文档库 最新最全的文档下载
当前位置:文档库 › 中考复习:二次函数与图形面积

中考复习:二次函数与图形面积

中考复习:二次函数与图形面积
中考复习:二次函数与图形面积

二次函数与图形面积

★1.已知抛物线y =-x 2+bx +c 的图象过点A (4,0)、B (1,3). (1)求抛物线的表达式;

(2)求出抛物线的对称轴和顶点坐标;

(3)抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于x 轴的对称点为F ,若以O 、A 、P 、F 四点组成的四边形的面积为20,求m 、n 的值.

解:(1)将点A (4,0)、B (1,3)代入抛物线y =-x 2+bx +c 得

??

?=++-=++-310416c b c b ,解得???==0

4

c b , ∴抛物线的表达式为y =-x 2+4x ; (2)对称轴为直线x =-b

2a =-

()

124

-?=2,顶点坐标为(2,4);

(3)抛物线的对称轴为直线x =2,设抛物线上的点P (m ,n )在第四象限,则点P 关于直线l 的对称点为E (4-m ,n ), 点E 关于x 轴的对称点为F (4-m ,-n ), 若以O 、A 、P 、F 四点组成的四边形的面积为20,

则S 四边形OP AF =S △AOF +S △AOP =12×4×(-n )+12×4×(-n )=-4n =20, 得n =-5,将(m ,-5)代入y =-x 2+4x ,解得m =5或m =-1. ∵点P (m ,n )在第四象限, ∴m =5,n =-5.

★2.如图,抛物线y =ax 2+bx +c 经过原点O 、B (1,3)、C (2,2),

与x 轴交于另一点N . (1)求抛物线的表达式;

(2)连接BC ,若点A 为BC 所在直线与y 轴的交点,在抛物线上是否存在点P ,使得S △OAP =8

15S △ONP ,若存在,请求出点P 的坐标;若不存在,请说明理由.

第2题图

解:(1)将0(0,0)、B (1,3)、C (2,2)三点的坐标分别代入抛物线

y =ax 2+bx +c ,可得?????==++=++02243c c b a c b a ,解得???

??==-=052c b a ,

∴所求抛物线的表达式为y =-2x 2+5x ; (2)存在,

设BC 所在直线的表达式为y =kx +b ,将点B 、C 的坐标代入可得

??

?+=+=b k b k 223,解得???=-=4

1

b k , 则y =-x +4.

把x =0代入y =-x +4得y =4, ∴点A (0,4),

把y =0代入y =-2x 2+5x 得x =0或x =5

2, ∴点N (5

2,0),

设点P 的坐标为(x ,y ),

S △OAP =12OA ·x =2x ,S △ONP =12ON ·y =12×52·(-2x 2+5x )=54(-2x 2

+5x ), 由S △OAP =815S △ONP ,即2x =815·54(-2x 2+5x )解得x =0(舍去)或x =1, 当x =1时,y =3,

∴存在点P ,其坐标为(1,3).

★3.已知,m 、n 是方程x 2-6x +5=0的两个实数根,且m

(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;

(3)点P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于点H ,若直线BC 把△PCH 分成面积之比为2∶ 3的两部分,请求出P 点的坐标.

第3题图

解:(1)解方程x 2-6x +5=0, 得x 1=5,x 2=1, 由m

∴点A 、B 的坐标分别为A (1,0),B (0,5).

将A (1,0),B (0,5)的坐标分别代入y =-x 2+bx +c ,

得???==++-501c c b ,解得?

??=-=54c b ,

∴抛物线的表达式为y =-x 2-4x +5; (2)令y =-x 2-4x +5=0, 解得x 1=-5, x 2=1, ∴C 点的坐标为(-5,0).

由顶点坐标公式计算,得点D (-2,9). 如解图①,过D 作x 轴的垂线交x 轴于点M .

则S △DMC =12×9×(5-2)=272,S 四边形MDBO =12×2×(9+5)=14, S △BOC =12×5×5=252,

∴S △BCD =S 四边形MDBO +S △DMC -S △BOC =14+272-25

2=15;

第3题解图① 第3题解图②

(3)如解图②,设P 点的坐标为(a ,0), ∵直线BC 过B 、C 两点, ∴BC 所在直线的解析式为y =x +5.

那么,PH 与直线BC 的交点坐标为E (a ,a +5),

PH 与抛物线y =-x 2-4x +5的交点H 的坐标为(a ,-a 2-4a +5). 由题意,得①EH =3

2EP ,

即(-a 2

-4a +5)-(a +5)=3

2(a +5),

解得a =-3

2或a =-5(舍去); ②EH =2

3EP ,

即(-a 2

-4a +5)-(a +5)=2

3(a +5).

解得a =-2

3或a =-5(舍去). ∴P 点的坐标为(-32,0)或(-2

3,0).

★4.在平面直角坐标系xOy 中,已知点A (4,0)、B (2,-43

3),其中点M 是OA 的中点.

(1)求过A 、B 、O 三点的抛物线L 的表达式;

(2)将抛物线L 在x 轴下方的部分沿x 轴向上翻折,得到一段新的抛物线L ′,其中点B ′与点B 关于x 轴对称,在抛物线L 所在x 轴上方部分取一点C ,连接CM ,CM 与翻折后的抛物线L ′交于点D .当S △CDA =

2S △MDA 时,求点C 的坐标.

第4题图

解:(1)由于抛物线L 经过点A (4,0)、B (2,-43

3)、O (0,0),设抛物线L 的表达式为y =ax 2+bx .

将点A (4,0)、B (2,-43

3)代入抛物线中有:

?????-

=+=+33

4240416b a b a ,解得???

????-==3343

3

b a , ∴抛物线L 的表达式为y =33x 2-43

3x ;

(2)∵抛物线L ′是由抛物线L 沿x 轴向上翻折得到, ∴抛物线L ′的表达式为y =-33x 2+43

3x (0≤x ≤4),

如解图,过点C 、D 分别作x 轴的垂线,垂足分别为点E 、F ,故DE ∥CF .连接AD 、AC , ∴DE CF =ME MF =MD MC ,

设△ACM 边CM 上的高为h ,

∵S △CDA =2S △MDA ,

∴12CD ·h =2×12MD ·

h ∴CD =2MD ,故CM =3MD . ∴CF =3DE ,MF =3ME .

设点C 的坐标为(t ,33t 2-43

3t ), 第4题解图 则MF =t -2,ME =13MF =13(t -2),OE =ME +OM =13t +4

3, ∴点D 的纵坐标为:y D =-33(13t +43)2+433(13t +4

3), 又∵CF =3DE ,

∴33t 2-433t =3[-33(13t +43)2+433(13t +43)], 整理得t 2-4t -8=0,

解得t 1=2+23,t 2=2-23,

将t 1、t 2代入抛物线L 的解析式中,解得y =83

3,

∴满足条件的点C 的坐标为(2+23,833)或(2-23,83

3).

★5.如图,等腰Rt △AOC 在平面直角坐标系中,已知AO =6,点B (-3,0).

(1)求过点A 、B 、C 的抛物线的表达式;

(2)已知点P (3

2,0),过点P 作AB 的平行线交AC 于点E ,连接AP ,求△APE 的面积;

(3)在第一象限内,该抛物线上是否存在点G ,使△AGC 的面积与(2)中△APE 的面积相等?若存在,请求出点G 的坐标;若不存在,请说明理由.

第5题图

解:(1)设抛物线的表达式为y =ax 2+bx +c (a ≠0),

由题意得,抛物线的图象经过点A (0,6),B (-3,0),C (6,0),

∴???

??==++=+-606360

39c c b a c b a ,解得?

??????

==-=6131c b a , 故此抛物线的表达式为y =-13x 2

+x +6;

第5题解图①

(2)如解图①,∵点P 的坐标为(3

2,0),

则PC =92,S △ABC =12BC ·AO =1

2×9×6=27, ∵PE ∥AB , ∴△CEP ∽△CAB . ∴CAB CEP S S ??=(PC BC )2, ∴S △CEP =27

4,

∵S △APC =12PC ·AO =27

2, ∴S △APE = S △APC -S △CEP =274; (3)存在.

如解图②,在第一象限内的抛物线上任取一点G ,过点G 作GH ⊥BC 于点H ,连接AG 、GC ,设点G 的坐标为(a ,b ),

第5题解图②

∵S 四边形AOHG =1

2a (b +6), S △CHG =1

2(6-a )b .

∴S 四边形AOCG =12a (b +6)+1

2(6-a )b =3(a +b ). ∵S △AGC = S 四边形AOCG -S △AOC , ∴27

4=3(a +b )-18.

∵点G (a ,b )在抛物线y =-13x 2

+x +6的图象上, ∴b =-1

3a 2+a +6.

∴274=3(a -13a 2

+a +6)-18, 化简得4a 2-24a +27=0. 解得a 1=32,a 2=9

2.

故点G 的坐标为(32,274)或(92,15

4).

二次函数与几何图形结合练习

3.2 与几何图形结合3.2.1 与等腰三角形结合1、如图,直线y=3x+3交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交 x 轴于另 一点C (3,0). ⑴求抛物线的解析式 ; ⑵在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的 Q 点坐标;若不存在,请说明理由 2、如图,已知直线y=x 与交于A 、B 两点. (1)求交点A 、B 的坐标;(2)记一次函数y=x 的函数值为y 1,二次函数 的函数值为y 2.若y 1>y 2,求x 的 取值范围; (3)在该抛物线上存在几个点,使得每个点与AB 构成的三角形为等腰三角形?并求出不 少于3个满足条件的点 P 的坐标. y =x 2 y =x 2

3、如图,已知二次函数的图象经过点A (3,3)、B (4,0)和原点O 。P 为二次函数图象 上的一个动点,过点 P 作x 轴的垂线,垂足为 D (m ,0),并与直线OA 交于点C . (1)求出二次函数的解析式; (2)当点P 在直线OA 的上方时,求线段PC 的最大值; (3)当m >0时,探索是否存在点P ,使得△PCO 为等腰三角形,如果存在,求出 P 的坐 标;如果不存在,请说明理由. 3.2.2 与直角三角形结合1、二次函数的图象的一部分如图所示.已知它的顶点 M 在第二象限,且经 过点A(1,0)和点B(0,l).(1)试求,所满足的关系式;(2)设此二次函数的图象与x 轴的另一个交点为 C ,当△AMC 的面积为△ABC 面积的 倍时,求a 的值;(3)是否存在实数a ,使得△ABC 为直角三角形.若存在,请求出 a 的值;若不存在,请说 明理由. 2 y ax bx c a b 5 4

二次函数与图形面积

二次函数与图形面积 涉及图形:三角形、不规则四边形。 考查设问:(1)首先求出不规则三角形或者四边形的面积; (2)通过已知图形的面积确定未知三角形的面积; (3)通过未知三角形的面积求点坐标。 例1:(2009陕西24题10分) 如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式; (3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 24.(本题满分10分) 解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作 则21AF OF ==,. OA OB ⊥, 90AOF BOE ∴∠+∠=°. 又 90BOE OBE ∠+∠=°, AOF OBE ∴∠=∠. Rt Rt AFO OEB ∴△∽△. 2BE OE OB OF AF OA ∴ ===. (第24题)

24BE OE ∴==,. (42)B ∴,. ················································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++. 216420.a b c a b c c -+=??∴++=??=?,,解之,得12320a b c ? =?? ? =-?? =??? ,,. ∴所求抛物线的表达式为213 22 y x x = -. ············································ (5分) (3)由题意,知AB x ∥轴. 设抛物线上符合条件的点P 到AB 的距离为d ,则11 22 ABP S AB d AB AF = =△. 2d ∴=. ∴点P 的纵坐标只能是0,或4. ····················································· (7分) 令0y =,得 213 022 x x -=.解之,得0x =,或3x =. ∴符合条件的点1(00)P , ,2(30)P ,. 令4y =,得 213 4 22 x x -=.解之,得32 x ±= . ∴符合条件的点33 ( 4)2P ,43(4)2 P +. ∴综上,符合题意的点有四个: 1(00)P , ,2(30)P ,,33 (4)2P ,43(4)2 P +. ···························· (10分) (评卷时,无1(00)P , 不扣分) 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。

二次函数与几何图形结合题及答案

1.如图,已知抛物线2 1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标; (2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP 的面积; (3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与?PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由. 解:(1)令0y =,得2 10x -= 解得1x =± 令0x =,得1y =- ∴ A (1,0)- B (1,0) C (0,1)- ……………………3分 (2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O= 45 ∵A P ∥CB , ∴∠P AB = 45 过点P 作P E ⊥x 轴于E ,则?A P E 为等腰直角三角形 令O E =a ,则P E =1a + ∴P (,1)a a + ∵点P 在抛物线21y x =-上 ∴2 11a a +=- 解得12a =,21a =-(不合题意,舍去) ∴P E =3……………………………………………………………………………5分 ∴四边形ACB P 的面积S =12AB ?O C +12AB ?P E =11 2123422 ??+??=………………………………6分 (3). 假设存在 ∵∠P AB =∠BAC =45 ∴P A ⊥AC ∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC =2 在Rt △P AE 中,AE =P E =3 ∴A P= 32 ………8分 设M 点的横坐标为m ,则M 2 (,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当?A MG ∽?P CA 时,有 AG PA =MG CA ∵A G=1m --,MG=2 1m -即2322 = 解得11m =-(舍去) 23m =(舍去)………9分 G M C B y P A o x

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

2.4二次函数一般式的图像

二次函数c bx ax y ++=2的图像 知识点一:k h x a y +-=2)(图像性质 1.二次函数k h x a y +-=2)(的图像平移 2.二次函数k h x a y +-=2)(的图像性质 (1)当0>a 时,抛物线k h x a y +-=2 )(的开口方向向上,对称轴是直线h x =,顶点坐标是),(k h ;当h x >时,Y 随X 的增大而增大,当h x <时,Y 随X 的增大而减小,当h x =时,函数有最小值K (2)当0时,Y 随X 的增大而减小,当h x <时,Y 随X 的增大而增大,当h x =时,函数有最大值K 【例1】将抛物线2 2x y =如何平移可得到抛物线1)4(22 --=x y 3.求二次函数k h x a y +-=2)(的函数解析式或解析式中的待定系数 方法规律:(1)若点A ),(n m 在抛物线k h x a y +-=2 )(上,则点A 坐标满足 k h m a n +-=2)( (2) 求函数解析式中某个字母系数,常利用方程思想,注意解的验算。

练习: 1.把抛物线2 3x y =先向上平移2个单位,再向左平移3个单位,所得抛物线的解析式为 2.抛物线2)1(2-=x y 的对称轴为 ,顶点坐标为 ,函数最值为 当X 图像从左到右上升。 3.抛物线2 )2 1(+-=x y 可以看成是由抛物线 向 平移 个单位得到 4.2 )(h x a y -=的图像如图所示,对h a ,的符号判断正确的是 ( A 0.0>>h a B 0.0<h a D .0>=<时,分别确定自变量X 的取值范围 D C B A

二次函数与几何图形综合题(可编辑修改word版)

二次函数与几何图形综合题 类型 1 二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段BC 上的一个动点,过P 作PE 垂直于x 轴与抛物线交于点E,设P 点横坐标为m,PE 长度为y,请写出y 与m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点D 使以A、B、D 为顶点的三角形与△COB 相似?若存在,试求出点D 的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy 中,直线y=x+4 与坐标轴分别交于A,B 两点,过A,B 两点的抛物线为y=-x2+bx+c.点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C,交抛物线于点E. (1)求抛物线的解析式; (2)当DE=4 时,求四边形CAEB 的面积; (3)连接BE,是否存在点D,使得△DBE 和△DAC 相似?若存在,求出D 点坐标;若不存在,说明理由. 3.(2015·襄阳)边长为 2 的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD,点E 在第一象限,且DE⊥DC,DE=DC.以直线AB 为对称轴的抛物线过C,E 两点.

(1)求抛物线的解析式; (2)点P 从点C 出发,沿射线CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点P 作PF⊥CD 于点F.当t 为何值时,以点P,F,D 为顶点的三角形与△COD 相似? (3)点M 为直线AB 上一动点,点N 为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由. 类型 2 二次函数与平行四边形的存在性问题 1.(2014·曲靖)如图,抛物线y=ax2+bx+c 与坐标轴分别交于A(-3,0),B(1,0),C(0,3)三点,D

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数一般式的图像和性质

二次函数一般式的图像和性质 一?选择题(共11小题) 1. 用配方法解一元二次方程 2x 2-4x+仁0, 变形正确的是( ) A. ( x -丄)I 。 B . (x -丄) 2 =' 2 2 2 C. ( x - 1) 2=— D. (x - 1) 2=0 2 2. 把抛物线y=x 2向上平移3个单位,再向 右平移1个单位,则平移后抛物线的解析式 为( ) A. y= (x+3) 2+1 B. y= (x+3) 2 - 1 2 2 C. y= (x - 1) +3 D. y= ( x+1) +3 3. 方程x 2 - 2x=0的根是( ) A.x 1=X 2=0 B.x 1=X 2=2 C.X 1=0,x 2=2 D.X 1=0, X 2 = — 2 .. 2 4. 如图,抛物线y=ax +bx+c 的对称轴是经过 点(1,0)且平行于y 轴的直线,若点P (4, 2 . _ . y= - 2 (x - 3) +1的图象的顶 点坐标是( A. ( 3,1 ) B. (3, - 1) C. (- 3,1 ) D. (- 3, - 1) 6. —元二次方程x 2-?x+仁0的根的情况 是( ) A.无实数根B .有两个实数根 C.有两个不相等的实数根 D .无法确定 7. 抛物线y= - 3( x - 1) 2 - 2的顶点坐标为 ( ) A. (- 1, - 2) B. (1, - 2) C. (- 1,2 ) D . (1 , - 2) 8. 将抛物线y=3x 2向上平移3个单 位,再向 左平移2个单位,那么得到的抛物线的解析 式为( ) 2 2 A . y=3 (x+2) +3 B . y=3 (x - 2) +3 2 2 C. y=3 (x+2) - 3 D. y=3 (x - 2) - 3 9. 二次函数y=ax +bx+c 的图象如图所示, 对称轴是直线 x= - 1,有以下结论:①abc >0;②4ac v b 2;③2a+b=0;④a - b+c >2.其 中正确的结论的个数是( ) A . 1 B. 2 C. 3 D. 4 10. 关于x 的一元二次方程kx +2x - 1=0有两 个不相等的实数根,则 k 的取值范围是 ( ) A.k >- 1 B.k > 1 C.k 工 0 D. k >- 1 且k 工0 11. 一元二次方程 x 2+3x+2=0的两个根为 () A.1, - 2 B. - 1 , - 2 C. - 1 , 2 D . 1 , 2 二.填空题(共 9小题) 12 .如图,有一个抛物线型拱桥,其最大高 度为 C. 2 D. 4 5.二次函数 则4a - 2b+c 的值为(

(完整版)二次函数与几何图形综合题.doc

二次函数与几何图形综合题 类型 1二次函数与相似三角形的存在性问题 1. (2015 ·明西山区一模昆)如图,已知抛物线y= ax2+bx+ c(a≠0)经过 A(- 1, 0), B(4, 0), C(0 ,2) 三点. (1)求这条抛物线的解析式; (2)P 为线段 BC 上的一个动点,过P 作 PE 垂直于 x 轴与抛物线交于点 E,设 P 点横坐标为 m, PE 长度为 y,请写出 y 与 m 的函数关系式,并求出PE 的最大值; (3)D 为抛物线上一动点,是否存在点 D 使以 A、B、D 为顶点的三角形与△ COB 相似?若存在,试求出点 D 的坐标;若不存在,请说明理由.

2. (2013 ·靖曲 )如图,在平面直角坐标系xOy 中,直线y= x+ 4 与坐标轴分别交于A, B 两点,过A,B 两点的抛物线为y=- x2+ bx+ c.点 D 为线段 AB 上一动点,过点 D 作 CD⊥ x 轴于点 C,交抛物线于点 E. (1)求抛物线的解析式; (2)当 DE= 4 时,求四边形CAEB 的面积; (3)连接 BE,是否存在点 D ,使得△ DBE 和△ DAC 相似?若存在,求出 D 点坐标;若不存在,说明理由.

3.(2015 襄·阳 )边长为 2 的正方形O ABC 在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接 CD ,点 E 在第一象限,且DE⊥ DC , DE =DC.以直线 AB 为对称轴的抛物线过C, E 两点. (1)求抛物线的解析式; (2)点 P 从点 C 出发,沿射线 CB 以每秒 1 个单位长度的速度运动,运动时间为t 秒.过点 P 作 PF ⊥ CD 于点 F .当 t 为何值时,以点P, F ,D 为顶点的三角形与△COD 相似? (3)点 M 为直线 AB 上一动点,点N 为抛物线上一动点,是否存在点M, N,使得以点M,N, D, E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

九年级数学:二次函数与图形面积

二次函数与图形面积 练习题 基础题 知识点 二次函数与平面面积 1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( ) A .60 m 2 B .63 m 2 C .64 m 2 D .66 m 2 2.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( ) A .20 B .40 C .100 D .120 3.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是 ( ) A.6425 m 2 B.43 m 2 C.83 m 2 D .4 m 2 4.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( ) 5.如图,利用一面墙(墙的长度不超过45 m),用80 m 长的篱笆围一个矩形场地.当AD =________时,矩形场地的面积最大,最大值为________. 6.如图,在△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,点P 从点A 开始沿AB 向B 点以2 cm/s 的速度移动,点Q 从点B 开始沿BC 向C 点以1 cm/s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当△PBQ 的面积为最大时,运动时间t 为________s.

7.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm2. 8.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少? 9.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322 ++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线 x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2 经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

二次函数与图形面积教案

课题:二次函数与图形面积 撰写:陈天灵审核:______ 授课日期:__月__日教学课时:第 6 周第 1 课 教学目标知识与技能目标 通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 过程与方法目标 通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数 的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊 的关系,了解数形结合思想、函数思想。 情感、态度 与价值观目标 通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学 习的兴趣和欲望,体会数学在生活中广泛的应用价值。 教学重点利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求面积最值问题 教学难点对函数图象顶点、端点与最值关系的理解与应用 教学过程 环节教学内容调整意见 复习旧知导入新课1.二次函数y=a(x-h)2+k的图象是一条抛物线,它的对称轴是直线x=h,顶点坐标是 (h,k) 。 2.二次函数的一般式是,它的图像的对称轴 是,顶点坐标是 . 当a>0时,开口向向上,有最低点,函数有最小值,是;.当a<0时,开口向向下,有最高点,函数有最大值,是。 3.二次函数y=2(x-3)2+5的对称轴是直线x=3, 顶点坐标是 (3 ,5) 。当x= 3时,y有最小值,是 5 . 4.5详见课件。 自学指导阅读教材P49“问题”,解决下面问题。 1、问题1中是通过什么方法来求出小球在运动中的最大高度? 2.归纳:一般地,当a>0(a<0)时,抛物线y=ax2+bx+c的的顶点是最低 ( 高_)点,当x=________时,二次函数y=ax2+bx+c有最大(小)值________. 阅读教材P49-P50“探究1”,解决下面问题 1.“探究1”中,场地面积S与边长l之间是什么关系?你能写出它们的关系式 c bx ax y+ + =2 a b x 2 - = 直线) 4 4 , 2 ( 2 a b ac a b- - a b ac 4 42 - a b ac 4 42 -

二次函数与几何图形面积

专题3: 二次函数中的面积计算问题 例1. 如图,二次函数 图象与 轴交于A,B两点(A在B的左边),与 轴交于点C,顶点为M , 为直角三角形, 图象的对称轴为直线 ,点 是抛物线上位于 两点之间的一个动点,则 的面积的最大值为() A. B. C. D.

练习:1、如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由. 例2.如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)求△CAB的铅垂高CD及S△CAB ;

(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使 S△PAB= S△CAB,若存在,求出P点的坐标;若不存在,请说明理由. 练习:2、如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物线y=ax 2+bx+c(a≠0)经过C、D、B三点. (1)求抛物线的解析式; (2)若抛物线的顶点为P,求△PAB的面积; (3)抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

专题二次函数与几何图形

y A x B O C D 专题:二次函数与几何图形 一、二次函数与平行四边形 1.已知抛物线c bx ax y ++=2 )0(≠a 过点A (-3,0),B (1,0),C (0,3)三点 (1)求抛物线的解析式; (2) 若抛物线的顶点为P ,求∠PAC 正切值; (3)若以A 、P 、C 、M 为顶点的四边形是平行四边形, 求点M 的坐标. 2.已知一次函数1y x =+的图像和二次函数2 y x bx c =++的图像 都经过A 、B 两点,且点A 在y 轴上,B 点的纵坐标为5. (1)求这个二次函数的解析式; (2)将此二次函数图像的顶点记作点P ,求△ABP 的面积; (3)已知点C 、D 在射线AB 上,且D 点的横坐标比C 点 的横坐标大2,点E 、F 在这个二次函数图像上,且CE 、 DF 与y 轴平行,当CF ∥ED 时,求C 点坐标. 二、二次函数与相似三角形 3.如图,直线y =x +3与x 轴、y 轴分别交于点A 、C ,经过A 、C 两点的抛物线y =ax 2 +bx +c 与x 轴的负半轴上另一交点为B ,且tan ∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D 的坐标; (2)若点P 是射线BD 上一点,且以点P 、A 、B 为顶点的 三角形与△ABC 相似,求P 点坐标.【2014徐汇区】 1 2345 -1 -1-2 123456 x y O 图8

x y O O N C M B A 4.已知:在直角坐标系中,直线y=x+1与x 轴交与点A ,与y 轴交与点B ,抛物线 21 ()2 y x m n =-+的顶点D 在直线AB 上,与y 轴的交点为C 。 (1)若点C (非顶点)与点B 重合,求抛物线的表达式;(2015杨浦区) (2)若抛物线的对称轴在y 轴的右侧,且CD ⊥AB ,求∠CAD 的正切值; (3)在第(2)的条件下,在∠ACD 的内部作射线CP 交抛物线的对称 轴于点P ,使得∠DCP=∠CAD ,求点P 的坐标。 三、二次函数与特殊三角形(Rt △ 等腰△ 等腰Rt △) 5.如图,已知二次函数y=-x 2 +bx+c (c>0)的图像与x 轴交于A 、B 两点(A 在B 左侧),与y 轴交于点C ,且OB=OC=3,顶点为M 。 (1)求二次函数的解析式。 (2)线段BM 上是否存在点N ,使得△NMC 为等腰三角形? 若存在,求出点N 的坐标,若不存在,请说理。 6.已知二次函数y=ax 2 +bx+c (a ≠0)的图像经过点 (1)求此函数的解析式和对称轴. (2)试探索该抛物线在x 轴下方的对称轴上存在几个点P, 使△PAB 是直角三角形,并求出这些点的坐标.

二次函数与几何图形综合题

二次函数与几何图形综合题 类型1二次函数与相似三角形的存在性问题 1.(2015·昆明西山区一模)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点. (1)求这条抛物线的解析式; (2)P为线段BC上的一个动点,过P作PE垂直于x轴与抛物线交于点E,设P点横坐标为m,PE长度为y,请写出y与m的函数关系式,并求出PE的最大值; (3)D为抛物线上一动点,是否存在点D使以A、B、D为顶点的三角形与△COB相似?若存在,试求出点D的坐标;若不存在,请说明理由.

2.(2013·曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A,B两点,过A,B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点 E. (1)求抛物线的解析式; (2)当DE=4时,求四边形CAEB的面积; (3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出D点坐标;若不存在,说明理由.

3.(2015·襄阳)边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点. (1)求抛物线的解析式; (2)点P从点C出发,沿射线CB以每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD 于点F.当t为何值时,以点P,F,D为顶点的三角形与△COD相似? (3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E 为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.

二次函数与几何图形综合教案

第三章 8 二次函数与几何图形综合题 一、教学目标 1、能利用二次函数的图像和性质解决综合数学问题。 2、经历探究利用函数式的模型表示线段长(或面积)等的过程,了解和体 验特殊与一般互相联系和转化以及数形结合等数学思想方法的具体体现和运用。 3、经历探究面积的最值问题,体会二次函数的应用价值和二次函数模型对解决最值问题的优越性。 二、教学过程 【例1】如图,已知抛物线y=ax2-2ax+a-4与x轴交于 A,B两点(A在B的左侧),交y轴于点C(0,-3),顶点为M, 连接CB. (1)求抛物线的解析式及顶点M的坐标; (2)若点P是抛物线上不同于点C的一点,S△ABC=S△ ABP,求点P的坐标; 练习. (2016安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点, 横坐标为x(2

中考数学解答专项二次函数与图形面积练习(九大专题)

二次函数与图形面积 1. 已知抛物线y =-x 2 +bx +c 的图象过点A (4,0)、B (1,3). (1)求抛物线的表达式; (2)求出抛物线的对称轴和顶点坐标; (3)抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于x 轴的对称点为F ,若以O 、A 、P 、F 四点组成的四边形的面积为20,求m 、n 的值. 解:(1)将点A (4,0)、B (1,3)代入抛物线y =-x 2 +bx +c 得???=++-=++-3 10 416c b c b ,解得 ???==0 4 c b , ∴抛物线的表达式为y =-x 2 +4x ; (2)对称轴为直线x =-b 2a =- () 124 -? =2,顶点坐标为(2,4); (3)抛物线的对称轴为直线x =2,设抛物线上的点P (m ,n )在第四象限,则点P 关于直线l 的对称点为E (4-m ,n ), 点E 关于x 轴的对称点为F (4-m ,-n ), 若以O 、A 、P 、F 四点组成的四边形的面积为20, 则S 四边形OPAF =S △AOF +S △AOP =12×4×(-n )+1 2×4×(-n )=-4n =20,得n =-5,将(m ,-5) 代入y =-x 2 +4x , 解得m =5或m =-1. ∵点P (m ,n )在第四象限, ∴m =5,n =-5. 2. 抛物线y =ax 2 +bx +c 经过原点O 、B (1,3)、C (2,2),与x 轴交于另一点N . (1)求抛物线的表达式; (2)连接BC ,若点A 为BC 所在直线与y 轴的交点,在抛物线上是否存在点P ,使得S △OAP = 8 15 S △ONP ,若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)将0(0,0)、B (1,3)、C (2,2)三点的坐标分别代入抛物线 y =ax 2 +bx +c ,可得?????==++=++02243c c b a c b a ,解得?? ? ??==-=052c b a , ∴所求抛物线的表达式为y =-2x 2 +5x ; (2)存在,

二次函数与几何图形的综合问题

一师一优课教学设计 【教学目标】 1.知识与能力:一要熟练掌握二次函数和平面几何的基础知识;二要利用几何图形和二次函数的有关性质和知识,充分挖掘题目中的隐含条件,达到解题的目的。 2.过程与方法:一要通过综合题的训练要求学生熟练掌握待定系数法、分类讨论、数形结合的数学思想方法;二要经历探究利用函数的模型表示线段长或面积的过程。 3.情感态度与价值观:一要通过探究,互相讨论,发表意见等学习过程,培养合作精神和认真倾听的习惯,二要经历探究面积的最值问题体会二次函数的应用价值和二次函数模型对解决最值问题的优越性。 【学情分析】二次函数综合题知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此在解决此类综合题时,要求学生,一要树立必胜的信心,二要具备扎实的基础知识和熟练的解题技能,三要掌握常用的解题策略。 【教学重点难点】二次函数与几何图形相结合的综合问题 【教学过程】 一:探究问题,交流讨论 1:问题一:如图,在平面直角坐标系中,抛 物线经过A(-1,0),B(3,0),C(0,-1)三点。 (1)求该抛物线的表达式; (2)点Q在y轴上,点P在抛物线上, 要使以点Q、P、A、B为顶点的四边形是平行 四边形,求所有满足条件的点P的坐标。 2:合作交流; 分类讨论;

情况一、二 情况三 二:师生互动:(1)设该抛物线的表达式为y=ax 2+bx+c 根据题意,得 a- b+c=0 a=1 3 9a+3b+c=0 解之,得 b=2 3 - c=-1 c=-1 ∴所求抛物线的表达式为y=13x 2-2 3 -x-1 (2)①AB 为边时,只要PQ ∥AB 且PQ=AB=4即可。 又知点Q 在y 轴上,∴点P 的横坐标为4或-4,这时符合条件的点P 有两个,分别记为P 1,P 2 . 而当x=4时,y=5 3;当x=-4时,y=7, 此时P 1(4,5 3 )P 2(-4,7) ②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 又知点Q 在Y 轴上,且线段AB 中点的横坐标为1 ∴点P 的横坐标为2,这时符合条件的P 只有一个记为P 3 而且当x=2时y=-1 ,此时P 3(2,-1) 综上,满足条件的P 为P 1(4,5 3)P 2(-4,7)P 3(2,-1) 三:解决问题: 问题2:在平面直角坐标系中,已知抛物线经过A (-4,0),B (0,-4),C (2,0)三点. (1)求抛物线的解析式;

二次函数的定义、图像及性质

二次函数的定义、图像及性质 一、基本概念: 1.二次函数的概念:一般地,形如2y ax bx c =++(a b c , ,是常数,0a ≠)的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c , 可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c , ,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、基本形式 1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。 2. 2y ax c =+的性质:(上加下减)

3. ()2 y a x h =-的性质:(左加右减) 4. ()2 y a x h k =-+的性质: 三、二次函数图象的平移 1. 平移步骤: 方法1:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k , ; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下:

2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”. 方法2: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 四、二次函数 ()2 y a x h k =-+与2 y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到 前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中2424b ac b h k a a -=-= ,. 五、二次函数 2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开 口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,, ()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 六、二次函数 2 y ax bx c =++的性质 1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位

相关文档
相关文档 最新文档