文档库 最新最全的文档下载
当前位置:文档库 › 解析几何第四版吕林根课后的习题集答案第二章.doc

解析几何第四版吕林根课后的习题集答案第二章.doc

解析几何第四版吕林根课后的习题集答案第二章.doc
解析几何第四版吕林根课后的习题集答案第二章.doc

第二章 轨迹与方程 §2.1平面曲线的方程

1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?

解:动点M 在轨迹上的充要条件是MB MA 2

1

=。设M 的坐标),(y x 有

2222)6(2

1

)3(y x y x ++=

+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(2

2

=+-y x

此轨迹为椭圆

2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,

是求此线段中点的轨迹。A ,B 为两端点,M 为此线段的中点。 解:如图所示 设(,),A x o (,)B o y .则(,)22

x y M .在Rt AOB V 中有 222()(2)x y a +=.把M 点的坐标代入此式得:

222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨

迹为2

2

2

()x y a +=.

3. 一动点到两定点的距离的乘积等于定值2

m ,求此动点的轨迹.

解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:

2AM BM m ?=.设(,)M x y 在Rt BNM V 中

2

2

2

()a x y AM ++=. (1) 在Rt BNM V 中 2

22()a x y BM -+=. (2) 由(1)(2)两式得:

22222244()2()x y a x y m a +--=-.

4.设,,P Q R 是等轴双曲线上任意三点,求证PQR V 的重心H 必在同一等轴双曲线上.

证明:设等轴双曲线的参数方程为x ct

c y t =??

?=??

11(,)P x y ,22(,)Q x y ,33(,)R x y .重心H

123123

(

,)33

x x x y y y ++++

5.任何一圆交等轴双曲线2

xy c =于四点11(,)c P ct t ,22(,)c Q ct t ,33(,)c R ct t 及44

(,)c

S ct t .那么一定有12341t t t t =.

证明:设圆的方程2

2

220x y Dx Ey F ++++=.圆与等轴双曲线交点(,)c

ct t

,则代入得

222

2220.c Ec c t Dct F t t

++++=整理得: 24322220.c t Dct Ft Ect c ++++=可知

(1,2,3,4)i =是它的四个根,则有韦达定理1234t t t t ???=2

4

2(1)1c c

-=.

8. 把下面的平面曲线的普通方程化为参数方程.

⑴3

2x y =; ⑵ ()0,2

12

121>=+a a y

x ; ⑶()0,0333>=-+a axy y x .

解:⑴???

??==t

y t x 32

令θ4

cos a x =,代入方程2

12

121a y

x =+

得θθθ422

12

2

12

12

1sin ,sin cos a y a a a y

==-=

∴参数方程为?????==θ

θ

4

4

sin cos a y a x .

⑶令,tx y =代入方程033

3=-+axy y x

得(

)

0312

33

=-+atx x t

()[]

03132=-+?at x t x

当0=x 时,;0=y 当3

13t at

x +=时,3213t at y +=

3

130t at x x +=

=?或

故参数方程为???

????+=+=32

3

1313t at y t at x .

§2.2 曲面的方程

1、 一动点移动时,与)0,0,4(A 及xoy 平面等距离,求该动点的轨迹方程。 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,

则z C

z y x M =?

∈),,(

亦即z z y x =++-2

2

2

)4(

0)4(22=+-∴y x

由于上述变形为同解变形,从而所求的轨迹方程为0)4(2

2

=+-y x

2、在空间,选取适当的坐标系,求下列点的轨迹方程:

(1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹;

(4)到一定点和一定平面距离之比等于常数的点的轨迹。 解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则

222222)()(),,(z y a x m z y a x C z y x M +++=++-?

亦即])[()(2

2

2

2

2

2

2

z y a x m z y a x +++=++-

经同解变形得:0)1()1(2))(1(2

2

2

2

2

2

2

=-++-++-a m x m a z y x m 上式即为所要求的动点的轨迹方程。

(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。设动点),,(z y x M ,要求的轨迹为C , 则a z y c x z y c x C

z y x M 2)()(),,(222222=++++++-?

亦即2

2

2

2

2

2

)(2)(z y c x a z y c x +++-=++-

两边平方且整理后,得:)()(2

222222222c a a z a y a x c a -=++- (1)

222c a b c a -=∴>令Θ

从而(1)为2

2

2

2

2

2

2

2

b a z a y a x b =++ 即:2

2

2

2

2

2

2

2

b a z a y a x b =++

由于上述过程为同解变形,所以(3)即为所求的轨迹方程。 (3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x C

z y x M 2)()(),,(222222±=++++++-?

类似于(2),上式经同解变形为:122

2222=--c

z b y a x

其中 )(2

2

2

a c a

c b >-= (*)

(*)即为所求的轨迹的方程。

(4)取定平面为xoy 面,并让定点在z 轴上,从而定点的坐标为),0,0(c ,再令距离之比为

m 。

设动点),,(z y x M ,所求的轨迹为C ,则

z m z y x C z y x M =++?

∈222),,(

将上述方程经同解化简为:02)1(2

2

2

2

2

=+--++c cz z m y x (*) (*)即为所要求的轨迹方程。

3. 求下列各球面的方程:

(1)中心)3,1,2(-,半径为;6=R (2)中心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与 (4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)由本节例5 知,所求的球面方程为:

36)3()1()2(222=-+++-z y x

(2)由已知,球面半径73)2(6222=+-+=R

所以类似上题,得球面方程为

49222=++z y x

(3)由已知,球面的球心坐标12

3

5,1213,3242=-=-=+-==+=

c b a ,球的半径21)35()31()24(2

1

222=++++-=

R ,所以球面方程为: 21)1()1()3(222=-+++-z y x

(4)设所求的球面方程为:02222

22=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以

????

??

?=-=++=+=0

8160621008160

k h g g l (1) 解(1)有

????

???=-=-==2

210

k g h l ∴所求的球面方程为0424222=+--++z y x z y x

§2.3 母线平行于坐标轴的柱面方程

1、画出下列方程所表示的曲面的图形。 (1)36942

2

=+y x 解:各题的图形如下: (1)36942

2

=+y x

§2.4 空间曲线的方程

1、平面c x =与022

2=-+x y x 的公共点组成怎样的轨迹。

解:上述二图形的公共点的坐标满足

???=-=???

?==-+c

x c c y c x x y x )

2(02222 从而:(Ⅰ)当20<

????

?=-=c

x c c y )

2( 及 ????

?=--=c

x c c y )

2( 即为两条平行轴的直线;

(Ⅱ)当0=c 时,公共点的轨迹为:

??

?==0

x y 即为z 轴; (Ⅲ)当2=c 时,公共点的轨迹为:

??

?==2

x y 即过)0,0,2(且平行于z 轴的直线; (Ⅳ)当2>c 或0

2、指出下列曲面与三个坐标面的交线分别是什么曲线?

(1)64162

2

2

=++z y x ; (2)641642

2

2

=-+z y x ; (3)641642

2

2

=--z y x ; (4)z y x 1092

2

=+ 解:(1)曲面与xoy 面的交线为:

???==+???

?==++0

64

0641622222z y x z z y x 此曲线是圆心在原点,半径8=R 且处在xoy 面上的圆。

同理可求出曲面64162

2

2

=++z y x 与yoz 面)0(=x 及zox 面)0(=y 的交线分别为:

??

?==+0

641622x z y , ??

?==+0

64

1622y z x

它们分别是中心在原点,长轴在y 轴上,且处在yoz 面上的椭圆,以及中心在原点,长轴在

x 轴上,且处在zox 面上的椭圆;

(2)由面641642

22=-+z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线

分别为:

??

?==-+064164222z z y x ,???==-+064164222x z y x ,???==-+0

64

164222y z y x 亦即:???==+064422z y x ,???==-016422x z y ,???==-0

64

1622y z x

即为中心在原点,长轴在x 轴上,且处在xoy 面上的椭圆;中心在原点,实轴在y 轴,且处在yoz 面上的双曲线,以及中心在原点,实轴在x 轴,且处在zox 面上的双曲线。

(3)曲面641642

2

2

=--z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:

??

?==--064164222z z y x ,???==--064164222x z y x ,?

??==--064

164222y z y x 亦即???==-064422z y x ,???==--06416422x z y ,???==-0

64

1622y z x

即为中心在原点,实轴在x 轴,且处在xoy 面上的双曲线;无轨迹以及中心在原点,实轴在x 轴上,且处在zox 面上的双曲线。

(4)曲面z y x 1692

2

=+与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:

??

?==+016922z z y x ,???==+016922x z y x ,???==+0

16922y z

y x 亦即???==+00922z y x ,???==01692x z y ,?

??==0162y z

x

即为坐标原点,顶点在原点以z 轴为对称轴,且处在yoz 面上的抛物线,以及顶点在原点,以z 轴为对称轴,且处在zox 面上的抛物线。

3. 求下列空间曲线对三个坐标面的射影柱面方程。

(1)???+==-+1022x z z y x ;(2)?

??=+-==-+--+010*******z y z x yz z x

(3)???=--=++71023562z y x z y x (4)?????=-+-+=++1

)1()1(1

2

222

22z y x z y x 解:(1)从方程组?

??+==-+10

22x z z y x

分别消去变量z y x ,,,得:0)1(2

2

=-+-z y z

亦即: 0132

2

=+-+z y z (Ⅰ)

01=--x z (Ⅱ)

0122=--+x y x (Ⅲ)

(Ⅰ)是原曲线对yoz 平面的射影柱面方程; (Ⅱ)是原曲线对zox 平面的射影柱面方程; (Ⅲ)是原曲线对xoy 平面的射影柱面方程。 (2)按照与(1)同样的方法可得原曲线

(Ⅰ)对yoz 平面的射影柱面方程;01=+-z y ;

(Ⅱ)对zox 平面的射影柱面方程;036222

2=-+--z x z x ; (Ⅲ)对xoy 平面的射影柱面方程。012222

2

=++--y x y x 。 (3) 原曲线对yoz 平面的射影柱面方程:0272=-+z y

原曲线对zox 平面的射影柱面方程:03=--z x 原曲线对xoy 平面的射影柱面方程:02327=-+y x (4) 原曲线对yoz 平面的射影柱面方程:01=-+z y

原曲线对zox 平面的射影柱面方程:0222

2=-+z z x 原曲线对xoy 平面的射影柱面方程:0222

2

=-+y y x

6. 求空间曲线22

40

y z x z ?-=?+=?的参数方程. 解: 令2y t =,代入方程2

40y z -=得2

y t =再将所得结果代入方程

20x z +=得 4x t =-.从而知曲线的参数方程为4

22x t y t z t ?=-?

=??=?

资料

解析几何第四版吕林根课后习题答案第五章

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1 (,)F x y , 2 (,)F x y 及3 (,)F x y . (1) 2222 1x y a b +=;(2) 22 22 1x y a b -=;(3)2 2y px =;(4) 223520; x y x -++= (5)2 226740 x xy y x y -+-+-=.解:(1) 221 0010 000 1a A b ?? ? ? ?= ? ?- ? ?? ?; 121(,)F x y x a = 221(,)F x y y b =3(,)1F x y =-;(2) 221 0010 0001a A b ?? ? ? ?=- ? ?- ? ?? ? ; 121(,)F x y x a = 221(,)F x y y b =-;3 (,)1F x y =-.(3) 0001000p A p -?? ?= ? ?-?? ; 1(,)F x y p =-;2 (,)F x y y =;3 (,)F x y px =-;(4) 510 20 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+ ;2 (,)3F x y y =-;3 5(,)22 F x y x =+;(5)

222420 x xy ky x y ++--=交于两个共轭虚交点.解:详解 略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4) 4924 k >. §5.2二次曲线的渐进方向、中心、渐进线 1. 求下列二次曲线的渐进方向并指出曲线属于 何种类型的(1) 22230 x xy y x y ++++=;(2) 22342250 x xy y x y ++--+=;(3)24230xy x y --+=. 解:(1)由2 2(,)20 X Y X XY Y φ=++=得渐进方向为:1:1 X Y =-或1:1-且属于抛物型的; (2)由2 2(,)3420 X Y X XY Y φ=++=得渐进方向为:(22):3 X Y i =-且属于椭圆型的; (3) 由(,)20X Y XY φ==得渐进方向为:1:0X Y =或0:1且属于双曲型的. 2. 判断下列曲线是中心曲线,无心曲线还是线心曲线. (1)2 2224630 x xy y x y -+--+=;(2)2 2442210 x xy y x y -++--=; (3)2 281230 y x y ++-=;(4)2 296620 x xy y x y -+-+=.解:(1) 因为2 1110 12I -= =≠-,所以它为中心曲线; (2)因 为2 120 24 I -= =-且121 241-=≠--,所以它为无心曲线; (3)因为2 00002I = =且004 026 =≠,所以它为无心曲线; (4)因为2 930 3 1 I -==-且933312--==-,所以它为线心曲线;

数学必修二第二章解析几何初步试卷及答案.doc

数学必修二第二章解析几何初步 宝鸡铁一中 王芳芳 2010.11 一、选择题: 1.x 轴上任一点到定点(0,2)、(1,1)距离之和最小值是(C ) A .2 B .22+ C .10 D .15+ 2.点(4,0)关于直线5x+4y+21=0对称的点是(B ) A .(-6,8) B .(-6,-8) C .(-8,-6) D .(6,8) 3.直线 032=+-y x l : 关于x y -=,对称的直线方程是(C ) A .032=+-y x B .032=-+x y C .032=--y x D .032=--y x 4.过点P (2,1),且倾斜角是直线l :01=--y x 的倾斜角的两倍的直线方程为(B ) A .012=--y x B .2=x C .)2(21-=-x y D .012=--y x 5.以点A (-5,4)为圆心,且与x 轴相切的圆的方程是(C ) A .25)4()5(22=-++y x B .16)4()5(22=++-y x C .16)4()5(22=-++y x D . 25)4()5(22=++-y x 6.一条直线过点P (-3,23 -),且圆 252 2=+y x 的圆心到该直线的距离为3,则该直线的方程为(C ) A .3-=x B . 23 3- =-=y x 或 C .015433=++-=y x x 或 D .01543=++y x

7.过点A (1,-1),B (-1,1),且圆心在直线02=-+y x 上的圆的方程是(B ) A .4)1()3(22=++-y x B .4)1()1(2 2=-+-y x C .4)1()3(22=-++y x D . 4)1()1(22=+++y x 8.已知圆C :4)2()(2 2=-+-y a x (0 a ),有直线l :03=+-y x ,当 直线l 被圆C 截得弦长为32时,a 等于(A ) A .12- B .2-2 C .2 D .12+ 9.直线)(0)11()3()12(R k k y k x k ∈==--+--,所经过的定点是(B ) A .(5,2) B .(2,3) C .(-21 ,3) D .(5,9) 10.若直线12++=k kx y 与直线2 21 +-=x y 的交点位于第一象限,则实数k 的 取值范围是(C ) A .26-- k B .0 61 k - C .061 k - D . 21 k 11.三条直线 155,02,0321=--=-+=-ky x l y x l y x l :::构成一个三角形, 则k 的范围是(C ) A .R k ∈ B .R k ∈且0,1≠±≠k k C .R k ∈且10,5-≠±≠k k

解析几何第四版习题答案第四章

第四章 柱面、锥面、旋转曲面与二次曲面 § 4.1柱面 1、已知柱面的准线为: ? ? ?=+-+=-+++-0225 )2()3()1(222z y x z y x 且(1)母线平行于x 轴;(2)母线平行于直线c z y x ==,,试求这些柱面的方程。 解:(1)从方程 ?? ?=+-+=-+++-0 225 )2()3()1(222z y x z y x 中消去x ,得到:25)2()3()3(2 2 2 =-+++--z y y z 即:02 3 5622=----+z y yz z y 此即为要求的柱面方程。 (2)取准线上一点),,(0000z y x M ,过0M 且平行于直线? ??==c z y x 的直线方程为: ??? ??=-=-=? ?? ? ??=+=+=z z t y y t x x z z t y y t x x 0 00000 而0M 在准线上,所以 ?? ?=+--+=-++-+--0 2225 )2()3()1(222t z y x z t y t x 上式中消去t 后得到:026888232 22=--+--++z y x xy z y x 此即为要求的柱面方程。 2 而0M 在准线上,所以: ?? ?+=-++=-) 2(2)2(2 2t z t x t z y t x 消去t ,得到:010******* 22=--+++z x xz z y x 此即为所求的方程。 3、求过三条平行直线211,11,-=+=--==+==z y x z y x z y x 与的圆柱面方程。

解:过 又过准线上一点),,(1111z y x M ,且方向为{ }1,1,1的直线方程为: ??? ??-=-=-=? ?? ? ??+=+=+=t z z t y y t x x t z z t y y t x x 1 11111 将此式代入准线方程,并消去t 得到: 013112)(5222=-++---++z y x zx yz xy z y x 此即为所求的圆柱面的方程。 4、已知柱面的准线为{})(),(),((u z u y u x u =γ,母线的方向平行于矢量{}Z Y X ,,=,试证明柱面的矢量式参数方程与坐标式参数方程分别为: S v u Y x +=)( 与 ?? ? ??+=+=+=Zv u z z Yv u y y Xv u x x )()()( 式中的v u ,为参数。 证明:对柱面上任一点),,(z y x M ,过M 的母线与准线交于点))(),(),((u z u y u x M ',则, v M =' 即 1、求顶点在原点,准线为01,0122 =+-=+-z y z x 的锥面方程。 解:设为锥面上任一点),,(z y x M ,过M 与O 的直线为: z Z y Y x X == 设其与准线交于),,(000Z Y X ,即存在t ,使zt Z yt Y xt X ===000,,,将它们代入准线方程,并消去参数t ,得: 0)()(222=-+--y z y z z x 即:02 22=-+z y x 此为所要求的锥面方程。 2、已知锥面的顶点为)2,1,3(--,准线为0,12 22=+-=-+z y x z y x ,试求它的方程。

高中数学 第二章 解析几何初步 章末复习

解析几何初步章末复习 知识网络构建 高频考点例析 考点一直线的方程 例1直线l过点P(8,6),且与两条坐标轴围成等腰直角三角形,求直线l的方程. [解]解法一:直线l与两条坐标轴围成的三角形为等腰直角三角形,必须且只需直线l在两条坐标轴上的截距的绝对值相等且不为0, 故设直线l的方程为x a +y a =1或x a +y -a =1(a≠0), 当直线l的方程为x a +y a =1时, 把P(8,6)代入得8 a +6 a =1,解得a=14, ∴直线l的方程为x+y-14=0; 当直线l的方程为x a +y -a =1时,

把P (8,6)代入得8a -6 a =1,解得a =2, ∴直线l 的方程为x -y -2=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 解法二:设所求直线l 的方程为y =kx +b (k ≠0,b ≠0), 令x =0,得y =b ;令y =0,得x =-b k . ∵直线与两条坐标轴围成等腰直角三角形, ∴|b |=??????-b k . ∵b ≠0,∴k =±1. 当k =1时,直线l 的方程为y =x +b , 把P (8,6)代入得6=8+b ,解得b =-2, ∴直线l 的方程为y =x -2, 即x -y -2=0; 当k =-1时,直线l 的方程为y =-x +b , 把P (8,6)代入得6=-8+b ,解得b =14, ∴直线l 的方程为y =-x +14,即x +y -14=0. 综上所述,直线l 的方程为x +y -14=0或x -y -2=0. 类题通法 常用待定系数法求直线方程 求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件具备时要另行讨论条件不满足的情况.

解析几何第四版吕林根课后习题答案第五章

第五章 二次曲线一般的理论 §5.1二次曲线与直线的相关位置 1. 写出下列二次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y . (1)22221x y a b +=;(2)22 221x y a b -=;(3)22y px =;(4)223520;x y x -++= (5)2226740x xy y x y -+-+-=.解:(1)221 0010 000 1a A b ?? ? ? ?= ? ?- ? ???;121(,)F x y x a =221 (,)F x y y b =3(,)1F x y =-;(2)2210010 000 1a A b ?? ? ? ?=- ? ?- ? ?? ? ;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -?? ? = ? ? -?? ; 1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020 305022A ?? ? ?=- ? ? ? ??; 15(,)2F x y x =+;2(,)3F x y y =-;35 (,)22 F x y x =+;(5)1232 171227342 A ??-- ? ? ?=- ? ? ?-- ??? ;11(,)232F x y x y =- -;217(,)22F x y x y =-++;37(,)342 F x y x y =-+-. 2. 求二次曲线2 2 234630x xy y x y ----+=与下列直线的交点.(1)550 x y --=

解析几何第四版吕林根课后习题集规范标准答案第一章

第一章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 2. 设点O 是正六边形ABCDEF 的中心, 在矢量、OB 、 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、 和中,哪些矢量是相等的? [解]:如图1-1,在正六边形ABCDEF 中, 相等的矢量对是: 图1-1 .和和和和和 3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、 DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立? [证明]:如图1-2,连结AC , 则在?BAC 中, 2 1 AC. KL 与方向相同;在?DAC 中, 2 1 AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL = NM . 4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量: (1) AB 、; (2) AE 、; (3) 、; (4) AD 、GF ; (5) BE 、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。 §1.2 矢量的加法 1.要使下列各式成立,矢量b a ,应满足什么条件? C

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标 §1.3 数量乘矢量 4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→ →→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→ → → → → → → → → → =+=-++-=+=AB b a b a b a CD BC BD 5)(382 ∴→ AB 与→ BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线. 6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM , CN 可 以构成一个三角形. 证明: )(21 AC AB AL += Θ )(21 BC BA BM += )(2 1 CB CA CN += 0)(2 1 =+++++=++∴CB CA BC BA AC AB CN BM AL 7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 OB OA ++OC =OL +OM +ON . [证明] LA OL OA +=Θ MB OM OB += NC ON OC += )(NC MB LA ON OM OL OC OB OA +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量CN BM AL ,,构成一个三角形。 8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB +OC +OD =4OM . [证明]:因为OM = 21 (OA +OC ), OM =2 1 (OB +OD ), 所以 2OM =2 1 (OA +OB +OC +OD ) 所以 OA +OB +OC +OD =4OM . 10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半. 图1-5

解析几何课后答案按

第1章 矢量与坐标 §1.1 矢量的概念 1.下列情形中的矢量终点各构成什么图形? (1)把空间中一切单位矢量归结到共同的始点; (2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点; (4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆 (3)直线; (4)相距为2的两点 §1.3 数量乘矢量 1.要使下列各式成立,矢量,应满足什么条件? (1-=+ (2+=+ (3-=+ (4+=-

(5 = [解]:(1), -=+; (2), +=+ (3 ≥且, -=+ (4), +=- (5), ≥ -=- 2. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, , 可 以构成一个三角形. [证明]: )(21 AC AB AL += )(21 BM += 0= 3. 设L 、 [证明] 4. [证明] 但 OB OD OC OA OB OC OA OD +=+-=-∴=-=-= 由于)(OC OA +∥,AC )(OD OB +∥,BD 而AC 不平行于BD , ∴0=+=+OB OD OC OA , 从而OA=OC ,OB=OD 。

5. 如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明 OA +OB ++=4. [证明]:因为OM = 21 (OA +OC ), =2 1 (OB +), 所以 2=2 1 (OA +OB ++OD ) 所以 OA +OB ++OD =4OM . 6. [所以所以显然所以 1. [所以从而 OP =λ+1. 2. 在△ABC 中,设=1e ,AC =2e ,AT 是角A 的平分线(它与BC 交于T 点),试将分解为1e ,2e 的线性组合. 图1-5

解析几何第四版吕林根课后习题答案第三章

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1)Θ }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又}3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

042:=+-+z y x π. 解: π与三个坐标轴的交点为:)4,0,0(),0,20(),0,0,4(--, 所以,它的截距式方程为: 14 24=+-+-z y x . 又与所给平面方程平行的矢量为:}4,0,4{},0,2,4{-, ∴ 所求平面的参数式方程为: 3.证明矢量},,{Z Y X =平行与平面0=+++D Cz By Ax 的充要条件为: 0=++CZ BY AX . 证明: 不妨设0≠A , 则平面0=+++D Cz By Ax 的参数式方程为: 故其方位矢量为:}1,0,{},0,1,{A C A B --, 从而v 平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面? ? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: Θ }5,2,3{z +-= 而平行于0147=--+z y x 由题3知:0)5(427)3(=+-?+?-z 从而18=z . 5. 求下列平面的一般方程. ⑴通过点()1,1,21-M 和()1,2,32-M 且分别平行于三坐标轴的三个平面; ⑵过点()4,2,3-M 且在x 轴和y 轴上截距分别为2-和3-的平面;

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

北师大版必修二第二章解析几何初步综合测试题

北师大版必修二第二章解析几何初步综合测试题 一、单选题 1.已知圆C 的标准方程为222 1x y ,则它的圆心坐标是( ) A .()2,0- B .()0,2- C .()0,2 D .()2,0 2.直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =( ) A .1- B .1 C .3- D .3 3.直线x +(m +1)y ﹣1=0与直线mx +2y ﹣1=0平行,则m 的值为( ) A .1或﹣2 B .1 C .﹣2 D .12 4.已知直线1l :210x ay +-=,与2l :()12102a x ay --+ =平行,则a 的值是( ) A .0或1 B .0或14 C .0 D .14 5.已知两条直线()1:3450l a x y ++-=与()2:2580l x a y ++-=平行,则a 的值是( ) A .7- B .1或7 C .133- D .1-或7- 6.已知点(2,A 0,1),(4,B 2,3),P 是AB 的中点,则点P 的坐标为( ) A .(3,1,2) B .(3,1,4) C .()0,2,1-- D .(6,4,5) 7.直线210x y --=与圆221x y +=的位置关系是( ) A .相切 B .相交且直线过圆心 C .相交但直线不过圆心 D .相离 8.已知点A (-1,0),B (0,2),点P 是圆22:(1)1C x y -+=上任意一点,则△P AB 面积的最大值与最小值分别是( ) A .2,2 B .2,2 C ,4 D . +1-1 9.已知圆O 1的方程为x 2+(y +1)2=6,圆O 2的圆心坐标为(2,1).若两圆相交于A ,B 两点,且|AB |=4,则圆O 2的方程为( ) A .(x -2)2+(y -1)2=6

高等代数与解析几何第七章习题7答案

习题 习题设A 是一个n 阶下三角矩阵。证明: (1)如果A 的对角线元素jj ii a a ≠),,2,1,(n j i Λ=,则A 必可对角化; (2)如果A 的对角线元素nn a a a ===Λ2211,且A 不是对角阵,则 A 不可对角化。 证明:(1)因为A 是一个n 阶下三角矩阵,所以A 的特征多项式为)())((||2211nn a a a A E ---=-λλλλΛ,又因jj ii a a ≠),,2,1,(n j i Λ=,所以A 有 n 个不同的特征值,即A 有n 个线性无关的特征向量,以这n 个线性无 关的特征向量为列构成一个可逆阵P ,则有AP P 1-为对角阵,故A 必可对角化。 (2)假设A 可对角化,即存在对角阵???? ?? ? ? ?=n B λλλO 2 1 ,使得A 与B 相似,进而A 与B 有相同的特征值n λλλ,,,21Λ。又因为矩阵A 的特征多项式为n a A E )(||11-=-λλ,所以1121a n ====λλλΛ,从而 E a a a a B nn 112211 =???? ?? ? ? ?=O ,于是对于任意非退化矩阵X ,都有B E a EX a X BX X ===--111111,而A 不是对角阵,必有A B BX X ≠=-1,与 假设矛盾,所以A 不可对角化。 习题设n 维线性空间V 的线性变换σ有s 个不同的特征值 s λλλ,,,21Λ,i V 是i λ的特征子空间),,2,1(s i Λ=。证明: (1)s V V V +++Λ21是直和;

(2)σ可对角化的充要条件是s V V V V ⊕⊕⊕=Λ21。 证明:(1)取s V V V +++Λ21的零向量0,写成分解式有 021=+++s αααΛ,其中i i V ∈α,s i ,,2,1Λ=。现用1 2,,,-s σσσΛ分别作用分解式两边,可得 ??? ??? ?=+++=+++=+++---000 1212111221121s s s s s s s s αλαλαλαλαλαλαααΛΛΛΛΛΛΛΛΛ。 写成矩阵形式为 )0,,0,0(11 1 ),,,(11221 1 121ΛΛ M M M Λ ΛΛ=???? ?? ? ? ?---s s s s s s λλλλλλααα。 由于s λλλ,,,21Λ是互不相同的,所以矩阵???? ?? ? ? ?=---11221 1111 1 s s s s s B λλλλλλΛ M M M Λ Λ的行列式不为零,即矩阵B 是可逆的,进而有 )0,,0,0()0,,0,0(),,,(1121ΛΛΛ==--B BB s ααα,)0,,0,0(),,,(21ΛΛ=s ααα。 这说明s V V V +++Λ21的零向量0的分解式是唯一的,故由定义可得 s V V V +++Λ21是直和。 (2))(?因i V ,s i ,,2,1Λ=都是V 的子空间,所以有s V V V V ⊕⊕⊕?Λ21。 又因σ可对角化,所以σ有n 个线性无关的特征向量,它们定属于某一特征值,即它们都属于s V V V ⊕⊕⊕Λ21。对任意的V ∈α,一定可由n 个线性无关的特征向量线性表示,所以s V V V ⊕⊕⊕∈Λ21α,即得 s V V V V ⊕⊕⊕?Λ21成立,故有s V V V V ⊕⊕⊕=Λ21。 )(?因s V V V V ⊕⊕⊕=Λ21, 所以分别取i V ),,2,1(s i Λ=的基:i id i i ααα,,,21Λ,

解析几何第四版吕林根课后习题答案

解析几何第四版吕林根 课后习题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第三章 平面与空间直线 § 平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点 )1,5,1(1-M 和)2,2,3(2-M 且垂直于xoy 坐标面的平面; (3)已知四点)3,1,5(A ,)2,6,1(B ,)4,0,5(C )6,0,4(D 。求通过直线AB 且平行于直线CD 的平面,并求通过直线AB 且与ABC ?平面垂直的平面。 解: (1) }1,2,2{21--=M M ,又矢量}2,0,1{-平行于所求平面, 故所求的平面方程为: 一般方程为:07234=-+-z y x (2)由于平面垂直于xoy 面,所以它平行于z 轴,即}1,0,0{与所求的平面平行,又 }3,7,2{21-=M M ,平行于所求的平面,所以要求的平面的参数方程为: 一般方程为:0)5(2)1(7=+--y x ,即01727=--y x 。 (3)(ⅰ)设平面π通过直线AB ,且平行于直线CD : }1,5,4{--=,}2,0,1{-= 从而π的参数方程为: 一般方程为:0745910=-++z y x 。 (ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=AB , }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=?AC AB 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 2.化一般方程为截距式与参数式:

北师大版高中数学必修二第二章 解析几何初步

第二章解析几何初步 §1直线与直线的方程 1.1直线的倾斜角和斜率 【课时目标】1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法.3.了解在平面直角坐标系中确定一条直线的几何要素. 1.倾斜角的概念和范围 在平面直角坐标系中,对于一条与x轴相交的直线l,把x轴(正方向)按____________方向绕着交点旋转到和直线l重合所成的角,叫作直线l的倾斜角.与x轴平行或重合的直线的倾斜角为0°.直线倾斜角α的范围是0°≤α<180°. 2.斜率的概念及斜率公式

一、选择题 1.对于下列命题 ①若α是直线l的倾斜角,则0°≤α<180°; ②若k是直线的斜率,则k∈R; ③任一条直线都有倾斜角,但不一定有斜率; ④任一条直线都有斜率,但不一定有倾斜角. 其中正确命题的个数是( ) A.1B.2C.3D.4 2.斜率为2的直线经过点A(3,5)、B(a,7)、C(-1,b)三点,则a、b的值为( ) A.a=4,b=0B.a=-4,b=-3 C.a=4,b=-3D.a=-4,b=3 3.设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为( ) A.α+45° B.α-135° C.135°-α D.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾斜角为α-135° 4.直线l过原点(0,0),且不过第三象限,那么l的倾斜角α的取值范围是( ) A.[0°,90°]B.[90°,180°) C.[90°,180°)或α=0°D.[90°,135°]

5.若图中直线l1、l2、l3的斜率分别为k1、k2、k3,则( ) A.k10B.mn<0 C.m>0,n<0D.m<0,n<0 二、填空题 7.若直线AB与y轴的夹角为60°,则直线AB的倾斜角为____________,斜率为____________. 8.如图,已知△ABC为等腰三角形,且底边BC与x轴平行,则△ABC三边所在直线的斜率之和为____________________________________________________________________. 9.已知直线l的倾斜角为α-20°,则α的取值范围是______________. 三、解答题 10.如图所示,菱形ABCD中,∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率.

解析几何第四版复习重点第二章轨迹与方程

第二章 轨迹与方程 §2.1平面曲线的方程 1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形? 解:动点M 在轨迹上的充要条件是MB MA 21= 。设M 的坐标),(y x 有 2222)6(2 1)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x 此轨迹为椭圆 2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动, 是求此线段中点的轨迹。A ,B 为两端点,M 为此线段的中点。 解: 如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB 中有 222()(2)x y a +=.把M 点的坐标代入此式得: 222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a += 3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹. 解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ?=.设(,)M x y 在Rt BNM 中 2 22()a x y AM ++=(1) 在Rt BNM 中222()a x y BM -+=.(2) 由(1)(2)两式得: 22222244 ()2()x y a x y m a +--=-. §2.2 曲面的方程 2、在空间,选取适当的坐标系,求下列点的轨迹方程: (1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹; (4)到一定点和一定平面距离之比等于常数的点的轨迹。 解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则

第二章平面解析几何初步-小检测

平面解析几何初步检测题 考试时间 45分钟 总分 100分 一、选择题(7’× 5) 1.已知直线的方程是21y x +=--,则 ( ) A.直线经过点(2,-1),斜率为-1 B .直线经过点(1,-2),斜率为-1 C.直线经过点(-2,-1),斜率为1 D.直线经过点(-1,-2),斜率为-1 2.过点A(4,1)且在两坐标轴上的截距相等的直线的方程是 ( ) A.5x y += B.5x y -= C.5x y +=或40x y -= D.5x y -=或40x y += 3.斜率为-3,在x 轴上的截距为2的直线的一般式方程是 ( ) A.360x y ++= B.320x y -+= C.360x y +-= D.320x y --= 4.直线20x y k -+=与4210x y -+=的位置关系是 ( ) A.平行 B.不平行 C.平行或重合 D.既不平行也不重合 5.已知A(-4,-5)、B(6,-1),则以线段AB 为直径的圆的方程是 ( ) A.()()221329x y ++-= B.()()22 1329x y +++= C.()()2213116x y ++-= D.()()2213116x y -++= 二、填空题(7’× 2) 6.若直线x +2my -1=0与直线(3m -1)x -my -1=0平行,那么实数m 的值为_________. 7.点P(5a +1,12a )在圆()2 211x y -+=的内部,则a 的取值范围是_________. 三、解答题(14’ + 17’+ 20’) 8.已知P(3,m )在过点M(2,-1)和点N(-3,4)的直线上,则m 的值是多少? 9.直线l 过点P(-2,3)且与x 轴、y 轴分别交与A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程. 10.已知点P (0,5)及圆C :22 412240x y x y ++-+=, (1)若直线l 过P 且被圆C 截得的线段长为l 的方程; (2)求过P 点的弦的中点的轨迹方程.

北师大数学必修二第二章解析几何初步单元测试题

《解析几何初步》单元测试卷 检测时间:120分钟 满分:150分 一. 单选题:(每小题5分,共50分) 1、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB |=( ) A 、|x 1-x 2| B 、|y 1-y 2| C 、 x 2-x 1 D 、 y 2-y 1 2、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是: ( ) A 、 (x+8)2+(y-5)2=1 B 、(x-7)2+(y+4)2=2 C 、 (x+3)2+(y-2)2=1 D 、(x+4)2+(y+3)2=2 3、已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为: ( ) A 、7 B 、-5 C 、3 D 、-1 4、方程x 2+y 2-x+y+m=0表示圆则m 的取值范围是 ( ) A 、 m ≤2 B 、 m<2 C 、 m<21 D 、 m ≤2 1 5、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为 ( ) A 、+2y-3=0 B 、2x+y-3=0 C 、x+y-2=0 D 、2x+y+2=0 6、圆心在直线x=y 上且与x 轴相切于点(1,0)的圆的方程为: ( ) A 、(x-1)2+y 2=1 B 、(x-1)2+(y-1)2=1 C 、(x+1)2+(y-1)2=1 D 、(x+1)2+(y+1)2=1 7、光线沿直线2x-y-3=0经两坐标轴反射后所在的直线是( ) A 、2x+y+3=0 B 、2x+y-3=0 C 、2x-y+3=0 D 、x-2y-3=0 8、已知直线ax+y+2=0及两点P (-2,1)、Q (3,2),若直线与线段PQ 相 交,则a 的取值范围是 ( )

空间解析几何(练习题(答案))

1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57 (. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C . 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A .平行于x 轴 B .平行于y 轴 C .平行于z 轴 D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A .5 B . 6 1 C . 51 D .8 1 5.D 7.D 8.B 9.A 10.A . 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(b a p r j c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的. 3.34-=m ; 4.29 19 9.33 2212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴

解析几何第四版吕林根课后习题答案

第三章 平 面 与 空 间 直 线 § 3.1平面的方程 1.求下列各平面的坐标式参数方程和一般方程: (1)通过点)1,1,3(1-M 和点)0,1,1(2-M 且平行于矢量}2,0,1{-的平面(2)通过点)1,5,1(1-M CD 的(3)(ⅰ)设平面通过直线AB ,且平行于直线CD : }1,5,4{--=AB ,}2,0,1{-=CD 从而π的参数方程为: 一般方程为:0745910=-++z y x 。

(ⅱ)设平面π'通过直线AB ,且垂直于ABC ?所在的平面 ∴ }1,5,4{--=, }1,1,1{4}4,4,4{}1,1,0{}1,5,4{==-?--=? 均与π'平行,所以π'的参数式方程为: 一般方程为:0232=--+z y x . 0=. 故其方位矢量为:}1,0,{},0,1,{A C A B -- , 从而平行于平面0=+++D Cz By Ax 的充要条件为: ,}1,0,{},0,1,{A C A B -- 共面?

? 0=++CZ BY AX . 4. 已知连接两点),12,0(),5,10,3(z B A -的线段平行于平面0147=--+z y x ,求B 点的z 坐标. 解: }5,2,3{z AB +-= ⑹求过点()1,5,31-M 和()2,1,42M 且垂直于平面0138=-+-z y x 的平面. 解:平行于x 轴的平面方程为 00 1 011112 =--+-z y x .即01=-z . 同理可知平行于y 轴,z 轴的平面的方程分别为01,01=-+=-y x z .

⑵设该平面的截距式方程为 132=+-+-c z y x ,把点()4,2,3-M 代入得19 24-=c 故一般方程为02419812=+++z y x . ⑶若所求平面经过x 轴,则()0,0,0为平面内一个点, {}2,1,5-和{}0,0,1为所求平面的方位矢量, ∴ .11 6 cos ,119cos ,112cos -=== ?γβ 则该平面的法式方程为: .01111 6 119112=--+z y x 既 .0121692=--+z y x

相关文档
相关文档 最新文档