脱硫吸收剂循环使用。此种工艺适用于各种含硫量煤种,单套FGD装置可配600MW及以上机组,脱硫效率可达95%以上,脱硫吸收剂利用率达90%以上。

浆液循环泵技术规范书

文件编号: XX工程 浆液循环泵技术规范书 发包方: 承包方: 2017年8月

通用部分 (11) 1范围 (11) 2 总则 (11) 3 技术要求 (22) 3.1性能要求 (22) 3.2设计要求 (22) 3.3电气要求 (44) 3.4仪表及控制要求 (88) 3.5标准 (88) 3.6质量文件 (99) 3.7技术资料与技术服务 (99) 4 设计与供货界限 (1212) 5 油漆、包装运输与储存 (1212) 6 培训 (1313) 专用部分 (1414) 1 工程概况 (1414) 2 浆液循环泵设计运行条件 (1515) 2.1循环浆液介质特性: (1515) 2.2基本要求 (1515) 2.4 性能保证值(以下空白处由投标方按每台泵的设计工况填写) (1919) 3原始设计参数表及设备设计数据表(以下空白处由投标方填写) (1919) 4供货范围及进度 (2727) 4.1供货范围 (2727) 4.2设备及零部件供货说明 (2727) 4.3 供货清单 (2828) 4.4进度 (2929) 5 技术服务和联络 (2929) 5.1投标方现场技术服务 (2929) 5.2售后服务 (3131) 6分包与外购 (3131) 7 大(部)件情况 (3131) 8交货 (3131) 9差异表 (3131)

1范围 本招标书适用XX 工程的浆液循环泵及其配套设备的招标,包括泵本体、支座、密封结构、轴承箱、传动结构、驱动电机及相关的仪控附件。 2 总则 2.1本招标书包括浆液循环泵的性能、设计、制造、控制、试验、验收、安装等方面的技术要求。 2.2本招标书所提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文。投标方应保证提供符合规范要求和现行中国或国际通用标准的优质产品。 2.3泵的设计、生产和安装应根据最新有效的规范、标准(ICE、ANSI、ASME、DIN、API、GB)和相关法律规定。设备的设计与制造应采用相关的工程设计和制造工艺的较高标准,按GB/T 3216离心泵、混流泵、轴流泵和旋涡泵试验方法(或ISO25481973CE离心泵、混流泵、轴流泵验收试验规范)进行试验及验收。 2.4投标方提出的产品应完全符合本招标书的要求。 2.5投标方提供的设备应是全新的和先进的,并经过运行实践已证明是完全成熟可靠的产品。 2.6凡在投标方设计范围之内的外购件或外购设备,投标方应至少要推荐2至3家产品供招标方确认,而且招标方有权单独采购,但技术上均由投标方负责归口协调。 2.7在签订合同之后,到投标方开始制造之日的这段时间内,招标方有权提出因规范、标准和规程发生变化而产生的一些补充修改要求,投标方应接受这些要求。根据下述 2.7条款,这些修改不产生合同价的变更。 2.8本招标书所使用的标准,如遇到与投标方所执行的标准不一致时,按较高的标准执行,但不应低于最新中国国家标准。如果本招标书与现行使用的有关中国标准以及中国部颁标准有明显抵触的条文,投标方应及时书面通知招标方进行解决。 2.9本招标书为订货合同的附件,与合同正文具有同等效力。 2.10在今后合同谈判及合同执行过程中的一切图纸、技术文件、设备信函等必须使用中文,如果投标方提供的文件中使用另一种文字,则需有中文译本,在这种情况下,解释以中文为准。

浅析600MW机组脱硫浆液循环泵的运行优化与改造

浅析600MW机组脱硫浆液循环泵的运行优化与改造 摘要:本文分析了XX电厂600MW机组湿法烟气脱硫系统运行参数,判断出循环浆液量的大小,提出了合理的循环浆液量计算和循环浆液泵的运行优化方案;为了挖掘出更大节能潜力,本文还对循环浆液泵的优化改造方案进行分析,计算理论节能效果。对优化电厂烟气脱硫系统及改造具有一定的参考意义。 关键词:湿法烟气脱硫循环浆液量优化方案节能 1、通过运行参数分析循环浆液量 1.1 实际运行参数 XX电厂600 MW 机组烟气脱硫系统为石灰石一石膏湿法脱硫,进入喷淋塔的烟气由下向上依次经过3个喷淋层除去所含的SO2气体,3个喷淋层依次对应l、2、3号循环浆液泵。文中取该系统的实际运行数据进行分析(见表1)。 1.2 吸收塔浆液PH值的分析 高PH值的浆液环境有利于SO2的吸收,而低PH 值则有助于Ca2+ 的析出,二者互相对立因此选择合适的PH 值对炯气脱硫反应至关重要。为使系统的钙硫比保持在设计值左右。循环浆液PH值一般应控制在5.0~5.3。由表1知,该电厂烟气脱硫系统浆液PH 值控制在4.5~4.8时,能够保证系统较高的脱硫效率和较好的石膏品质其值小于5.0~5.3,原因分析为:烟气量在一定范围变化的条件下,由于循环浆液量偏大,原烟气中二氧化硫质量浓度偏小,从而液气比L/G较高,烟气中SO2与浆液液滴有很好的接触,使SO2与石灰石浆液进行了充分的反应,浆液中石灰石的利用率较高,因而浆液钙硫比Ca/S较小,使得浆液PH 值偏小。可见,造成浆液PH值偏小的根本原因是循环浆液量大。 1.3 循环浆液密度值的控制 为了相对减小二级真空脱水的电耗,保证脱硫效率,应严格控制吸收塔浆液密度在一定范围。通过对该电厂运行数据的考察,发现实际运行中石膏浆液密度在1150 kg/m,左右。而理论上,合理的石膏浆液密度为1075~1085 kg/m ,运行值较最优值偏大原因分析为:石膏浆液密度偏高则说明浆液中CaSO4·2H2O 的质量分数较高,CaCO3的相对质量分数较低。运行中由于原烟气中SO2质量浓度较低,反应时需要的CaCO3量就较少.而实际供给的循环浆液量又偏大,导致了浆液中CaCO3相对质量分数较低,CaSO4·2H2O 的相对质量分数较高,实际运行数据表现为浆液密度偏大如果石膏浆液密度值控制得较低,则浆液中CaCO3质量分数就会升高,CaSO4·2H2O 的质量分数减少,反应后剩余CaC03量较大,从而影响了石膏的品质,还浪费了石灰石原料。因此,石膏浆液密度偏大也是循环浆液量较大所致。

浆液循环泵全停导致脱硫装置解列应急预案

浆液循环泵全停导致脱硫装置解列应急预案 一、脱硫浆液循环泵全停原因: 6KV母线电气故障;吸收塔液位低;吸收塔液位计显示不准;DCS 故障或其它原因。 二、正常结果: 在脱硫装置投保护运行的正常情况下时,脱硫装置会自动执行以下保护程序,达到保护脱硫装置的目的。 1.烟气脱硫旁路挡板门快速开启(<15秒); 2.增压风机主电机停运; 3.原烟气挡板门关闭; 4.吸收塔顶部排空门开启; 5.净烟气挡板门关闭; 三、非正常情况: 脱硫装置其它设备均能在短时间内能够保持连续运行状态。故当由于以上原因造成浆液循环泵全停时,脱硫运行人员应重点查看上以设备的状态,确认是否按照主保护程序自动进行;否则应人员干预,将其按照主保护程序的步骤执行下去。 1.检查烟气脱硫旁路档板门是否自动快速开启,否则立即开启旁路 挡板门或按旁路档板门紧急开启按钮,将旁路挡板门开启; 2.检查增压风机是否自动停运。否则停运增压风机主电机; 3.检查原烟气档板门是否关闭。否则手动关闭脱硫原烟气挡板门 4.检查吸收塔顶部排空门是否开启。否则手动开启吸收塔顶部排空

门 5.检查净烟气档板门是否关闭。否则手动关闭净烟气挡板门。 6.联系主机值长,报告由于浆液循环泵全停已经开启旁路烟气挡板 门、停止脱硫增压风机运行; 7.执行吸收塔除雾器自动冲洗程序,以达到降低吸收塔内烟气温度、 防止高温烟气损坏吸收塔除雾器和吸收塔内衬的目的 四、原因分析: 查找浆液循环泵全停原因,针对造成浆液循环泵全停的不同原因采取不同的处理措施。 1、由于6KV系统失电、DCS故障等在短时内不能恢复脱硫装置时, 应对浆液循环泵进行放浆和冲洗 2、浆液循环泵放浆和冲洗须逐台进行,并注意吸收塔集水坑液位; 3、浆液循环泵注水须逐台进行,不得同时对两台浆液循环泵注水, 以防造成工艺水系统压力偏停造成跳闸,在注水过程中应注意 工艺水泵压力,依情况启备用工艺水泵运行。 4、如吸收塔液位低,启动除雾气冲洗水泵补至正常液位。 五、脱硫系统的恢复: 5、确认脱硫装置具备恢复条件,可不对浆液循环泵放浆、冲洗和 注水(如不具备投运条件,则需对浆液循环泵放浆、冲洗和注 水。 6、如吸收塔内浆液密度高,确认石膏排出泵对外排浆,根据吸收 塔液位启动除雾器冲洗程序对浆液进行稀释。

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

浆液循环泵安装

. . XA-作-元宝山-04-2006 元宝山电厂4#机组烟气脱硫工程 浆液循环泵安装工程 作 业 指 导 书 编制: 审核: 审批: 武汉凯迪电力环保有限公司 湖南省工业设备安装公司 2006-10-18

目录 1 工程概况 (3) 1.1 工程概况 (3) 1.2 工作量和工期 (3) 2 编制依据 (4) 3 作业前的准备和条件 (4) 3.1 技术准备 (4) 3.2 作业人员配置、资格 (4) 4 作业程序和方法 (6) 4.1 施工方案 (6) 4.2 施工工艺流程 (6) 4.3 施工方法及要求 (6) 4.3.1 基础检查、划线及垫铁配制 (6) 4.3.1.1垫铁规格及组数 (7) 5 泵的安装(地脚螺栓水泥灌浆法) (7) 6 作业的安全要求和环境条件 (8) 6.1 安全注意事项 (8)

浆液循环泵安装作业指导书 1 工程概况 1.1 工程概况 元宝山电厂烟气脱硫工程设置有3台浆液循环泵。 循环泵的主要部件: 电机:9.2t 冷却器:1.75t 离心泵:9.5t 机座:3t 1.2 工作量和工期 工作量:循环泵本体及附属设备。 工期:计划工期10天。 施工进度计划: 10月17日-10月18日:基础画线及垫铁配置、标高、中心测量 10月18日-10月23日:机座、电机、泵吊装,就位找正、二次灌浆10月24日-10月25日:附属设备安装 10月26日-10月27日:精找及二次灌浆抹面

2 编制依据 3 作业前的准备和条件 3.1 技术准备 3.1.1施工图纸齐全,且完成对与浆液循环泵系统安装有关图纸的会审,编写有针对性的作业指导书。 3.1.2对施工人员进行技术交底。 3.1.3设备基础已进行工序交接。 3.2 作业人员配置、资格

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

脱硫浆液循环泵现场检修工艺规程

脱硫浆液循环泵现场检修工艺规程 1.适合范围 本规程规定了大唐信阳华豫发电厂320MW脱硫浆液循环泵检修的周期、标准检修项目、大修的施工步骤及工艺质量标准,并附录了一些检修维护相关的知识,供大唐信阳华豫发电厂脱硫浆液循环泵检修工作使用,也可做浆液循环泵运行、检查人员参考。 2.规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 DLT 341-2010火电厂石灰石/石灰-石膏湿法烟气脱硫装置检修导则 DL/T 748.10-2016火力发电厂锅炉机组检修导则第lO部分:脱硫装置检修 DL/T573—95 电力变压器检修导则 DL/T596—96 电力设备预防性试验规程

3.320MW脱硫浆液循环泵规范 3.1浆液循环泵规范 吸收塔浆液循环泵主要由泵壳、叶轮、轴、轴承、机械密封等部件组成。 A浆液循环泵技术参数 序号项目单位数值 1 型号600X-TLRD 2 型式卧式泵 3 数量台1/塔 4 密封型式机械密封 5 材质泵壳 / 叶轮 1.4596 6 流量m3/h 6000 7 扬程m 24m 8 转速r/min 650 9 功率kW 630 10 生产厂家石家庄泵业集团有限 责任公司 B浆液循环泵技术参数 序号项目单位数值 1 型号600X-TLRD

2 型式卧式泵 3 数量台1/塔 4 密封型式机械密封 5 材质泵壳 / 叶轮 1.4596 6 流量m3/h 5800 7 扬程m 21m 8 转速r/min 650 9 功率kW 560 10 生产厂家石家庄泵业集团有限 责任公司 C浆液循环泵技术参数 序号项目单位数值 1 型号500X-TLRD 2 型式卧式泵 3 数量台1/塔 4 密封型式机械密封 5 材质泵壳 / 叶轮 1.4596 6 流量m3/h 5000 7 扬程m 20m 8 转速r/min 630

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

脱硫浆液循环泵

目录 一、概述 (2) 二、功能、结构说明 (2) 三、装配与拆卸 (5) 四、运输 (7) 五、安装 (8) 六、泵的起动与停车 (9) 七、维护保养 (12) 八、故障原因及消除办法 (13) 九、运转管理 (13)

一、概述 TLR型脱硫泵主要作为湿法FGD装置中吸收塔循环用泵,其特点是大流量、低扬程、高效率。并根据吸收塔循环工况选配合适材质,优化设计结构,使之能始终处于高效、经济的运行状态。 型号意义:例如 600 X - TL R 材料代号 脱硫 托架型式代号 泵出口直径(mm) 二、结构、功能说明 TLR型脱硫泵为单级单吸卧式离心泵型式,结构见图1: 图1、泵结构

下面按泵头部分、轴封部分及托架部分分别阐述其结构特点: .1、泵头部分(见图1) 泵头部分主要由泵体(13)、泵盖(15)、后护板(6)、叶轮(12)、接合板(10)、前护套(8)、后护套(14)、吸入盖(9)及机械密封(11)等零部件组成。其中:泵体(13)、泵盖(15)和接合板(10)采用球墨铸铁材料;叶轮(12)、吸入盖(9)为A49双相不锈白口铁,适于输送含高浓度氯离子介质;前护套(8)、后护套(14)、后护板(6)均为天然橡胶,既耐腐又耐磨;机械密封(11)可在无冲洗水情况下可靠工作;叶轮拆卸环(2)的作用可使叶轮轻易拆下;各密封垫(5、7、16、17)均由合适材料制成,适合磨蚀腐蚀工况要求。 叶轮在泵腔中的位置可通过调节轴承组件下部的螺栓来保证,使泵始终处于高效运行状态。 泵为后拆结构(叶轮也可从前端拆下),泵的出口方向垂直向上。从驱动端看泵为顺时针方向旋转。 2托架部分 .型号意义,例如: SBB007-600 B 区分标记 止口尺寸 标准号 SBB007系列稀油润滑托架从结构形式上看为轴承体和托架体分开式结构。从调整方式上看为轴承体和轴相对托架体滑动的调整方式。结构见图2:

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

脱硫浆液循环泵结构及其检修

脱硫浆液循环泵结构及其检修 1.结构特点及设计优点 吸收塔循环泵是烟气脱硫装臵中的大型关键设备,装臵对其可靠性及使用寿命有很高要求。FGD装臵消耗的电能有一半以上用于驱动吸收塔循环泵。因此,循环泵应具有较高的效率。泵的水力设计、结构设计以及过流部件材料的选择直接关系着泵运行的效率、可靠性和使用寿命。 襄樊五二五泵业开发的吸收塔循环泵,泵体、泵盖等过流件采用2605N材料,叶轮、耐磨板则采用Cr30A材料。 泵的水力设计,借鉴了法国J〃S公司固液两相流泵的设计制造技术,并采用现代化的CAD、CFD技术进行修正。泵的结构如图1所示, 图1.烟气脱硫循环泵结构图 1.1结构特点 (1)泵为单级单吸式离心泵,该形式在实践中已证明特别适用于FGD装臵吸收塔循环泵输送磨蚀性、腐蚀性浆体。 (2)叶轮、耐磨板不采用口环密封形式,口环的设臵将会被浆体快速磨损,从而导致泵的效率快速下降。 (3)具有轴向调节结构,叶轮能方便轴向调节保持叶轮与前盖板与耐磨板的间隙,从而保持泵的高效率。这是始终保持泵高效运行的最简便和最有效的办法。 (4)泵的布臵形式为“后拉式”结构。这样可使泵在拆卸叶轮、机械密封和轴组件时无须拆卸泵的进出口管线。 (5)轴承采用稀油润滑。轴承安装在有橡胶密封圈辅助密封的可拆卸轴承盒内,防止污物和水进入。 (6)泵轴为大直径、短轴头,可以减少轴在工作中的挠曲,从而延长密封的使用寿命。1.2吸收塔循环泵的设计优点: 总述:背拉出式设计整套转子部件可以从电机端拉出,易于维护,泵体可保留在管路上, 无需拆卸电机。 轴承支架可调节提高耐磨性能 轴承采用浸油润滑 泵体:泵体尺寸足够承压及耐磨,材料采用2605N,可焊,蜗舌部分特殊耐磨处理,流道切线出口,泵体设臵底脚支承方式。 耐磨板:该零件装在泵体与进口之间,材料为Cr30A,此种材料具有优良的抗磨蚀及耐冲蚀综合性能,由此而延长了泵体和叶轮的使用寿命。

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型 1 吸收塔塔型的选择 在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。 目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。 由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。 2 喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。 另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s。许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。 (2)液气比(L/G) L/G决定了SO2的吸收表面积。在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。 根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。 美国能源部编制的FGD-PRISM程序的优化计算,L/G以15L/m3为宜,此时,SO2的去除效率已接近100%。L/G超过15.5L/m3后,脱硫效率的提高非常缓慢,而且提高L/G将使浆液循环泵的流量增大,增加循环泵的设备费用,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用。 (3)吸收塔浆池尺寸 吸收塔浆池尺寸可通过以下工艺设计参数确定: 1)石膏颗粒(晶种)生长的停留时间 湿法脱硫系统中,亚硫酸钙、硫酸钙的析出是在循环浆液的固体颗粒(晶种)表面上进行的,为了晶体的生长和结晶,循环浆池里的石膏颗粒必须有足够的停留时间,反应时间也必须足够长。停留时间的计算公式为: RT=(V×ρ×SC)/TSP 其中:RT—停留时间(min);TSP—石膏成品产量(干基)(kg/min);V—浆池体积(m3);ρ—浆液密度(kg/m3);SC—浆液含固量(%)。如生产的石膏要在水泥或石膏行业使用,FGD的石膏成品含水量必须<10%,石膏必须结晶成平均直径为35~50μm的立方晶体,停留时间必须>15小时。对于抛弃系统,由于石膏成品要被抛弃,石膏成品含水量可>15%,这样系统的停留时间可缩小到10小时左右。 2)石灰石溶解的停留时间 如要求吸收塔内的石灰石充分溶解,则石灰石在循环浆池内必须有足够长的停留时间。一般来说,石灰石的停留时间须>4.3min。石灰石溶解的停留时间按下式计算: T=V/(N×RF) 其中:T—停留时间(min);V—浆池体积(m3);N—循环泵数;RF—单台循环泵流量(m3 /h)。 3)氧化反应的体积和氧气从空气转移到液体的深度氧气从空气转移到液体的深度,是指吸收塔浆液池内释放氧化空气的曝气管或喷枪的位置。亚硫酸盐或亚硫酸氢盐的氧化分为两部分,一部分是吸收塔内烟气中的氧气进入浆液液滴的自然氧化,另一部分是空气通过曝气管网进入浆液池后的强制氧化。

湿法脱硫系统安全运行与节能降耗研究

湿法脱硫系统安全运行与节能降耗研究 发表时间:2016-07-25T14:29:06.570Z 来源:《电力设备》2016年第10期作者:刘剑[导读] 现阶段,最成熟、应用最多的脱硫技术就是石灰石-石膏湿法烟气脱硫技术。 (云南大唐国际红河发电有限责任公司云南红河 661600)摘要:现阶段,最成熟、应用最多的脱硫技术就是石灰石-石膏湿法烟气脱硫技术,怎样安全、经济、稳定的运行系统是未来研究的重点。以此本文着重阐述了脱硫设备、系统的安全以及节能降耗,并讨论了脱硫中的常见问题和解决措施,确保能够在环保基础上降低脱硫的成本。 关键词:湿法脱硫系统安全运行节能降耗 前言 现阶段国内脱硫设备运行水平和状态还不能完全满足国家二氧化硫控制的标准,烟气带水、堵塞、腐蚀等会导致出现过高的耗能,以至于不能满足脱硫效率的设计需求,以此需要进一步改善脱硫设备,提高脱硫效率。 一、脱硫系统设备概述 某2X300MW机组配备石灰石-石膏湿法烟气脱硫系统,系统中主要包括烟气、吸收、吸收剂制备、石膏脱水储存、废水处理、公用等子系统。依据厂外来石灰石块采用湿式球磨机来处理石灰石浆液[1]。 二、脱硫系统的安全运行 1.烟气系统 脱硫烟气系统的换热器系统堵塞或者腐蚀会导致出现系统运行故障,不但降低烟气脱硫的可用率,也会增加维修成本,同时也是稳定运行主要的影响因素。堵塞烟气换热器以后,系统中能够提高500~1000Pa的总压降,导致设备出现风机跳闸、叶片断裂等事故。如果环境温度条件允许,设计建造过中应当考虑取消烟气换热器,如果不能取消换热器系统,应该合理应用优良厂家生产的换热器系统,以便于最大限度降低漏风效率和提高除雾效果,利用强化方式吹扫换热器系统的杂质,如增加吹扫枪等。此外也需要依据烟囱扩散情况选择合理的设计温度,以便于全面提高运行系统的可靠性和安全性。吸收塔系统 2.1除雾器堵塞及倒塌 脱硫设备运行的时候除雾器堵塞是常见问题,造成除雾器堵塞的主要因素包括冲洗效果差,导致系统长时间低负荷的运行不能保障冲洗效果;过高的PH值和浆液浓度,加剧堵塞除雾器的现象,因此运行中应按照设计值严格控制吸收塔浆液密度以及PH值。目前工程建设中已多采用自动冲洗屋脊式除雾器取代易堵塞的平板式除雾器,并且运行中监视除雾器差压,严格控制冲洗,防止出现冲洗不充分现象。 2.2吸收塔浆液起泡 吸收塔浆液起泡包括以下几方面因素,第一,石灰石品质比较差,吸收塔浆液浓度过高;第二,烟气含尘量超标,以至于影响浆液活性;第三,锅炉投油助燃的过程中燃烧不充分,吸收塔中进入油雾,导致浆液起泡;实际运行中应定期分析浆液成分,重点监测CL1-、Mg2+等,对浆液泡沫取样分析,合理选择消泡剂;置换浆液,通过脱石膏,尽可能排出所有滤液[2],补充新的浆液 2.3浆液循环泵损坏 浆液循环泵运行的时候机械密封泄漏、泵汽蚀、磨损叶轮是主要的问题,如果泵汽蚀以后,会导致磨损叶轮或者密封泄漏。实际运行中需要对循环泵进行分析,改变叶轮通气孔,保持压力平衡;改良密封形式,依据冷却水或者冲洗液进行密封。 3.烟囱腐蚀渗漏问题 3.1环形支撑/环梁/顶部 环形支撑/环梁/顶部三部分出现腐蚀以后会严重影响系统整体结构,此时需要高度重视施工、设计以及材料的选择,环形支撑/环梁腐蚀,在正压的作用下腐蚀液体会进入到结构伸缩缝中,以至于严重影响基材质量。顶部出现腐蚀以后,环境条件和烟气速流会影响腐蚀烟囱结构的程度。 3.2烟道与烟囱筒壁交接处 设计焊接的过程中需要利用有膨胀富裕度钢材来进行连接,以便确保具备足够的烟囱空间实施膨胀,上述位置需要合理应用高弹性、高耐温、高抗腐蚀性能的材料,从而防止因为冷热膨胀导致烟囱壁筒和烟道交接位置被冲击,以至于出现材料开裂泄漏的问题[3]。 3.3积灰平台 积灰平台设计过程中需要满足建筑防腐设计,并且也需要合理分析烟囱内筒、积灰平台、烟道、挡烟墙等之间的缝隙,促使上述平台具备一定抗渗能力和抗腐蚀能力,此外,这种平台也需要存在坡度,保障能够顺利排放烟气冷凝水。 三、脱硫系统的节能降耗 1.烟气系统运行优化 优化运行烟气系统的关键就是降低烟气系统的阻力从而降低风机电耗。降低系统阻力的重点就是提高除雾系统和换热器系统的冲洗,在合理范围内控制差压,防止除雾系统或者换热器系统出现不正常压差,以至于提高风机损耗;同时目前设计建造中,大多取消脱硫增压风机,采用引/增合一的方式,大大降低厂用电率,这种方式是目前值得大量应用和推广的一种优化技术。 2.吸收系统运行优化 优化运行脱硫吸收系统的关键就是优化浆液循环泵运行台数、氧化风量、pH值、吸收塔液位、石灰石粒径,也就是在不同入口、不同负荷下,确定最合理氧化风量、pH设定值、浆液循环泵组合方式等,确保能够完全满足设计的环保排放标准,最大限度降低运行成本,此外,也需要满足于相关部门提出脱硫效率要求,一般情况下石灰石作为脱硫剂[4]。 3.磨制系统运行优化

脱硫系统浆液循环泵运行电流波动原因分析与处理

脱硫系统浆液循环泵运行电流波动原因分析与处理 光辉1黎伟1秀明2聂海涛1叔楠2 (1. 大唐环境产业集团股份项目部,,472100; 2.大唐发电有限责任公司,,472143) 摘要:浆液循环泵是燃煤电厂湿法石灰石-石膏法脱硫系统的核心设备之一,随着国家环保要求越来越严格,浆液循环泵的安全稳定运行至关重要。文章针对电厂超低排放改造后,浆液循环泵运行电流发生异常波动原因进行了分析,并提出了消除异常的对策和措施。 关键词:浆液循环泵电流滤网超低排放 1、引言 大唐发电二期2×630MW发电机组烟气脱硫系统采用湿法石灰石-石膏脱硫(FGD)技术。两台机组FGD分别于2016年9和11月通过168h试运行。2套FGD 按照单元制设置,分别配置3台澳大利亚沃曼公司生产的800TY-GSL浆液循环泵,命名为#3炉A/B/C浆液循环泵和#4炉A/B/C浆液循环泵(以下简称为#3A/B/C、#4A/B/C),各浆液循环泵的设计参数如表1。 随着国家环保标准越来越严格,2014年对两台脱硫系统进行了增容改造,吸收塔增加两台浆液循环泵,分别命名为#3炉D/E浆液循环泵和#4炉D/E浆液循环泵(以下简称为#3D/E、#4D/E),各浆液循环泵的设计参数如表2。 表2:新增浆液循环泵设计参数

#3E浆液循环泵1000 7500 32 125.9 #4D浆液循环泵900 7500 30 113.5 #4E浆液循环泵1000 7500 32 125.9 为了实现烟气超低排放,2015年12月及2016年3月,电厂分别完成了两台脱硫系统的超低排放改造。期间将A/B/C层的喷淋层进行了改造,喷嘴形式由螺旋喷嘴改为空心锥高效喷嘴,并增加了一层托盘和一层均流器,除雾器改为屋脊式高效除雾器。 2、存在的问题 2.1 浆液循环泵电流波动严重 #3、#4机组脱硫系统自2016年投产后,各台浆液循环泵运行稳定,未出现电流波动大的现象,如下图1。2014年9月,#3、4机组进行增容改造后,增加两台浆液循环泵,五台浆液循环泵开始出现电流波动现象,当一台浆液循环泵启动后,相邻浆液循环泵的电流下降,停运后对泵进行反冲洗后,电流恢复正常,但运行不到2个小时,又会出现电流下降的现象,其中#3机组电流波动明显大于#4机组,如下图2。2015年12月及2016年3月,分别对#4和#3机组进行了超低排放改造,对A/B/C三层浆液循环泵喷淋层进行了改造,改造后各浆液循环泵依然存在电流波动现象,如下图3。 图1 增容改造前浆液循环泵电流运行情况

相关文档
相关文档 最新文档