文档库 最新最全的文档下载
当前位置:文档库 › 备战中考数学圆的综合综合练习题附详细答案

备战中考数学圆的综合综合练习题附详细答案

备战中考数学圆的综合综合练习题附详细答案
备战中考数学圆的综合综合练习题附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形

(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系

猜想结论:(要求用文字语言叙述)

写出证明过程(利用图1,写出已知、求证、证明)

(性质应用)

①初中学过的下列四边形中哪些是圆外切四边形(填序号)

A:平行四边形:B:菱形:C:矩形;D:正方形

②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.

③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.

【答案】见解析.

【解析】

【分析】

(1)根据切线长定理即可得出结论;

(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;

②根据圆外切四边形的对边和相等,即可求出结论;

③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.

【详解】

性质探讨:圆外切四边形的对边和相等,理由:

如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.

求证:AD+BC=AB+CD.

证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,

∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.

故答案为:圆外切四边形的对边和相等;

性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.

∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.

故答案为:B,D;

②∵圆外切四边形ABCD,∴AB+CD=AD+BC.

∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.

故答案为:40;

③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.

∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为

4x=8cm,5x=10cm,7x=14cm,8x=16cm.

【点睛】

本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.

2.如图,AB是半圆O的直径,C是的中点,D是的中点,AC与BD相交于点E.

(1)求证:BD平分∠ABC;

(2)求证:BE=2AD;

(3)求DE

BE

的值.

【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -

【解析】

试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;

(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得

BE=AF=2AD;

(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,

DH=21

-, 然后根据相似三角形的性质可求解.

试题解析:(1)∵D是的中点

∴AD=DC

∴∠CBD=∠ABD

∴BD平分∠ABC

(2)提示:延长BC与AD相交于点F, 证明△BCE≌△ACF,

BE=AF=2AD

(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,

DH=21

-, DE

BE

=

DH

BC

DE BE =

21

-

3.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.

(1)求证:DF是⊙O的切线;

(2)若DB平分∠ADC,AB=52AD

,∶DE=4∶1,求DE的长.

【答案】(1)见解析5

【解析】

分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;

(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD?AE,进而得出答案.

详解:(1)连接OD.

∵OD=CD,∴∠ODC=∠OCD.

∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.

∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.

(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.

∵DB平分∠ADC,∴∠ADB=∠CDB,∴AB=BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.

又∵AC⊥CE,∴∠ACE=90°,

∴△ADC~△ACE,∴AC

AD =

AE

AC

,∴AC2=AD?AE.

设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,

∴100=4x?5x,∴x=5,∴DE=5.

点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD?AE是解题的关键.

4.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.

(1)如图1,求⊙O1半径及点E的坐标.

(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.

(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.

【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2

【解析】

分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从

而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.

(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理

可得FQ=1

2

BD.从而可以得到BF+CF=2FQ=AC.

(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有

BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.

详解:(1)连接ED、EC、EO1、MO1,如图1.

∵ME平分∠SMC,∴∠SME=∠EMC.

∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.

∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.

∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.

设⊙O1的半径为r,则MO1=DO1=r.

在Rt△MOO1中,(r﹣1)2+32=r2.

解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).

(2)BF+CF=AC.理由如下:

过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.

∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD

,=AC,∴BD=AC.

∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.

在△EPO1和△CQO1中,

11

11

11

EO P CO Q

EPO CQO

O E O C

∠=∠

?

?

∠=∠

?

?=

?

∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.

∵CO1=DO1,∴O1Q=1

2

BD,∴FQ=

1

2

BD.

∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.

(3)连接EO1,ED,EB,BG,如图3.

∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.

∵DO1=EO1=5,EO1⊥DO1,∴DE

∴BG

∴弦BG的长度不变,等于

点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.

5.如图,△ABC内接于⊙O,弦AD⊥BC垂足为H,∠ABC=2∠CAD.

(1)如图1,求证:AB=BC;

(2)如图2,过点B作BM⊥CD垂足为M,BM交⊙O于E,连接AE、HM,求证:AE∥HM;(3)如图3,在(2)的条件下,连接BD交AE于N,AE与BC交于点F,若NH=25,AD=11,求线段AB的长.

【答案】(1)证明见解析;(2)证明见解析;(3)AB的长为10.

【解析】

分析:(1)根据题意,设∠CAD=a,然后根据直角三角形的两锐角互余的关系,推导出

∠BAC=∠ACB,再根据等角对等边得证结论;

(2)延长AD、BM交于点N,连接ED.根据圆周角定理得出∠N=∠DEN=∠BAN,进而根据等角对等边,得到DE=DN,BA=BN,再根据等腰三角形和直角三角形的性质,求得

MH∥AE;

(3)连接CE,根据(2)的结论,由三角形全等的判定与性质证得HF=HC,然后结合勾股定理求出AC2-AH2=CD2-DH2,解得CD=5,CH=4,AH=8,最后根据锐角三角函数的性质得到AB.详解:(1)证明:设∠CAD=a,

则∠ABC=2a,∠C=90°-a,∠BAD=90°-2a,

∴∠BAC=90°-2a+a=90°-a

∴∠BAC=∠ACB.∴AB=BC

(2)证明:延长AD 、BM 交于点N ,连接ED.

∵∠DEN=∠DAB,∠N=∠BCD,∠BCD=∠BAN

∴∠N=∠DEN=∠BAN

∴DE=DN,BA=BN

又∵BH ⊥AN,DM ⊥EN

∴EM=NM,HN=HA,∴MH ∥AE

(3)连接CE.

∠BDA=∠BCA,∠BDM=∠BAC,由(1)知∠BCA=∠BAC

∴∠BDA=∠BDM,∴△BDM ≌△BDH,

∴DH=MH,∠MBD=∠HBD,∴BD ⊥MH

又∵MH ∥AE,∴BD ⊥EF,∴△FNB ≌△ENB,

同理可证△AFH ≌△ACH,∴HF=HC,又∵FN=NE

∴NH ∥EC,EC=2NH,又∵NH=25∴EC=45∠EAC=2∠AEC=2a=∠ABC,可证弧AC=弧EC,

∴AC=EC=5

设HD=x ,AH=11-x ,

∵∠ADC=2∠CAD,翻折△CHD 至△CHG,可证CG=CD=AG

AH=CD+DH,CD=AH-DH=11-x-x=11-2x

又∵AC 2-AH 2=CD 2-DH 2,∴(52-(11-x)2=(11-2x)2-x 2

∴x 1=3,x 2=

272(舍去)∴CD=5,CH=4,AH=8. 又∵tan2AH CH a BH DH

==,∴BH=6 ∴22226810BM AH +=+=

点睛:此题主要考查了圆的综合,结合圆周角定理,勾股定理,全等三角形的判定与性质,解直角三角形的性质,综合性比较强,灵活添加辅助线,构造方程求解是解题关键.

6.(8分)已知AB为⊙O的直径,OC⊥AB,弦DC与OB交于点F,在直线AB上有一点E,连接ED,且有ED=EF.

(1)如图①,求证:ED为⊙O的切线;

(2)如图②,直线ED与切线AG相交于G,且OF=2,⊙O的半径为6,求AG的长.

【答案】(1)见解析;(2)12

【解析】

试题分析:(1)连接OD,由ED=EF可得出∠EDF=∠EFD,由对顶角相等可得出

∠EDF=∠CFO;由OD=OC可得出∠ODF=∠OCF,结合OC⊥AB即可得知∠EDF+∠ODF=90°,即∠EDO=90°,由此证出ED为⊙O的切线;

(2)连接OD,过点D作DM⊥BA于点M,结合(1)的结论根据勾股定理可求出ED、EO 的长度,结合∠DOE的正弦、余弦值可得出DM、MO的长度,根据切线的性质可知

GA⊥EA,从而得出DM∥GA,根据相似三角形的判定定理即可得出△EDM∽△EGA,根据相似三角形的性质即可得出GA的长度

试题解析:解:(1)连接OD,∵ED=EF,∴∠EDF=∠EFD,∵∠EFD=∠CFO,

∴∠EDF=∠CFO.∵OD=OC,∴∠ODF=∠OCF.∵OC⊥AB,

∴∠CFO+∠OCF=∠EDF+∠ODF=∠EDO=90°,∴ED为⊙O的切线;

(2)连接OD,过点D作DM⊥BA于点M,由(1)可知△EDO为直角三角形,设

ED=EF=a,EO=EF+FO=a+2,由勾股定理得,EO2=ED2+DO2,即(a+2)2=a2+62,解得,a=8,

即ED=8,EO=10.∵sin∠EOD=

4

5

ED

EO

=,cos∠EOD=

3

5

OD

OE

=,

∴DM=OD?sin∠EOD=6×4

5=

24

5

,MO=OD?cos∠EOD=6×

3

5

=

18

5

,∴EM=EO﹣MO=10﹣

18 5=

32

5

,EA=EO+OA=10+6=16.

∵GA切⊙O于点A,∴GA⊥EA,∴DM∥GA,∴△EDM∽△EGA,∴DM EM

GA EA

=,即2432

55

16

GA

=,解得GA=12.

点睛:本题考查的是切线的判定、垂径定理和勾股定理的应用、等腰三角形的性质、角的三角函数值、相似三角形的判定及性质,解题的关键是:(1)通过等腰三角形的性质找出∠EDO=90°;(2)通过相似三角形的性质找出相似比.

7.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG

(1)判断CG与⊙O的位置关系,并说明理由;

(2)求证:2OB2=BC?BF;

(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.

【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2

【解析】

【分析】

(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即

OC⊥GC,据此即可得证;

(2)证△ABC∽△FBO得BC AB

BO BF

=,结合AB=2BO即可得;

(3)证ECD∽△EGC得EC ED

EG EC

=,根据CE=3,DG=2.5知

3

2.53

DE

DE

=

+

,解之可

得.【详解】

解:(1)CG与⊙O相切,理由如下:

如图1,连接CE,

∵AB是⊙O的直径,

∴∠ACB=∠ACF=90°,

∵点G是EF的中点,

∴GF=GE=GC,

∴∠AEO=∠GEC=∠GCE,

∵OA=OC,

∴∠OCA=∠OAC,

∵OF⊥AB,

∴∠OAC+∠AEO=90°,

∴∠OCA+∠GCE=90°,即OC⊥GC,

∴CG与⊙O相切;

(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,

又∵∠B=∠B,

∴△ABC∽△FBO,

∴BC AB

=,即BO?AB=BC?BF,

BO BF

∵AB=2BO,

∴2OB2=BC?BF;

(3)由(1)知GC=GE=GF,

∴∠F=∠GCF,

∴∠EGC=2∠F,

又∵∠DCE=2∠F,

∴∠EGC=∠DCE,

∵∠DEC=∠CEG,

∴△ECD∽△EGC,

∴EC ED

=,

EG EC

∵CE=3,DG=2.5,

∴32.53DE DE =+, 整理,得:DE 2+2.5DE ﹣9=0,

解得:DE =2或DE =﹣4.5(舍),

故DE =2.

【点睛】

本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.

8.如图,在Rt △ABC 中,90C ∠=?,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .

(1)求证:BC 是⊙O 的切线;

(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)

【答案】(1)证明见解析 (2)

233

π- 【解析】

【分析】 (1)连接OD ,只要证明OD ∥AC 即可解决问题;

(2)连接OE ,OE 交AD 于K .只要证明△AOE 是等边三角形即可解决问题.

【详解】

(1)连接OD .

∵OA =OD ,∴∠OAD =∠ODA .

∵∠OAD =∠DAC ,∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∴BC 是⊙O 的切线.

(2)连接OE ,OE 交AD 于K .

∵AE DE =,∴OE ⊥AD .

∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE

是等边三角形,∴∠AOE=60°,∴S阴=S扇形OAE﹣S△AOE

2

6023

3604

π??

=-?22

2

3

3

π

=-.

【点睛】

本题考查了切线的判定、扇形的面积、等边三角形的判定和性质、平行线的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.

9..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A 重合),⊙D与AB相切,切点为E,⊙D交射线

..DC于点F,过F作FG⊥EF交直线

..BC于点G,设⊙D的半径为r.

(1)求证AE=EF;

(2)当⊙D与直线BC相切时,求r的值;

(3)当点G落在⊙D内部时,直接写出r的取值范围.

【答案】(1)见解析,(2)r=3,(3)

63 3r

<<

【解析】

【分析】

(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;

(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;

(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.

【详解】

解:设圆的半径为r;

(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,

而∠DEF=∠DFE ,则∠DEF=∠DFE=30°=∠A ,

∴AE=EF ;

(2)如图2所示,连接DE ,当圆与BC 相切时,切点为F

∠A=30°,AB=6,则BF=3,AD=2r ,

由勾股定理得:(3r )2+9=36,

解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,

333,3933FC r GC FC r =-==-

②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,

333,3339FC r GC FC r ===-

两种情况下GC 符号相反,GC 2相同,

由勾股定理得:DG 2=CD 2+CG 2,

点G 在圆的内部,故:DG2<r2,

即:22(332)(339)2r r r +-<

整理得:25113180r r -+<

解得:

6335

r <<

【点睛】 本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.

10.如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与A 、B 重合),连AP ,BP ,过C 作CM ∥BP 交PA 的延长线于点M ,

(1)求证:△PCM 为等边三角形;

(2)若PA =1,PB =2,求梯形PBCM 的面积.

【答案】(1)见解析;(21534

【解析】

【分析】

(1)利用同弧所对的圆周角相等即可求得题目中的未知角,进而判定△PCM 为等边三角形;

(2)利用上题中得到的相等的角和等边三角形中相等的线段证得两三角形全等,进而利用△PCM 为等边三角形,进而求得PH 的长,利用梯形的面积公式计算梯形的面积即可.

【详解】

(1)证明:作PH ⊥CM 于H ,

∵△ABC 是等边三角形,

∴∠APC=∠ABC=60°,

∠BAC=∠BPC=60°,

∵CM ∥BP ,

∴∠BPC=∠PCM=60°,

∴△PCM 为等边三角形;

(2)解:∵△ABC 是等边三角形,△PCM 为等边三角形,

∴∠PCA+∠ACM=∠BCP+∠PCA ,

∴∠BCP=∠ACM ,

在△BCP 和△ACM 中, BC AC BCP ACM CP CM =??∠=∠??=?

∴△BCP ≌△ACM (SAS ),

∴PB=AM,

∴CM=CP=PM=PA+AM=PA+PB=1+2=3,在Rt△PMH中,∠MPH=30°,

∴PH=33

2

∴S梯形PBCM=1

2(PB+CM)×PH=

1

2

×(2+3)×

33

2

=

15

3

4

【点睛】

本题考查圆周角定理、等边三角形的判定、全等三角形的性质及梯形的面积计算方法,是一道比较复杂的几何综合题.

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

人教版九年级数学上册 圆 几何综合中考真题汇编[解析版]

人教版九年级数学上册 圆 几何综合中考真题汇编[解析版] 一、初三数学 圆易错题压轴题(难) 1.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线; (2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标; (3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由. 【答案】解:(1)证明:连接CM , ∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴ . 又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,. ∴545(x )x 5)12152- =--(,∴,解得10 OD 3 = . 又∵D 为OB 中点,∴ 1552 4 +∴D 点坐标为(0,154). 连接AD ,设直线AD 的解析式为y=kx+b ,则有

解得. ∴直线AD 为 . ∵二次函数的图象过M (5 6 ,0)、A(5,0), ∴抛物线对称轴x= 154 . ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=15 4 交于点P , ∴PD+PM 为最小. 又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=15 4 的交点. 当x= 15 4时,45y (x )x 5)152 = --(. ∴P 点的坐标为(15 4,56 ). (3)存在. ∵ ,5 y a(x )x 5)2 =--( 又由(2)知D (0,154),P (15 4,56 ), ∴由 ,得 ,解得y Q =± 103 . ∵二次函数的图像过M(0,5 6 )、A(5,0), ∴设二次函数解析式为, 又∵该图象过点D (0,15 4 ),∴,解得a= 512 . ∴二次函数解析式为 . 又∵Q 点在抛物线上,且y Q =±103 . ∴当y Q =103 时,,解得x= 1552-或x=1552 +; 当y Q =5 12 - 时,,解得x= 15 4 .

2017中考数学真题汇编:圆(带答案)

2017年浙江中考真题分类汇编(数学):专题11 圆 一、单选题 1、(2017·金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为( ) A、10cm B、16cm C、24cm D、26cm 2、(2017?宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC的中点O为圆心的圆分别与AB、AC相切于D、E两点,则的长为() A、 B、 C、 D、

3、(2017·丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是() A、 B、 C、 D、 4、(2017·衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8。则图中阴影部分的面积是() A、 B、 C、 D、 二、填空题

5、(2017?杭州)如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________. 6、(2017?湖州)如图,已知在中,.以为直径作半圆,交于点.若 ,则的度数是________度. 7、(2017·台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30cm,则弧BC的长为________cm(结果保留) 8、(2017?绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E.则∠DOE的度数为________.

9、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形 (阴影部分)粘贴胶皮,则胶皮面积为________. 10、(2017?湖州)如图,已知,在射线上取点,以为圆心的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;在射线上取点,以为圆心,为半径的圆与相切;;在射线上取点,以为圆心,为半径的圆与相切.若的半径为,则的半径长是________. 11、(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线 上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________ 三、解答题

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

2018年中考数学真题汇编 圆

2018年中考数学真题汇编:圆(填空+选择46题)答案 一、选择题 1.已知的半径为,的半径为,圆心距,则与的位置关系是( C ) A. 外离 B. 外切 C. 相交 D. 内切 2. 如图,为的直径,是的弦,,则的度数为( C ) A. B. C. D. 3.已知半径为5的⊙O是△ABC的外接圆,若∠ABC=25°,则劣弧的长为( C ) A. B. C. D. 4. 如图,在中,,的半径为3,则图中阴影部分的面积是( C ) A. B. C. D. 5.如图,AB是圆O的弦,OC⊥AB,交圆O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( D ) A.40° B.50° C.70° D.80° 6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是( A ) A. B.40πm2 C. D.55πm2 7.如图,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形.则此扇形的面积为( A ) A. B. C. D. 8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(D ) A. 点在圆内 B. 点在圆上 C. 点在圆心上 D. 点在圆上或圆内 9.如图,AB是圆锥的母线,BC为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则sin∠ABC的值为( C ) A. B. C. D.

10.如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于( A )。 A.27° B.32° C.36° D.54° 11.如图,过点,,,点是轴下方上的一点,连接,,则 的度数是( B ) A. B. C. D. 12.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是( D ) A. 3cm B. cm C. 2.5cm D. cm 13.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则 的长为( C ) A. B. C. D. 14.如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( B ) A. 75° B. 70° C. 65° D. 35° 15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( D ) A.3 B. C. D. 16. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD的垂线交PD 的延长线于点C,若的半径为4,,则PA的长为( A ) A. 4 B. C. 3 D. 2.5 17.在中,若为边的中点,则必有成立.依据以上结论,解决如下问题: 如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小 值为( D )A. B. C. 34 D. 10

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

中考数学圆综合题(含答案)

一.圆地概念 集合形式地概念:1. 圆可以看作是到定点地距离等于定长地点地集合; 2.圆地外部:可以看作是到定点地距离大于定长地点地集合; 3.圆地内部:可以看作是到定点地距离小于定长地点地集合 轨迹形式地概念: 1.圆:到定点地距离等于定长地点地轨迹就是以定点为圆心,定长为半径地圆; (补充)2.垂直平分线:到线段两端距离相等地点地轨迹是这条线段地垂直平分线(也叫中垂线); 3.角地平分线:到角两边距离相等地点地轨迹是这个角地平分线; 4.到直线地距离相等地点地轨迹是:平行于这条直线且到这条直线地距离等于定长地两条直线; 5.到两条平行线距离相等地点地轨迹是:平行于这两条平行线且到两条直线距离都相等地一条直线. 二.点与圆地位置关系 1.点在圆内?d r?点A在圆外; 三.直线与圆地位置关系 1.直线与圆相离?d r>?无交点; 2.直线与圆相切?d r=?有一个交点; 3.直线与圆相交?d r+; A

外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; 图1 五.垂径定理 垂径定理:垂直于弦地直径平分弦且平分弦所对地弧. 推论1:(1)平分弦(不是直径)地直径垂直于弦,并且平分弦所对地两条弧; (2)弦地垂直平分线经过圆心,并且平分弦所对地两条弧; (3)平分弦所对地一条弧地直径,垂直平分弦,并且平分弦所对地另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论. 推论2:圆地两条平行弦所夹地弧相等. 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六.圆心角定理 图2 图4 图5 B D

2017中考数学真题汇编:圆(带答案)0001

2017年浙江中考真题分类汇编(数学):专题11圆、单选题 1、(2017 ?金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦 A、10cm B、16cm C、24cm D、26cm 2、(2017?宁波)如图,在Rt △KBC中,Z A = 90 ° BC = .以BC的中点O为圆心的圆分别与AC相切于D、E两点,则:三的长为() JT B、 C、 D、AB的 AB、 长为(

3、(2017 ?丽水如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是() B、— C、 D、 32 4、(2017 ?衢州)运用图形变化的方法研究下列问题:如图,AB是O O的直径,CD , EF是O O的弦, 且AB //CD //EF, AB=10 , CD=6 , EF=8。则图中阴影部分的面积是() A、一 B、 C、-- + 4." D、 、填空题

(2017?杭州)如图,AT 切O O 于点A , AB 是O O 的直径.若/ ABT=40 (2017?绍兴)如图,一块含45。角的直角三角板,它的一个锐角顶点 A 在 O O 上,边AB , AC 分别 与O O 交于点D , E.则/DOE 的度数为 9、 ( 2017 ?嘉兴如图,小明自制一块乒乓球拍, 正面是半径为比謬的 . 亏:一,弓形 (阴影部分)粘贴胶皮,则胶皮面积为 C 10、 ( 2017?湖州)如图,已知 Z.4.L 一;「,在射线 上取点 ,以 为圆心的圆与 相 ,则 B= 6、( 2017?湖州)如图,已知在 上]1中,一-上二_二「.以.p?为直径作半圆 , 交二'_1 于点一.若 的度数是 度. 如图,扇形纸扇完全打开后,外侧两竹条 AB , AC 的夹角为120 ,AB 长为30cm ,则 8 、

中考数学圆综合练习题含答案

数学中考圆综合题附参考答案 1.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线; (2)若点E 是BC 上一点,已知BE =6,tan ∠ABC = 32,tan ∠AEC =3 5 ,求圆的直径. 2. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。 (1)求证:CD 为⊙0的切线; (2)若DC+DA=6,⊙0的直径为l0,求AB 的长度. 1. (1)证明:连接OC, ∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。 ∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。 又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线. (2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD. ∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x , 在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+= 解得2x =或9x =。由AD

2020中考数学 专题练习:圆的综合题(含答案)

2020中考数学 专题练习:圆的综合题(含答案) 类型一 与全等结合 1. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC = 2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵ 上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数; (2)当点P 移动到劣弧CB ︵ 的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等. 第1题图 (1)解:∵AC =2,OA =OB =OC =1 2 AB =2,

∴AC =OA =OC , ∴△ACO 为等边三角形, ∴∠AOC =∠ACO =∠OAC =60°, ∴∠APC =1 2∠AOC =30°, 又∵DC 与⊙O 相切于点C , ∴OC ⊥DC , ∴∠DCO =90°, ∴∠ACD =∠DCO -∠ACO =90°-60°=30°; 第1题解图 (2)证明:如解图,连接PB ,OP , ∵AB 为直径,∠AOC =60°, ∴∠COB =120°, 当点P 移动到CB ︵ 的中点时,∠COP =∠POB =60°, ∴△COP 和△BOP 都为等边三角形,

∴OC =CP =OB =PB , ∴四边形OBPC 为菱形; (3)证明:∵CP 与AB 都为⊙O 的直径, ∴∠CAP =∠ACB =90°, 在Rt △ABC 与Rt △CPA 中, ? ????AB =CP AC =AC , ∴Rt △ABC ≌Rt △CPA (HL). 2. 如图,AB 为⊙O 的直径,CA 、CD 分别切⊙O 于点A 、D ,CO 的延长线交⊙O 于点M ,连接BD 、DM . (1)求证:AC =DC ; (2)求证:BD ∥CM ; (3)若sin B =4 5 ,求cos ∠BDM 的值. 第2题图 (1)证明:如解图,连接OD ,

2018年中考数学真题汇编圆

2018 年中考数学真题汇编 :圆(填空 +选择 46 题)答案 一、选择题 1.已知的半径为,的半径为,圆心距,则与的位置关系是( C ) A. 外离B外.切C相.交D内.切 2.如图,为的直径,是的弦,,则的度数为( C ) A. B. C. D. 3.已知半径为 5 的⊙ O 是△ ABC 的外接圆,若∠ABC=25°,则劣弧的长为( C ) A. B. C. D. 4.如图,在中,,的半径为3,则图中阴影部分的面积是( C ) A. B. C. D. 5.如图, AB 是圆 O 的弦, OC⊥ AB,交圆 O 于点 C,连接 OA, OB, BC,若∠ ABC=20°,则∠ AOB 的度数是(D ) A.40 ° B.50 ° C.70 ° D.80 ° 6.如图,蒙古包可近似看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为 3m ,圆锥高为 2m 的蒙古包,则需要毛毡的面积是( A ) A. 2 C. 2 B.40 πm D.55 πm 7.如图 ,从一块直径为的圆形铁皮上剪出一个圆心角为90°的扇形 .则此扇形的面积为( A ) A. B. C. D. 8.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是(D) A. 点在圆内B点.在圆上C点.在圆心上D点.在圆上或圆内 9.如图, AB 是圆锥的母线, BC 为底面直径,已知BC=6cm,圆锥的面积为15πcm2,则 sin∠ ABC的值为( C ) A. B. C. D.

10.如图所示, A.27 ° 11.如图,AB 是⊙ O 的直径, PA 切⊙ O 于点 B.32 C.36°° 过点,, A,线段 D.54 ,点 PO交⊙O 于点 是轴下方 C,连结 BC,若∠ P=36°,则∠ B 等于( ° 上的一点,连接,,则 A)。 的度数是( B ) A. B. C. D. 12.如图, AC 是⊙ O 的直径,弦BD⊥ AO 于 E,连接 BC,过点 O 作 OF⊥ BC于 F,若 BD=8cm, AE=2cm,则 OF 的长 度是( D ) A. 3cm B.cm C. 2.5cm D.cm 13.如图,在△ABC 中,∠ ACB=90°,∠ A=30°,AB=4,以点 B 为圆心,BC长为半径画弧,交 边 AB 于点D,则 的长为(C) A. B. C. D. 14.如图,点A,B,C在⊙ O上,∠ ACB=35°,则∠AOB 的度数是( B ) A. 75° B. 70 C. 65° D. 35°° 15.如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( D ) A.3 B. C. D. 16.如图,已知AB 是的直径,点P 在BA 的延长线上,PD 与相切于点D,过点 B 作PD 的垂线交PD 的延长线于点C,若的半径为4,,则PA 的长为(A) A. 4 B. C. 3 D. 2.5 17.在中,若为边的中点,则必有成立 .依据以上结论,解决如下问题:如图,在矩形中,已知,点在以为直径的半圆上运动,则的最小值为( D )A. B. C. 34 D. 10

中考数学圆综合题汇编

25题汇编 1. 如图,是⊙O 的直径,是⊙O 的切线,切点为B ,为弦,∥。 (1)求证:是⊙O 的切线; (2)若2,求OC AD 的值。 2. 如图,⊙O 是△的外接圆,∠60°,是⊙O 的直径,P 是延长线上的一点,且 (1)求证:直线是⊙O 的切线; (2)若3,求的长。 D C B A O C B

3. 如图,已知是⊙O 的直径,和是⊙O 的两条切线,点E 是⊙O 上一点,点D 是上一点,连接并延长交于点C ,连接、,且∥。 (1)求证:是⊙O 的切线; (2)若1,4,求直径的长。 4. 如图,△内接于⊙O ,弦⊥交于点E ,过点B 作⊙O 的切线交的延长线于点F ,且∠∠。 (1)求证:; (2)若4,2 3 tan F ,求的长。 M N E D C B A O

5. 在△中,,以为直径作⊙O ,交于点D ,过点D 作⊥,垂足为E 。 (1)求证:是⊙O 的切线; (2)若1,52=BD ,求的长。 6. 如图,是⊙O 的直径,C 是⊙O 上一点,垂直于过点C 的直线,垂足为D ,且平分 ∠。 (1)求证:是⊙O 的切线; (2)若62=AC ,4,求的长。 A

7. 如图,为⊙O 的直径,C 为⊙O 上一点,和过C 点的切线互相垂直,垂足为点D ,交⊙O 于点E 。 求证:(1)平分∠; (2)若∠60°,32 CD ,求的长。 8. 如图,⊙O 是△的外接圆,是⊙O 的直径,弦,12,5,⊥交的延长线于点E 。 (1)求证:是⊙O 的切线; (2)求的长。 A E A

9. 如图,在△中,∠90°,6,半径为2的⊙F 与射线相切于点G ,且4,将△绕点A 顺时针旋转135°后得到△,点B 、C 的对应点分别是点D 、E 。 (1)求证:为⊙F 的切线; (2)求出△的斜边被⊙F 截得的弦的长度。 10. ⊙O 是等边三角形的外接圆,点E 在弧上,点D 在弧上,且弧等于弧,连接交于点F ,连接交于点H ,交于点G ,连接。 (1)求证:; (2)若5:3: BF AF ,8,求的长。 D

2020中考数学圆试题分类汇编

一、选择题 1、(2020最新模拟山东淄博)一个圆锥的高为33,侧面展开图是 半圆,则圆锥的侧面积是( )B (A )9π (B )18π (C )27π (D )39π 2、(2020最新模拟四川内江)如图(5),这 是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120o ,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( ) A .264πcm B .2112πcm C .2144πcm D .2152πcm 解:S = 212020360 π?- 21208360 π?=2112πcm 选(B )。 3、(2020最新模拟山东临沂)如图,在△ABC 中, AB =2,AC =1,以AB 为直径的圆与AC 相切,与 边 BC 交于点D ,则AD 的长为( )。A A 、55 2 B 、 554 C 、35 2 D 、354 4、(2020最新模拟浙江温州)如图,已知ACB ∠是O e 的圆周角,50ACB ∠=?,则圆心角AOB ∠是( )D A .40? B. 50? C. 80? D. 100? 5、(2020最新模拟重庆市)已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )C (A )相交 (B )内含 (C )内切 (D )外切 A C O B 图(5)

6、(2020最新模拟山东青岛)⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( ).C A .相离 B .相切 C .相交 D .内含 7、(2020最新模拟浙江金华)如图,点A B C ,,都在 O e 上,若34 C o ∠,则AOB ∠的度数为( )D A .34o B .56o C .60o D .68o 8、(2020最新模拟山东济宁)已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为( )。C A 、π B 、3π C 、4π D 、7π 9、(2020最新模拟山东济宁)如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向 行 走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是( )。A A 、52° B 、60° C 、72° D 、76° 10、(2020最新模拟福建福州)如图2,O e 中,弦 AB 的长为6cm ,圆心O 到AB 的距离为4cm ,则O e 的半径长 为( ) A .3cm B .4cm C .5cm D .6cm C 11、(2020最新模拟双柏县)如图,已知PA 是⊙O 的切线,A 为切点,PC 与⊙O 相交于B 、C 两点,PB =2 cm ,BC =8 cm ,则PA 的长等于( ) A .4 cm B .16 cm O C B A O B A 图2 A ·O P C B

相关文档
相关文档 最新文档