文档库 最新最全的文档下载
当前位置:文档库 › 二次函数与图形面积问题 专题

二次函数与图形面积问题 专题

二次函数与图形面积问题 专题
二次函数与图形面积问题 专题

二次函数与图形面积问题

例1、如图,已知抛物线21

=-与x轴交于A、B两点,与y

y x

轴交于点C.

(1)求A、B、C三点的坐标;

(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;

(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与?PCA相似.若存在,请求出M点的坐标;否则,请说明理由.

例2、如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线2

=++经过A,B两点,

y x bx c

抛物线的顶点为D.

(1)求b,c的值;

(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;

(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形? 若存在,求出所有点P的坐标;若不存在,说明理由.

例3、如图,已知二次函数c

+

=2的图象与x轴交于A、B两

y+

x

bx

点,与y轴交于点P,顶点为C(1,-2).

(1)求此函数的关系式;

(2)作点C关于x轴的对称点D,顺次连接A、C、B、D.若在抛物线上存在点E,使直线PE将四边形ABCD分成面积相等的两个四边形,求点E的坐标;

(3)在(2)的条件下,抛物线上是否存在一点F,使得△PEF是以P为直角顶点的直角三角形?若存在,求出点F的坐标及△PEF的面积;若不存在,请说明理由.

例4、如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴,交AC 于点D .

(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;

(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上,问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在,求点F 的坐标;若不存在,请说明理由.

二次函数与图形面积

二次函数与图形面积 涉及图形:三角形、不规则四边形。 考查设问:(1)首先求出不规则三角形或者四边形的面积; (2)通过已知图形的面积确定未知三角形的面积; (3)通过未知三角形的面积求点坐标。 例1:(2009陕西24题10分) 如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标(12)-,. (1)求点B 的坐标; (2)求过点A O B 、、的抛物线的表达式; (3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 24.(本题满分10分) 解:(1)过点A 作AF x ⊥轴,垂足为点F ,过点B 作 则21AF OF ==,. OA OB ⊥, 90AOF BOE ∴∠+∠=°. 又 90BOE OBE ∠+∠=°, AOF OBE ∴∠=∠. Rt Rt AFO OEB ∴△∽△. 2BE OE OB OF AF OA ∴ ===. (第24题)

24BE OE ∴==,. (42)B ∴,. ················································································· (2分) (2)设过点(12)A -,,(42)B ,,(00)O ,的抛物线为2y ax bx c =++. 216420.a b c a b c c -+=??∴++=??=?,,解之,得12320a b c ? =?? ? =-?? =??? ,,. ∴所求抛物线的表达式为213 22 y x x = -. ············································ (5分) (3)由题意,知AB x ∥轴. 设抛物线上符合条件的点P 到AB 的距离为d ,则11 22 ABP S AB d AB AF = =△. 2d ∴=. ∴点P 的纵坐标只能是0,或4. ····················································· (7分) 令0y =,得 213 022 x x -=.解之,得0x =,或3x =. ∴符合条件的点1(00)P , ,2(30)P ,. 令4y =,得 213 4 22 x x -=.解之,得32 x ±= . ∴符合条件的点33 ( 4)2P ,43(4)2 P +. ∴综上,符合题意的点有四个: 1(00)P , ,2(30)P ,,33 (4)2P ,43(4)2 P +. ···························· (10分) (评卷时,无1(00)P , 不扣分) 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。

浅谈与二次函数有关的面积问题

实际问题与二次函数 柘城县牛城一中李中凯 一、知识和能力 能够根据二次函数中不同图形的特点选择方法求图形面积 二、过程和方法 通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 三、情感态度和价值观 由简单题入手逐渐提升,从而消除学生的畏难情绪,让学生有兴趣和积极性参与数学活动。 加强学生之间的合作交流,提高学生的归纳总结能力,培养学生不断反思的习惯。 四、教学重点和难点 重点:选择方法求图形面积 难点:如何割补图形求面积 教学方法 启发式、讨论式 教学用具: 多媒体课件 五、教学过程: 与二次函数有关的面积问题 小结方法 1、三角形的边在轴上或与轴平行 2、不规则图形或三角形三边均不与轴平行

教学活动 例题:已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求(1)抛物线解析式 (2)抛物线与x轴的交点A、B,与y轴交点C 学生完成后展示过程、交流 (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE 思考:这几个图形求面积有何共同点?(三角形边特殊吗?) 小结: 教师活动追问:你能求四边形OCDB的面积吗?你有几种方法? 你肯定行:△ADE的面积如何求呢?

小结:不规则图形或三边不具特殊性的三角形如何求面积 能力提升: (4)若点F(x,y)为抛物线上一动点,其 中-1≤x≤4,求当△AEF面积最大时点F的坐标及最大面积。 解决问题: (二次函数检测)17.已知平面直角坐标系xOy中, 抛物线2(1) =-+与直线y kx y a x a x =的一个公共点为(4,8) A. (1)求此抛物线和直线的解析式; (2)若点P在线段OA上,过点P作y轴的平行线交(1)中抛物线于点Q,求线段PQ长度的最大值; (3)记(1)中抛物线的顶点为M,点N在此抛物线上,若四边形AOMN 恰好是梯形,求点N的坐标及梯形AOMN的面积.

二次函数结合定值及等面积问题

二次函数结合定值及等面积问题 2 2 8 1.已知二次函数y =3x-3x+2的图像与x 轴交于A B 两点,A 在B 点的左边,与y 交 于点C ,点P 在第一象限的抛物线上,且在对称轴右边, S A PAC = 4,求点P 的坐标。 2.抛物线 y=-x 2 +bx+c 经过点 A B 、C,已知 A(- 1,0), C (0, 3). (1)求抛物线的解析式; (2)若P 为抛物线上一点,且S PBC =3,请求出此时点P 的坐标。 3.如图,已知直线 AB : y = kx+ 2k + 4与抛物线y= ^x 2 -^-A (1)直线AB 总经过一个定点 C,请直接写出点 C 的坐标 1 (2)当k 二时,在直线AB 下方的抛物线上求点 P ,使S A ABP = 5 2 4. 如图,抛物线y x 2 2x 3与x 轴交A B 两点(A 点在B 点左侧),直线l 与抛物线交 于A C 两点,其中C 点的横坐标为2。 (1 )求A B 两点的坐标及直线 AC 的函数表达式; (2) P 是线段AC 上的一个动点,过 P 点作y 轴的平行线交抛物线于 E 点,求△ EAC 面积的 最大值。 5. 如图,抛物线的顶点为 A (-3,-3 ),此抛物线交X 轴于O, B 两点 (1) 求此抛物线的解析式 (2) 求厶AOB 的面积 P C x O

(3) 若抛物线上另有一点P满足S B阳创,请求出P点的坐标 6.已知二次函数y x2 bx c,其图像抛物线交x轴的于点A (1, 0)、B (3, 0),交y 轴于点C. (1) 求此二次函数关系式; ⑵试问抛物线上是否存在点P(不与点B重合),使得S BCP 2S ABC ?若存在,求出P点 坐标;若不存在,请通过计算说明理由.

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数与几何综合——面积问题

“P+S自能发展教育”数学教学课案 学科:数学年级:九年级备课人:李龙 课题:二次函数与几何综合——面积问题课型:专题课课时数:1课时 教学目标1、掌握常见的面积问题模型及处理方法 2、灵活运用数形结合思想解决相关问题 教学重难点重点:面积问题的转化方法难点:数形结合思想的运用 教学辅工具多媒体、小白板 教学流程师生活动设计意图 课前预 习 一、课前预习,自能感知 1:已知A(-1,0),B(3,0),P(4,2),求PAB S ? . 2:已知C(1,-3),D(1,1),P(4,2),求PCD S ? . 3:已知抛物线223 y x x =--与x轴交于A、B两点(A左B右), P为x轴上方抛物线上一点,若6 PAB S ? =,求P点坐标. 变式1:若P为抛物线上一点,6 PAB S ? =,求P点坐标. 变式2:C(m,1),D(n,1)(m

九年级数学:二次函数与图形面积

二次函数与图形面积 练习题 基础题 知识点 二次函数与平面面积 1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( ) A .60 m 2 B .63 m 2 C .64 m 2 D .66 m 2 2.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( ) A .20 B .40 C .100 D .120 3.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是 ( ) A.6425 m 2 B.43 m 2 C.83 m 2 D .4 m 2 4.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( ) 5.如图,利用一面墙(墙的长度不超过45 m),用80 m 长的篱笆围一个矩形场地.当AD =________时,矩形场地的面积最大,最大值为________. 6.如图,在△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,点P 从点A 开始沿AB 向B 点以2 cm/s 的速度移动,点Q 从点B 开始沿BC 向C 点以1 cm/s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当△PBQ 的面积为最大时,运动时间t 为________s.

7.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm2. 8.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少? 9.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数与图形面积教案

课题:二次函数与图形面积 撰写:陈天灵审核:______ 授课日期:__月__日教学课时:第 6 周第 1 课 教学目标知识与技能目标 通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 过程与方法目标 通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数 的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊 的关系,了解数形结合思想、函数思想。 情感、态度 与价值观目标 通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学 习的兴趣和欲望,体会数学在生活中广泛的应用价值。 教学重点利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求面积最值问题 教学难点对函数图象顶点、端点与最值关系的理解与应用 教学过程 环节教学内容调整意见 复习旧知导入新课1.二次函数y=a(x-h)2+k的图象是一条抛物线,它的对称轴是直线x=h,顶点坐标是 (h,k) 。 2.二次函数的一般式是,它的图像的对称轴 是,顶点坐标是 . 当a>0时,开口向向上,有最低点,函数有最小值,是;.当a<0时,开口向向下,有最高点,函数有最大值,是。 3.二次函数y=2(x-3)2+5的对称轴是直线x=3, 顶点坐标是 (3 ,5) 。当x= 3时,y有最小值,是 5 . 4.5详见课件。 自学指导阅读教材P49“问题”,解决下面问题。 1、问题1中是通过什么方法来求出小球在运动中的最大高度? 2.归纳:一般地,当a>0(a<0)时,抛物线y=ax2+bx+c的的顶点是最低 ( 高_)点,当x=________时,二次函数y=ax2+bx+c有最大(小)值________. 阅读教材P49-P50“探究1”,解决下面问题 1.“探究1”中,场地面积S与边长l之间是什么关系?你能写出它们的关系式 c bx ax y+ + =2 a b x 2 - = 直线) 4 4 , 2 ( 2 a b ac a b- - a b ac 4 42 - a b ac 4 42 -

二次函数与几何图形面积

专题3: 二次函数中的面积计算问题 例1. 如图,二次函数 图象与 轴交于A,B两点(A在B的左边),与 轴交于点C,顶点为M , 为直角三角形, 图象的对称轴为直线 ,点 是抛物线上位于 两点之间的一个动点,则 的面积的最大值为() A. B. C. D.

练习:1、如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由; (3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由. 例2.如图1,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B. (1)求抛物线和直线AB的解析式; (2)求△CAB的铅垂高CD及S△CAB ;

(3)设点P是抛物线(在第一象限内)上的一个动点,是否存在一点P,使 S△PAB= S△CAB,若存在,求出P点的坐标;若不存在,请说明理由. 练习:2、如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),把△AOB绕点O逆时针方向旋转90°得到△COD(点A转到点C的位置),抛物线y=ax 2+bx+c(a≠0)经过C、D、B三点. (1)求抛物线的解析式; (2)若抛物线的顶点为P,求△PAB的面积; (3)抛物线上是否存在点M,使△MBC的面积等于△PAB的面积?若存在,请求出点M的坐标;若不存在,请说明理由.

二次函数的应用—面积问题

二次函数面积问题 基础知识 () 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 知识典例 (夯实基础)(30分钟) [例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动. (1)运动第t秒时,△PBQ的面积y(cm2)是多少? (2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围. (3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? ()(5分钟) [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 强化练习 x

二次函数中的面积最值问题最佳处理方法

因材教育二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形. 方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二如图4,设P 点(x ,-x 2-2x +3)(-3

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 题目(重庆市江津区) 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形. 方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二 如图4,设P 点(x ,-x 2-2x +3)(-3

解决二次函数面积问题的技巧(无答案)

求“半天吊”三角形面积技巧: 如图1||,过△ABC的三个顶点分别作出与水平垂直的三条线||,外侧两条直线之间的距离叫△ABC的“水平宽”||,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高h” ||。三角形面积的新方法:||, 即三角形面积等于水平宽与铅垂高乘积的一半||。 注意事项:1.找出B、C的坐标||,横坐标大减小||,即可求出水平宽; 2.求出直线BC的解析式||,A与D的横坐标相同||,A与D的纵坐标大减小||,即可求出铅垂高; 3.根据公式: S△=×水平宽×铅锤高||,可求出面积||。 真题分析:如图||,抛物线顶点坐标为点C(1||,4)||,交x轴于点A(3||,0)||,交y轴于点B (1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点||,连PA||,PB||,当P点运动到顶点C时||,求△CAB的铅垂高CD 及;(3)在(2)中是否存在一点 P||,使||,若存在||,求出P点的坐标;若不存在||,请说明理由. 解析:(1)由顶点C(1||,4)||,A(3||,0)可以得出抛物线的解析式为: y1=-x2+2x+3||,已知B点的坐标为(0||,3)||, 所以直线AB的解析式为:y2=-x+3 (2)因为C点坐标为(1||,4)||,把x=1代入y2=-x+3可得D(1||,2)||,因此CD=4-2=2|| , (3)设P(x||,-x2+2x+3)||,由A、D横坐标相等易知D(x||,-x+3)||,则PF= =(-x2+2x+3)-(-x+3)=-x2+3x 由S△PAB= S△CAB得:×OA×PF= ×3×(?x2+3x)= ×3||, 第1页/共3页

中考数学解答专项二次函数与图形面积练习(九大专题)

二次函数与图形面积 1. 已知抛物线y =-x 2 +bx +c 的图象过点A (4,0)、B (1,3). (1)求抛物线的表达式; (2)求出抛物线的对称轴和顶点坐标; (3)抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 的对称点为E ,点E 关于x 轴的对称点为F ,若以O 、A 、P 、F 四点组成的四边形的面积为20,求m 、n 的值. 解:(1)将点A (4,0)、B (1,3)代入抛物线y =-x 2 +bx +c 得???=++-=++-3 10 416c b c b ,解得 ???==0 4 c b , ∴抛物线的表达式为y =-x 2 +4x ; (2)对称轴为直线x =-b 2a =- () 124 -? =2,顶点坐标为(2,4); (3)抛物线的对称轴为直线x =2,设抛物线上的点P (m ,n )在第四象限,则点P 关于直线l 的对称点为E (4-m ,n ), 点E 关于x 轴的对称点为F (4-m ,-n ), 若以O 、A 、P 、F 四点组成的四边形的面积为20, 则S 四边形OPAF =S △AOF +S △AOP =12×4×(-n )+1 2×4×(-n )=-4n =20,得n =-5,将(m ,-5) 代入y =-x 2 +4x , 解得m =5或m =-1. ∵点P (m ,n )在第四象限, ∴m =5,n =-5. 2. 抛物线y =ax 2 +bx +c 经过原点O 、B (1,3)、C (2,2),与x 轴交于另一点N . (1)求抛物线的表达式; (2)连接BC ,若点A 为BC 所在直线与y 轴的交点,在抛物线上是否存在点P ,使得S △OAP = 8 15 S △ONP ,若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)将0(0,0)、B (1,3)、C (2,2)三点的坐标分别代入抛物线 y =ax 2 +bx +c ,可得?????==++=++02243c c b a c b a ,解得?? ? ??==-=052c b a , ∴所求抛物线的表达式为y =-2x 2 +5x ; (2)存在,

二次函数与面积专题(可编辑修改word版)

3 图 1 图 2 重庆市巴川中学初 2019 级九上数学专题训练三 ——二次函数与面积问题 班级 姓名 等级 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例 1、定义:如图 1,抛物线 y=ax 2+bx+c(a≠0)与 x 轴交于 A ,B 两点,点 P 在抛物线上(点 P 与 A ,B 两点不重合),如果△ABP 的三边满足 AP 2+BP 2=AB 2,则称点 P 为抛物线 y=ax 2+bx+c(a ≠0)的勾股点. (1) 直接写出抛物线 y=-x 2+1 的勾股点的坐标; (2) 如图 2,已知抛物线 C :y=ax 2+bx(a≠0)与 x 轴交于 A ,B 两点,点 P(1, )是抛物线 C 的 勾股点,求抛物线 C 的函数表达式; (3) 在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S △ABQ =S △ABP 的点 Q (异于点 P )的 坐标.

练习 1. 如图,已知抛物线y =-x 2+ 2x + 3 与x 轴交于点A 和点B,与y 轴交于点C,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点. (1)直接写出点A、B、C、D 的坐标,并求出S△ABD; (2)求出直线BC 的解析式; (3)若点P 在第一象限内的抛物线上,且S△ABP=4S△COE,求P 点坐标.

题型二:已知二定点,在抛物线上求一动点,使三角形面积最大

例2. 如图,已知抛物线 y=ax 2+bx-3 与 x 轴交于 A 、B 两点,过点 A 的直线 l 与抛物线交于点 C , 其中 A 点的坐标是(-1,0),C 点坐标是(-4,-3). (1) 求抛物线的解析式; (2) 若点 E 是位于直线 AC 的上方抛物线上的一动点,试求△ACE 的最大面积及 E 点的坐标; (3) 在(2)的条件下,在抛物线上是否存在异于点 E 的 P 点,使 S △PAC =S △EAC ,若存在,求 出点 P 的坐标;若不存在,请说明理由. 变式:在抛物线上是否存在点 P ,使 S △PAC =S △ABC ,若存在,求出点 P 的坐标;若不存在,请说明理由.

解决二次函数面积问题的技巧

求“半天吊”三角形面积技巧: 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高h”。三角 形面积的新方法:, 即三角形面积等于水平宽与铅垂高乘积的一半。 注意事项:1.找出B、C的坐标,横坐标大减小,即可求出水平宽; 2.求出直线BC的解析式,A与D的横坐标相同,A与D的纵坐标大减小,即可求出铅垂高; 3.根据公式: S△=×水平宽×铅锤高,可求出面积。 真题分析:如图,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B (1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及;(3)在(2)中是否存在一点P,使,若存在,求出P点的坐标;若不存在,请说明理由. 解析:(1)由顶点C(1,4),A(3,0)可以得出抛物线的解析式为: y1=-x2+2x+3,已知B点的坐标为(0,3), 所以直线AB的解析式为:y2=-x+3 (2)因为C点坐标为(1,4),把x=1代入y2=-x+3可得D(1,2),因此CD=4-2=2, (3)设P(x,-x2+2x+3),由A、D横坐标相等易知D(x,-x+3),则PF= =(-x2+2x+3)-(-x+3)=-x2+3x 由S△PAB= S△CAB得:× OA×PF= ×3×(?x2+3x)= ×3, 解得,x= ,则P点坐标为( , )

二次函数中常见图形的的面积问题 1、说出如何表示各图中阴影部分的面积? 2、抛物线322 +--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 图五 图四 图六 图三 备用图 备用图

初三二次函数与几何图形面积(有答案)

在动点变化过程中,会产生的几何图形的形状发生改变,由此可引出求该图形的面积,建立面积与动点坐标,或动点的运动时间的函数关系。面积的求法主要有两种:①直接求面积;②割补法求面积;无论哪种求法,都需要用参数表示线段的长度。 【例1】 (改编题)如图,抛物线233y mx mx =+-(0m >)与y 轴交于点C ,与x 轴交于A 、B 两点, 点A 在点B 的左侧,且1 tan 3OCB ∠=. ⑴求此抛物线的解析式; ⑵如果点D 是线段AC 下方抛物线上的动点,设D 点的横坐标为x ,ACD ?的面积为S ,求S 与x 的关系式,并求当S 最大时,点D 的坐标; 【答案】⑴239 344 y x x = +- ⑵方法一: 如图,连接OD ,可求(40)A -, 设点239 (3)44D x x x +-,,则ACD AOD DOC AOC S S S S ????=+- 2139 4(3)244OAD S x x ?=??--+ 1 3()2 OCD S x ?=??- 1 4362 AOC S ?=??= ∴23 62S x x =--,当2x =-时,S 取得最大值为6 此时点D 的坐标为9(2)2 --, 方法二:过点D 作DN x ⊥轴于点N ,交AC 于点M 转化:ACD AMD DMC S S S ???=+,下略 【注意】本题由综合题改编而来,去掉了平行四边形的存在性问题,就 “三角形的面积与动点之间的关系” 例题精讲 二次函数与几何图形面积

的问题,本题具有一定的代表性,给出的两种解法,都是采用的割补法,如果学生程度不怎么好,建议只讲第二种方法。转化的目的:构造水平和竖直方向上的底和高,使求解更方便,更简单 【例2】 已知:如图,抛物线2334y x =-+与x 轴交于点A 、点B ,与直线3 4 y x b =-+相交于点B 、点C , 直线3 4y x b =-+与y 轴交于点E . ⑴求直线BC 的解析式. ⑵若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A ,B 重合),同时,点 N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB ?的 面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB ?的面积最大,最大面积是多少? 【答案】⑴33 42 y x =-+ ⑵过点N 作NP ⊥MB 于点P ∵EO ⊥MB , ∴NP ∥EO ∴△BNP ∽△BEO ∴ BE BN = EO NP 由直线y =-43x +23可得:E (0,23 ) 在△BEO 中,∵OB =2,EO =23,∴BE =2 5 ∴ 252t = 2 3NP ,∴NP =56 t ∴S = 21·(4-t )·56t =-53t 2+5 12t =- 53( t -2)2+5 12 (0<t <4) ∵此抛物线开口向下,∴当t =2时,S 最大= 5 12 ∴当点M 运动2秒时,△MNB 的面积最大,最大面积是 5 12 【注意】构造在求解三角形面积的时候,如果需要构造三角形的高,应优先考虑,水平和竖直方向进行构 造,求高的途径可以有:①相似三角形对边成比例;②锐角三角函数;③勾股定理 【例3】 如图①,梯形ABCD 中,90C ∠=?.动点E 、F 同时从点B 出发,点E 沿折线BA AD DC --运 动到点C 时停止运动,点F 沿BC 运动到点C 时停止运动,它们运动时的速度都是1cm/s .设E 、 F 出发t s 时,EBF ?的面积为y 2cm .已知y 与t 的函数图象如图②所示,其中曲线OM 为抛 物线的一部分,MN 、NP 为线段.请根据图中的信息,解答下列问题: ⑴梯形上底的长______AD =cm ,梯形ABCD 的面积=__________cm 2;

二次函数与三角形的面积问题

二次函数与三角形的面积问题 【教学目标】 1.能够根据二次函数中不同图形的特点选择合适的方法解答图形的面积。 2.通过观察、分析、概括、总结等方法了解二次函数面积问题的基本类型,并掌握二次函数中面积问 题的相关计算,从而体会数形结合思想和转化思想在二次函数中的应用。 3.掌握利用二次函数的解析式求出相关点的坐标,从而得出相关线段的长度,利用割补方法求图形的面积。【教学重点和难点】 1.运用 2铅垂高 水平宽? = s; 2.运用y; 3.将不规则的图形分割成规则图形,从而便于求出图形的总面积。 【教学过程】 类型一:三角形的某一条边在坐标轴上或者与坐标轴平行 例1.已知:抛物线的顶点为D(1,-4),并经过点E(4,5),求: (1)抛物线解析式; (2)抛物线与x轴的交点A、B,与y轴交点C; (3)求下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。 解题思路:求出函数解析式________________;写出下列点的坐标:A______;B_______;C_______;求出下列线段的长:AO________;BO________;AB________;OC_________。求出下列图形的面积△ABD、△ABC、△ABE、△OCD、△OCE。

一般地,这类题目的做题步骤:1.求出二次函数的解析式;2.求出相关点的坐标;3.求出相关线段的长;4.选择合适 方法求出图形的面积。 变式训练1.如图所示,已知抛物线()02 ≠++=a c bx ax y 与x 轴相交于两点A ()0,1x , B ()0,2x ()21x x <,与y 轴负半轴相交于点 C ,若抛物线顶点P 的横坐标是1,A 、 B 两点间的距离为4,且△ABC 的面积为6。 (1)求点A 和B 的坐标; (2)求此抛物线的解析式; (3)求四边形ACPB 的面积。 类型二:三角形三边均不与坐标轴轴平行,做三角形的铅垂高。(歪歪三角形拦腰来一刀) 关于2 铅垂高 水平宽?= ?S 的知识点:如图1,过△ABC 的三个顶点分别作出与水平线垂直的 三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 2 1 =?,即三角形面积等于水平宽与铅垂高乘积的一半. 想一想:在直角坐标系中,水平宽如何求?铅垂高如何求? 例2.如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ?;(3)是否存在一点P ,使S △P AB =8 9 S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 解题思路:求出直线AB 的解析式是为了求出D .点的纵坐标.....D y ; 铅垂高,注意线段的长度非负性;分析P 点在直线AB 的上方还是下方? x A B O C y P B C 铅垂高 水平宽 h a 图1 图-2 x C O y A B D 1 1

相关文档
相关文档 最新文档