文档库 最新最全的文档下载
当前位置:文档库 › CO2气体保护的激光焊接12mm厚低碳钢板

CO2气体保护的激光焊接12mm厚低碳钢板

CO2气体保护的激光焊接12mm厚低碳钢板
CO2气体保护的激光焊接12mm厚低碳钢板

激光焊接注意事项及接操作方法

一.安全注意事项 该设备属于四类激光产品,能产生漫反射,能引起人身伤害或火灾,在使用本机器之前,请仔细阅读以下安全注意事项,以确保能安全、正确的操作本机器。 1.本机供市电380V,箱内有高压,开机状态下不可触摸机器内部。 2.不准私自拆卸、安装、改造焊接机。 3.把焊接机放在水平和安全的地方。 4.接地,如果不接地,发生异常的时候你可能会触电。 5.不要窥视或触摸激光。 6.在操作过程中请佩戴好防护眼镜、防护手套、长袖夹克、皮革围裙等保护眼 睛和皮肤免受飞溅物的伤害。 7.避免激光直射皮肤。 8.不要触摸正在焊接或者钢焊接完成的工件。 9.只能使用给定的电缆。 10.不可损坏电源线和各种连接线。 11.若机器出现非正常情况,请立即按下急停按钮关机停止使用。 12.戴心脏起搏器的人严禁靠近焊接机,焊接机工作时会产生磁场,可能影响到 起搏器的正常工作而危害患者生命。 13.不要把水泼在焊接机上,水洒在焊接机上可能引起焊接机短路或者起火。 14.焊接机上不可放盛水的容器,水洒在焊接机上可能引起触电或火灾。 15.焊溅物可能点燃易燃品,所以焊接时远离易燃品。 16.为避免火灾,禁止让激光照射易燃材料。 17.除了焊接指定工件,焊接机不能移作他用。 18.为了以防万一,焊接机旁要放置灭火器。 19.焊接机要定期维护和保养,以防止任何潜在的危险。

二.使用注意事项 1.配备具有激光和焊接机的相关知识与经验的担当人员,担当人员不仅要掌握 焊接机的安全锁钥匙和密码,而且要指导操作者如何使用焊接机。 2.建立专用的激光焊接区,同时在焊接区设立“闲杂人员禁止靠近”等相关标 示。 3.把焊接机安装在水平、牢固的地方,不准放在倾斜的地方。 4.请在环境温度为5℃~30℃,湿度不大于35%的环境中使用本焊接机,周围环 境温度不应波动过大。禁止在下列环境中使用本焊接机: 有油污的环境;有震动的环境;有腐蚀的环境;高频噪声的环境; 潮湿的环境;含有高浓度碳、氮、硫的氧化物(CO 2、NO X 、 SO X )的环境。 5.在冬天,如果环境温度降到0℃以下,水箱里的水就会结冰,水箱可能冻破。 所以特别小心在冬天要保证焊接机的环境温度不要低于0℃。如果环境温度降到0℃以下,请先排干水箱里的水,同时可以参考相关章节的介绍。 6.如果环境温度变化剧烈,在YAG激光棒和镜片上会形成水蒸气,这会影响焊 接机的使用。所以,尽可能阻止环境的剧烈变化。如果已经形成水蒸气,那么开机后先预热一会儿再使用机器。 7.如果焊接机的机壳有污点或水,请用干布或潮湿的布擦干。如果污点擦不干 净,可用中性的清洁剂或酒精擦拭干净。不可用汽油或油漆稀释剂擦拭机器。 8.禁止把螺丝或硬币等放在焊接机的内部或外部,这样可能引起短路而损害机 器。 9.请用手轻轻操作按钮,不要用螺丝刀等工具接触按钮。尤其不要用尖锐的东 西接触触摸屏,这样会造成触摸屏的永久性损害。应该用手指或专用的触摸笔操作触摸屏。 10.按钮和开关不要连续操作,保证每次只按一次。反复的开关对机器的寿命有 影响。

气体保护焊时焊接起弧收弧方法

审 核编 制 焊接时焊接起弧/收弧标准 二氧化碳气体保护焊焊机操作过程 开始提前送气引弧焊接停止焊接按下焊枪开关2~4秒高电压慢送丝规范电压松开焊枪开关 规范电流 滞后送气结束 2~4秒焊枪离开熔池 焊接时起弧的方法 1.起弧之前应该在焊丝端头与工件表面之间保持一定距离下按焊枪按纽 2.起弧之前剪断焊丝端头的熔滴,为下次起弧创造良好的条件 3.引弧方式采用“划擦起弧”,起弧后必须调整焊枪对准位置、焊枪角度和导电嘴-母材之间的距离 3.焊接接头处通常采用倒退焊法(图1),使焊道充分熔合,达到完全消除前一道弧坑的目的 4.对于环焊缝焊接时,起弧后快速移动(图2),得到较窄的焊道,为随后焊道接头创造条件 图 1图 2 焊接收弧的方法 1.有收弧的焊接 将收弧转换开关置于“有收弧”处,先后两次将焊接开关按下、松开进行焊接(图3),焊接结束时 焊枪在电弧停止4秒后离开 图 3 2.无收弧焊接 将收弧转换开关置于“无收弧”处,“开”“关”焊枪开关的同时,焊接电弧产生或停止进行焊接 (图4),焊接结束时焊枪在“关”焊枪4秒后离开 图 4

焊接接头部位的作业要求 参照小松公司《熔接基本作业书》熔接基本作业篇 之B2-08渗漏防止作业 基准参考 1.焊接接头部位重叠尺寸:10~20mm 接头部位重叠不充分容易产生焊 重叠尺寸 接缺陷 2.焊接结尾处与前 焊接结束端部重叠在前次焊缝的 焊接开始端部与前次焊接的 次焊接开始处的 开始端部 开始端部重叠,容易产生缺陷 接头重叠 3.焊接接头在拐 拐角部位焊缝连续,不在拐角、 应力集中,易开裂 角、应力集中处 应力集中处息弧,避免焊接接头 焊接接头部位 在此处的产生

激光焊接的工作原理及其主要工艺参数(精)

激光焊接的工作原理及其主要工艺参数 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 2.3.受激吸收 受激辐射的反过程就是受激吸收。处于低能级E1的一个原子,在频率为的辐射场作用下吸收一个能量为hν的光子,并跃迁至高能级E2,这种过程称为受激吸收。自发辐射是不相干的,受激辐射是相干的。 由受激辐射和自发辐射的相干性可知,相干辐射的光子简并度很大。普通光源在红外和可见光波段实际上是非相干光源。如果能够创造这样一种情况:使得腔内某一特定模式的ρ很大,而其他所有模式的都很小,就能够在这一特定模式内形成很高的光子简并度,使相干

激光焊接机安全操作规程【完整版】

激光焊接机安全操作规程【完整版】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、数控系统、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 激光焊接是众多激光技术中的一种非常成熟的应用。它把能量密度很高的激光束照射到两部分材料上,使局部受热熔化,然后冷却凝固连成一体。 由于激光焊接热影响区小、加热集中迅速、热应力低,因而在机械、电子、电池、航空、仪表等行业,显示出独特的优越性,已成为精密加工行业中一种极具竞争力的加工手段。近年来,许多行业对于激光焊接机的使用越来越频繁,与此同时,由于激光强度高,电离辐射和受激辐射都会对操作者造成严重的伤害;再加上整台激光焊接设备上所配置的激光头多维联动装置和多工位转台,一台激光焊接机的安全风险不可小觑。 在使用过程中,为了确保操作人员的安全,我们在操作激光焊接机的过程中需要掌握一些安全操作规范。下面就为您讲解激光焊接机的安全操作规程有哪些: 1、要认真阅读使用说明书,严格按操作规程运行激光焊接机,以确保设备和人身安全。 2、应检查焊接机各部位是否正常工作 焊接工作进行前,应检查激光焊接机各部位工作是否正常,操作结束后对焊机、工作场地进行检查,消除隐患,保证安全无事故。 3、避免激光照射产生火灾 激光束直接照射或强反射会引起可燃物燃烧,导致火灾,此外激光器中有数千至数万伏高压电,会被电击伤害。因此只允许受过训练的工作人员操作激光焊接机。激光的光路系统,必须用金属进行全封闭,以防直接照射的发生,激光焊的工作台也应进行屏蔽,防止放射光的照射。 4、应避免激光对眼睛的伤害 激光焊接机焊接所用激光的功率密度很大,光束又很细,很容易对人的眼睛、皮肤造成

二氧化碳气体保护焊焊接工艺

二氧化碳气体保护焊焊接工艺 适用围:本工艺适用于钢结构制作与安装二氧化碳气体保护焊焊接工艺。工艺规定了一般低碳钢、普通低合金钢的二氧化碳气体保护焊的基本要求。凡各工程的工艺中无特殊要求的结构件的二氧化碳气体保护焊均应按本工艺规定执行。 第一节材料要求 1.1 钢材及焊接材料应按施工图的要求选用,其性能和质量必须符合国家标准和行业标准的规定,并应具有质量证明书或检验报告。如果用其它钢材和焊材代换时,须经设计单位同意,并按相应工艺文件施焊。 1.2 焊丝焊丝成份应与母材成份相近,主要考虑碳当量含量,它应具有良好的焊接工艺性能。焊丝含C量一般要求<0.11%。其表面一般有镀铜等防锈措施。目前我国常用的CO2气体保护焊焊丝是H08Mn2SiA,其化学成分见GB1300-77。它适用于焊接低碳钢和抗拉强度为500MPa级的低合金结构钢。H08Mn2SiA焊丝熔敷金属的机械性能详见GB8110-87《二氧化碳气体保护焊用焊丝》。 1.3CO2气体纯度不低于99.5%,含水量和含氧量不超过0.1%,气路系统中应设置干燥器和预热装置。当压力低于10个大气压时,不得继续使用。 1.4焊件坡口形式的选择 要考虑在施焊和坡口加工可能的条件下,尽量减小焊接变形,节省焊材,提高劳动生产率,降低成本。一般主要根据板厚选择(见《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》GB985-88)。 1.5 不同板厚的钢板对接接头的两板厚度差(δ-δ1)不超过表5.1规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选择;否则应在厚板上作出如表中图示的单面a)或双面削薄b),其削薄长度L≥3(δ-δ1)。

激光焊接的工作原理及其主要工艺参数

激光焊接的工作原理及其主要工艺参数摘要:焊接技术主要应用在金属母材热加工上,常用的有电弧焊,电阻焊,钎焊, 电子束焊,激光焊等多种,本文详细介绍了激光焊接的工作原理与工艺参数,还讨论了激光焊接技术在现代工业中的应用,并与其他焊接方法进行对比。研究表明激光焊接技术将逐步得到广泛应用。 关键词:焊接技术;激光焊接;工作原理;工艺参数。 1. 引言 目前常用的焊接工艺有电弧焊、电阻焊、钎焊、电子束焊等。电弧焊是目前应用最广泛的焊接方法,它包括手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极气体保护焊等。但上述各种焊接方法都有各自的缺点,比如空间限制,对于精细器件不易操作等,而激光焊接不但不具有上述缺点,而且能进行精确的能量控制,可以实现精密微型器件的焊接。并且它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。 激光指在能量相应与两个能级能量差的光子作用下,诱导高能态的原子向低能态跃迁,并同时发射出相同能量的光子。激光具有方向性好、相干性好、单色性好、光脉冲窄等优点。激光焊接是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接,这种焊接通常有连续功率激光焊和脉冲功率激光焊。激光焊接从上世纪60年代激光器诞生不久就开始了研究,从开始的薄小零器件的焊接到目前大功率激光焊接在工业生产中的大量的应用,经历了近半个世纪的发展。由于激光焊接具有能量密度高、变形小、热影响区窄、焊接速度高、易实现自动控制、无后续加工的优点,近年来正成为金属材料加工与制造的重要手段,越来越广泛地应用在汽车、航空航天、造船等领域。虽然与传统的焊接方法相比,激光焊接尚存在设备昂贵、一次性投资大、技术要求高的问题,但激光焊接生产效率高和易实现自动控制的特点使其非常适于大规模生产线。 2. 激光焊接原理 2.1激光产生的基本原理和方法 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子。微观粒子都具有一套特定的能级,任一时刻粒子只能处在与某一能级相对应的状态,物质与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h。爱因斯坦认为光和原子的相互作用过程包含原子的自发辐射跃迁、受激辐射跃迁和受激吸收跃迁三种过程。我们考虑原子的两个能级E1和E2,处于两个能级的原子数密度分别为N1和N2。构成黑体物质原子中的辐射场能量密度为ρ,并有E2 -E1=hν。 2.1.自发辐射 处于激发态的原子如果存在可以接纳粒子的较低能级,即使没有外界作用,粒子也有一定的概率自发地从高能级激发态(E2)向低能级基态(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率ν=(E2-E1)/h。这种辐射过程称为自发辐射。自发辐射发出的光,不具有相位、偏振态上的一致,是非相干光。 2.2.受激辐射 除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。当频率为ν=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,

各种电焊机的安全技术和防护措施通用范本

内部编号:AN-QP-HT341 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 各种电焊机的安全技术和防护措施通 用范本

各种电焊机的安全技术和防护措施通用 范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 众所周知,焊接过程中将产生大量对人体有毒或有害的光、热、气等物质。为此,本文就焊接过程可能出现的有毒、有害物质进行研究分析,确定其产生的原因,并就此提出相应的防护措施。 焊接技术是现代工业生产中一种重要的金属加工工艺,在建筑、桥梁、造船、化工及机械制造等许多主要生产部门都得到广泛应用。改革开放30年来,焊接技术发展迅速,诸如激光焊、CO2气体保护焊、等离子弧焊等新工艺的不断出现,使焊接在生产上的应用范围日趋

激光焊接工艺参数

激光焊接原理与主要工艺参数 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1)激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光

激光焊接机安全操作规程

编号:CZ-GC-07715 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 激光焊接机安全操作规程 Safety operation regulations for laser welding machine

激光焊接机安全操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 Process 基本工序 OperationProcedures 操作步骤 Hazard 潜在危险 SafetyRules 安全规定措施 开 机 1、检查激光焊接机,外观及冷水管路有无损坏。 2、调整好各项技术参数,工作前必须佩戴防护眼镜,按照品质要求进行工作。

3、操作人员工作中发现机器设备有异常情况,立即停机,通知车间维修人员,进行维修处理。 4、严禁操作人员拆装激光焊接机各部分原件,非本车间维修人员,不得维修本机。 1.激光焊接机内有高压,操作人员不得打开保护盖板,防止触电。 2.激光焊接机光源强度极高,焊接时不要将眼睛正对光源。 1、维修人员,维修时不能带电进行作业,防止机器内部高压及强电流发生触电事故。 2、为防止焊接时,激光焊接头于焊接原件发出火花。操作人员工作时,必须佩戴防护眼镜。 3、不得随意离开工作岗位或私自更改技术参数。 关机 首先退出工作状态,再关闭电源,严禁直接关闭电源开关。 这里填写您的公司名字 Fill In Your Business Name Here

二氧化碳气体保护焊的焊接方法及工艺)

二氧化碳气体保护焊的焊接方法及工艺 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体 作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1.CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率 比焊条电弧焊高1-3倍 2.CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊 的40%-50% 3.焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时, 需要有防风措施。 6..焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1.CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H 08Mn2SiA H10Mn2Si等焊丝。 四、材料 1.保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2, 25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) CO2气瓶外表漆黑色并写有黄色字样、售CO2气体含水量较高,焊接时候容易产生气孔等缺陷, 在现场减少水分的措施为: 1)将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2 -3次,每次间隔30分钟,放后将气瓶放正。 2)倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套

激光焊接工艺参数讲解

激光焊接原理与主要工艺参数 作者:opticsky 日期:2006-12-01 字体大小: 小中大 1.激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105 W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107 W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500 0C左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 2. 激光深熔焊接的主要工艺参数 1激光功率。激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,

常见焊接方法及代号

代号焊接方法 1 电弧焊 11 无气体保护电弧焊 111 手弧焊 112 重力焊 113 光焊丝电弧焊 114 药芯焊丝电弧焊 115 涂层焊丝电弧焊 116 熔化极电弧点焊 118 躺焊 12 埋弧焊 121 丝极埋弧焊 122 带极埋弧焊 13 熔化极气体保护电弧焊 131 MIG焊:熔化极惰性气体保护焊(含熔化极Ar弧焊) 135 MAG焊:熔化极非惰性气体保护焊(含CO2保护焊) 136 非惰性气体保护药芯焊丝电弧焊 137 非惰性气体保护熔化极电弧点焊 14 非熔化极气体保护电弧焊 141 TIG焊:钨极惰性气体保护焊(含钨极Ar弧焊) 142 TIG点焊 149 原子氢焊 15 等离子弧焊 151 大电流等离子弧焊 152 微束等离子弧焊 153 等离子弧粉末堆焊(喷焊) 154 等离子弧填丝堆焊(冷、热丝) 155 等离子弧MIG焊 156 等离子弧点焊 18 其它电弧焊方法 181 碳弧焊 185 旋弧焊 2 电阻焊 21 点焊 22 缝焊 221 搭接缝焊 223 加带缝焊 23 凸焊 24 闪光焊 25 电阻对焊

29 其它电阻焊方法 291 高频电阻焊 3 气焊 31 氧-燃气焊 311 氧-乙炔焊 312 氧-丙烷焊 313 氢-氧焊 32 空气-燃气焊 321 空气-乙炔焊 322 空气-丙烷焊 33 氧-乙炔喷焊(堆焊) 4 压焊 41 超声波焊 42 摩擦焊 43 锻焊 44 高机械能焊 441 爆炸焊 45 扩散焊 47 气压焊 48 冷压焊 7 其它焊接方法 71 铝热焊 72 电渣焊 73 气电立焊 74 感应焊 75 光束焊 751 激光焊 752 弧光光束焊 753 红外线焊 76 电子束焊 77 储能焊 78 螺柱焊 781 螺柱电弧焊 782 螺柱电阻焊 9 硬钎焊、软钎焊、钎接焊91 硬钎焊 911 红外线硬钎焊 912 火焰硬钎焊 913 炉中硬钎焊 914 浸沾硬钎焊

铝合金激光焊接技术

一、铝合金激光焊接的发展 铝合金密度低,但强度比较高,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 不过,铝合金本身的特性使得其相关的焊接技术面临着一些亟待解决的问题:表面难溶的氧化膜、接头软化、易产生气孔、容易热变形以及热导率过大等。以往的生产实践中,铝合金的焊接常用钨极氩弧焊和熔化极氩弧焊。虽然这两种焊接方式能量密度较大,焊接铝合金时能获得良好的接头,但仍然存在熔透能力差、焊接变形大、生产效率低等缺点。用这些传统的、应用于黑色金属的焊接方法焊接铝合金,并不能达到工业上高效、无缺陷、性能佳的要求,于是人们开始寻求新的焊接方法,20世纪中后期激光技术逐渐开始应用于工业。欧洲空中客车公 司生产的A340飞机机身,就采用激光焊接技术取代原有的铆接工艺,使机身的重量减轻18 %左右,制造成本降低了近25 %。德国奥迪公司A2和A8全铝结构轿车也获益于铝合金激光焊接技术的开发和应用。这些成功的事例大大促使对激光焊接铝合金的研究,激光技术已经成为了未来铝合金焊接技术的主要发展方向,因为激光焊接具有其独特的优点: (1) 能量密度高,热输入量小,焊接变形小,能得到窄的熔化区和热影响区以及熔深大的焊缝。 (2) 冷却速度快,焊缝组织微细,故焊接接头性能良好。 (3)焊接能量可精确控制,可靠性高,针对不同的要求有较高的适应性。 (4)可进行微型焊接或实现远距离传输,不需要真空装置,利于大批量自动 化生产。 二、激光焊接铝合金的难点及解决措施 1.铝合金表面的高反射性和高导热性 这一特点可以用铝合金的微观结构来解释。由于铝合金中存在密度很大的自由电子,自由电子受到激光(强烈的电磁波)强迫震动而产生次级电磁波,造成强烈的反射波和较弱的透射波,因而铝合金表面对激光具有较高的反射率和很小

(安全生产)激光焊机安全防护

激光工业加工机安全防护 1.概要 本公司使用的激光焊接机为YAG激光设备。其波长为1064nm。在侧焊主机激光输出部分还配备有柔性的光纤输出。 2,安全 在开始操作激光设备之前,阅读在相关手册里和分布在设备部件上指导手册里提到的安全警惕 不仅仅对于操作者,而且包括远距离的其他人和物,激光设备的操作暴漏出来都危险,只有经过适当的培训具有资格的操作者才能被允许操作 2.1 警告、警惕、注意 为了操作者的安全和防止设备的损坏,在这一章节里安全防范被给出,根据危险的程度,被分等级为“警告”(Warning)和“警惕”(Caution)。附加说明以“注意”(Note)被给出 在开始操作之前,认真阅读“警告”(Warning),“警惕”(Caution)和“注意”(Note)(内容) 错误的操作可以导致操作者的死亡或严重伤害

错误的操作可以导致操作者的较小的伤害,或者周围物体的物理性的伤害。 除了“警告”(Warning)或“警惕”(Caution)以外的附加说明。 2.2 关于激光设备的警告和警惕 1,YAG激光1064nm波长的放射光是红外线,而对人类的眼睛来说是不可见的 YAG激光的直接观察或接触都是很危险的。所以决不要这样做。眼睛暴露给散射光或反射光也是危险的。在工作期间,戴上与1064nm波长相对应的防护眼镜。 眼睛的暴露可能失去视力 如果眼睛被暴露,立即找医生出诊 2,在激光设备的面板打开时,不要打开电源和操作设备。 暴露到YAG激光可能丢失视力或烧伤皮肤 如果眼睛被暴露,立即找医生出诊 3,在激光加工设备的周围安装隔离带,并且设立一个适当的警告标牌。除

二氧化碳气体保护焊工艺

二氧化碳气体保护焊工艺 1.准备工作 1.1 焊丝 a.焊丝的选择 b.焊丝的质量 焊丝表面必须光滑平整,不应有毛刺、划痕、锈蚀和氧化皮等,也不应有对焊接性能或焊接设备操作性能具有不良影响的杂质。焊丝的镀铜层要均匀牢固,用缠绕法检查镀铜层的结合力时,应不出现鳞与剥落现象。焊丝的挺度应使焊丝均匀连续送进。 1.2 二氧化碳气体 a.纯度 二氧化碳的纯度不应低于99.5﹪(体积法),其含水量不超过0.005﹪(重量法)。b.使用 焊接前应放出一部分气体,检查其是否潮湿。气瓶中的压力降到1Mpa时,应停止用气。 1.3电焊机 焊接机在使用前应能电检验,其各电气开关、指示灯应灵活、好用。送丝机构尖送丝连续、均匀,并根据要焊的零部件选择适当的焊接电流及电压。 2.工艺流程 2.1工件尽可能平放,各需要焊接的工件应用专用焊接夹具定位。 2.2先点焊成形,经检验点焊成形的零部件符合图纸要求后,再焊接。 2.3尽可能采用平焊。如采用立焊,施焊方向应为自上而下。但修补咬边时,可由下而上。管材结构的立焊可以由上而下,也可以由下而上。 2.4焊接电流应根据工件厚度、焊接位置选择。 2.5根部焊道的最小尺寸应足以防止产生裂纹。 2.6金属过渡方式和焊接速度都应使每道焊缝将附近母材与熔敷金属完全熔合,且不得有溢流,气孔和咬边等现象。 3.焊缝要求 3.1角焊缝:母材厚并小于6.4mm,最大焊缝尺寸为母材厚度;母材厚度大于6. 4mm时,应较母材厚度小1.6mm,或按图纸要求。 3.2钻焊:钻焊最小孔径应大于开孔件厚度加8mm。 3.3.对接头焊接:对接头和角接头焊接,根部间隙最大为2-3mm。 3.4对接和角接,焊缝条高不得超过3.3mm,并缓和过渡到母材面的平面。 4.焊缝表面要求 除角接接头外侧焊缝外,焊缝或单个焊道的凸度不得超过该焊缝或焊道实际表面宽度值的7﹪+1.5mm,同时去除焊渣。 5.检查 5.1焊口的清理 零部件的焊口及附近表面应清理干净,无毛刺、熔渣、油、锈等杂物。

激光焊接保护气喷嘴的改进

激光焊接保护气喷嘴的改进 1课题研究目的 激光焊接是一种新型的高效焊接方法,它和电弧焊一样,通常需要使用惰性气体进行保护,以防止器件氧化、氢化,而导致金属性能出现问题。保护方法有二:在真空情况下进行高温焊接;在焊枪后方加上喷嘴或拖罩,在喷嘴或拖罩内通入惰性气体。我们实验时选择了后者。 而设计保护气喷嘴的基本原则是在较高的温度及一定的气压下使惰性气体高速通过熔融金属,让焊缝在惰性气体的庇护下冷却,来实现保护目的。在焊枪移动时,保证惰性气体在喷出时是层流以及扩大保护气的保护范围是至关重要的。我们针对这一问题进行理论分析与实验设计,为保护气喷嘴的设计领域增添一份宝贵的科学依据并且制作出符合一定要求的喷嘴产品。 图1.激光焊接模拟装置图 2课题背景 一般情况下,保护气喷嘴的保护位置为焊枪的旁轴和同轴。国内外对保护气旁轴喷嘴的研究也只局限在改造喷嘴的外部管件形状上面。它们在一定程度上解决了某些问题,但对喷嘴的综合设计理念缺乏一个更普遍的共识。而我们这次实验主要针对旁轴喷嘴的设计,对喷嘴口的形状设计以及内部管壁的设计提出了结构设想。 现今旁轴喷嘴的设计主要存在以下几个问题:大功率激光焊接的保护效果不良问题;气体喷出时层流不稳定问题;特殊焊缝问题;因高速焊接而导致降温不及时的焊件氧化问题。现阶段很少有文献中能提出系统的喷嘴内部及外部的结构设计,且同时理想满足以上问题。

图2.现今的保护气喷嘴 3课题研究主要内容 3.1保护气喷嘴的材料选择: 选取紫铜作为喷嘴的主件。紫铜的熔点高,不易使喷嘴受热变形,且紫铜的机械加工容易实现。 3.2保护气喷嘴设计依据: 喷嘴的孔径大小直接影响喷嘴的保护效果,在保护气压力一定的情况下,当喷嘴口径过小时,气体喷出速度较大,有利吹走因高温所产生的等离子体,;当喷嘴口径过大时,有利增大保护区域。在喷嘴的端部横截面倾斜角度也会使出气范围有所改变。如何恰当地选取较适当口径及倾斜角度的喷嘴成为首要解决的问题。 3.3保护气喷嘴的设计方案: 3.3.1分别设计了倾角为18°、30°、60°及口径为10mm 、11mm 、13mm 的横截面为圆形的 保护气喷嘴、倾斜角度为60°的横截面为三角形、正方形、菱形的保护气喷嘴。 角度: 口径: 口径:角度: 角度:口径: 口径:角度: 角度:口径: 口径:角度:

激光焊接机安全说明

激光修补·焊接机安全说明 1、认真阅读操作说明书,严格按操作规程运转机器,以确保设备和人身安全: 2、激光焊机工作期间,切勿用眼睛正视激光束,也切勿让身体(如手)接触激光束,以免 造成伤害; 3、对设备操作、作业的时候,请穿材料为化纤以外的不易燃烧,皮肤露出少的衣服; 4、操作人员工作时,必须佩戴防护眼镜; 5、激光加工中,由于加工点会产生可见光和紫外线等。这些光线可穿透保护眼镜,在加工 中请不要直视加工点; 6、由于激光加工可能会发生火灾,所以绝对不能再机器的周围放置易燃物品。(石油、润 滑剂、丙酮、废棉纱头等); 7、激光管理区域内,禁止激光相关人员以外的人进入; 8、注意保持环境及设备的清洁,光具座是本机的核心部分维护时必须特别注意; 9、进行维护时,要定期跟换制冷水和操作照明灯; 10、更换制冷水时请使用高纯度离子水(制冷水的电阻率是18MΩ/cm2),更换期间的基准 为一个月一次。冷却水更换步骤如下: ①打开水箱上盖: ②水泵同时从侧面的排水口抽出水箱内的水; ③抽出水后,擦去箱内的污垢、沾液等; ④装进新的制冷水,到水位线为止。 ⑤再盖上水箱上盖。 11、对机器进行检修,一定要断电,且要确定储能电容器上的电荷已经泄放完了,方能进行, 以免造成触电事故; 12、如机器运行过程中,出现异常现象,则需断电(按下急停开关)检查。 13、该设备操作环境要求 ①电压是单相200~220V,容量6KW; ②请在干净的环境中使用; ③操作场所的温度为10~32℃; ④操作场所的湿度为<60%。(请在不结露的场所内使用) 14、设备启动操作如下: ①将控制装置背面的总开关调到On; ②打开水箱的电源后,请确认水温。(开始时水温设置为20~25℃); ③确认急停开关打开,将控制装置的钥匙开关顺时针旋转后,请按下Power On; ④确认画面左上角显示“Turnon”后,请安OK按钮。(画面左上角显示的“Turnon” 变成“Turnoff”后、大约1分钟如果再次响起确认的声音,设备已启动,进入了可操作状态) 15、设备停止操作如下: ①光标停在“turnoff”时、按下OK按钮,请将钥匙开关逆时针旋转; ②然后将水箱电源调至OFF,机器运转停止; ③最后将控制装置背后的总开关调至off。

CO2气体保护焊接(MAG—C焊)工艺简介

CO2气体保护焊接(MAG—C焊)工艺简介 1.定义 CO2气体保护焊接是采用纯度在99.8%(体积法)以上的CO2气体作为保护气体的一种熔化极气体保护电弧焊方法。可采用短路过渡、喷射过渡和脉冲喷射过渡进行焊接,可用于点焊、立焊、横焊和仰焊以及全位置焊等。尤其适用于碳钢、合金钢和不锈钢等黑色金属材料的焊接。 2.发展动态 二氧化碳气体保护焊是50年代发展起来的一种新的焊接技术。半个世纪来,它已发展成为一种重要的熔焊方法。广泛应用于汽车工业,工程机械制造业,造船业,机车制造业,电梯制造业,锅炉压力容器制造业,各种金属结构和金属加工机械的生产。二氧化碳气体保护焊焊接质量好,成本低,操作简便,取代大部分手工电弧焊和埋弧焊,已成定局。且二氧化碳气体保护焊装在机器手或机器人上很容易实现数控焊接,将成为二十一世纪初的主要焊接方法。目前二氧化碳气体保护焊,使用的保护气体,分CO2和CO2+Ar两种。使用的焊丝主要是锰硅合金焊丝,超低碳合金焊丝及药芯焊丝。焊丝主要规格有: 0.5 0.8 0.9 1.0 1.2 1.6 2.0 2.5 3.0 4.0等。 3.特点 3.1焊接成本低,CO2气体是酿造厂和化工厂的副产品,来源广、价格低,其成本只有埋弧焊和手工电弧焊的40~50%。 3.2生产率高,CO2电弧的穿透力强,熔深大而且焊丝的熔化率高,熔敷速度快,其生产率是手工电弧焊的1~4倍。 3.3适用范围广,薄板、中厚板甚至厚板都能焊接,薄板焊接时变形小,并能进行全位置施焊。 3.4抗锈能力强,焊缝含氢量低,抗裂性好。 3.5焊后不需清渣。 3.6由于是明弧,焊接过程中便于监视和控制。 4.CO2焊接材料 4.1 CO2气体 4.1.1CO2气体的性质 纯CO2气体是无色,略带有酸味的气体。密度为本1.97kg/m3,比空气重。在常温下把CO2气体加压至5~7Mpa时变为液体。常温下液态CO2比较轻。在0℃,0.1Mpa时,1kg 的液态CO2可产生509L的CO2气体。 4.1.2瓶装CO2气体 采用40L标准钢瓶,可灌入25kg液态的CO2,约占钢瓶的80%,基余20%的空间充满了CO2气体。在0℃时饱和气压为3.63Mpa;20℃时饱和气压为5.72Mpa;30℃时饱和气压为7.48 Mpa,因此,CO2气瓶要防止烈日暴晒或靠近热源,以免发生爆炸。 4.1.3 CO2气体纯度对焊接质量的影响

CO2气体保护焊焊接参数

二氧化碳焊接工艺--焊接工艺指导书(CO2焊) 一、基本原理 CO2气体保护焊是以可熔化的金属焊丝作电极,并有CO2气体作保护的电弧焊。是焊接黑色金属的重要焊接方法之一。 二、工艺特点 1. CO2焊穿透能力强,焊接电流密度大(100-300A/m2),变形小,生产效率比焊条电弧焊高1-3倍 2. CO2气体便宜,焊前对工件的清理可以从简,其焊接成本只有焊条电弧焊的40%-50% 3. 焊缝抗锈能力强,含氢量低,冷裂纹倾向小。 4. 焊接过程中金属飞溅较多,特别是当工艺参数调节不匹配时,尤为严重。 5. 不能焊接易氧化的金属材料,抗风能力差,野外作业时或漏天作业时,需要有防风措施。 6. 焊接弧光强,注意弧光辐射。 三、冶金特点 CO2焊焊接过程在冶金方面主要表现在: 1. CO2气体是一种氧化性气体,在高温下分解,具有强烈的氧化作用,把合金元素烧损或造成气孔和飞溅等。解决CO2氧化性的措施是脱氧,具体做法是在焊丝中加入一定量脱氧剂。实践表明采用Si-Mn脱氧效果最好,所以目前广泛采用H08Mn2SiA/H10Mn2Si等焊丝。 四、焊接材料 1. 保护气体CO2 用于焊接的CO2气体,其纯度要求≥99.5%,通常CO2是以液态装入钢瓶中,容量为40L的标准钢瓶可灌入25Kg的液态CO2,25Kg的液态CO2约占钢瓶容积的80%,其余20%左右的空间充满气化的CO2。气瓶压力表上所指的压力就是这部分饱和压力。该压力大小与环境温度有关,所以正确估算瓶内CO2气体储量是采用称钢瓶质量的方法。(备注:1Kg的液态CO2可汽化509LCO2气体) 2. CO2气瓶外表漆黑色并写有黄色字样 3. 市售CO2气体含水量较高,焊接时候容易产生气孔等缺陷,在现场减少水分的措施为: 1) 将气瓶倒立静置1-2小时,然后开启阀门,把沉积在瓶口部的水排出,可放2-3次,每次间隔30分钟,放后将气瓶放正。 2) 倒置放水后的气瓶,使用前先打开阀门放掉瓶上面纯度较低的气体,然后在套上输气管。 3) 在气路中设置高压干燥器和低压干燥器,另外在气路中设置气体预热装置,防止CO2气中水分在减压器内结冰而堵塞气路。 2. 焊接材料(焊丝) 1.)焊丝要有足够的脱氧元素 2.)含碳量Wc≤0.11%,可减少飞溅和气孔。

激光焊的主要工艺参数对焊接质量的影响

激光焊的主要工艺参数对焊接质量的影响 一、激光焊接原理 激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。功率密度小于104~105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105~107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。 其中热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。 用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。下面重点介绍激光深熔焊接的原理。 激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500℃左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。 二、激光深熔焊接的主要工艺参数 1. 激光功率 激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。如果激光功率

相关文档