文档库 最新最全的文档下载
当前位置:文档库 › 恒参信道对信号传输的影响

恒参信道对信号传输的影响

恒参信道对信号传输的影响
恒参信道对信号传输的影响

通信原理仿真实验报告

实验名称:恒参信道对信号传输的影响姓名:

专业:

年级:

学号:

201X年X 月X日

1. 恒参信道对信号传输的影响

信道响应函数为()()|()|j f H f H f e φ-=,输入信号为()()n s n

x t a g t nT =-∑,其中

1,01,()0,s

s t T T g t else ≤

?

,用matlab 画出如下情况时的信道输出信号,()H f 自定义为如下

● 无失真信道,如2()j f H f e π-= ● 幅度失真信道,如sin ()j f

f H f e f

πππ-=

● 相位失真信道,如(1)

(1),2

(),2

j f j f Fs e f H f Fs e f ππ---+?≤??=??>??

一、程序代码

clear all

N=10; %码元个数 Ts=1; %持续时间

Fs=100;dt=1/Fs; %采样频率与间隔

a=randi(N,1,N*Ts/dt); %生成0到10随机均匀分布数组

x=zeros(1,N*Ts/dt); for i=1:length(x)

x(i)=a(ceil(i/Ts*dt)); %生成输入时域信号 end

ft=2048; %fft 点数 Xw=fft(x,ft); %输入信号频域 f=0:Fs/ft:Fs -Fs/ft; %频率离散 %无失真信道

Hw1=exp(-j*f*2*pi); %无失真信道频域 Yw1=Hw1.*Xw; %无失真信道输出频域信号 yt1=ifft(Yw1,ft); %无失真信道输出时域信号

figure(1);

subplot(2,1,1);

plot(abs(Hw1));title('无失真信道幅频特性');

axis([1 400 0 1.2]);

subplot(2,1,2);

plot(angle(Hw1));title('无失真信道相频特性');

axis([1 100 -5 5]);

figure(2);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt1));title('无失真信道输出信号'); axis([1 1100 0 12]);

%幅度失真信道

Hw2=(sin(f*pi)./(f*pi)).*(exp(-j*f*pi));%幅度失真信道

Yw2=Hw2.*Xw; %幅度失真信道输出频域信号

Yw2(1)=0; %零点添加定义

yt2=ifft(Yw2,ft);

figure(3);

subplot(2,1,1);

plot(abs(Hw2));title('幅度失真信道幅频特性');

axis([1 400 0 1.2]);

subplot(2,1,2);

plot(angle(Hw2));title('幅度失真信道相频特性');

axis([1 100 -5 5]);

figure(4);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt2));title('幅度失真信道输出信号'); axis([1 1100 0 12]);

%相位失真信道

Hw3(1:ft/2)=exp(-j*(pi*f(1:ft/2)-pi));

Hw3(ft/2+1:ft)=exp(-j*(pi*f(ft/2+1:ft)+pi));%相位失真信道Yw3=Hw3.*Xw; %相位失真信道输出信号

yt3=ifft(Yw3,ft);

figure(5);

subplot(2,1,1);

plot(abs(Hw3));title('相位失真信道幅频特性');

axis([1 400 0 1.2]);

subplot(2,1,2);

plot(angle(Hw3));title('相位失真信道相频特性');

axis([1 100 -5 5]);

figure(6);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt3));title('相位失真信道输出信号'); axis([1 1100 0 12]);

二、实验结果与分析

(1)无失真信道—2()j f H f

e π-=

1、无失真信道的幅频、相频响应

由图知,无失真信道2()j f

H f e

π-=是一个全通网络,增益为1,相位做周

期性变化。由表达式知相位延时应为1s 。

2、无失真信道输入输出

分析:比较输入输出信号可知,该信道对信号的幅度没有影响,只是改变了信号的相位,根据无失真传输条件0()()o i f t Kf t t =-,此信道K=1,

01t s =,符合信道2()j f

H f e

π-=。

(2)幅度失真信道—sin ()j f

f H f e

f

πππ-=

1、幅度失真信道幅频、相频响应

由图知,幅度失真信道sin ()j f

f H f e

f

πππ-=

是一个低通网络,相位变化为0~π。由表达式知相位延时应为0.5s 。

2、幅度失真信道输入输出

分析:比较输入输出波形,发现信号幅度失真较为严重,波形更为平滑,说明高频分量(即时域的跳变沿)被低通滤波器滤除,波形平滑也使时域相位延时不易被观察(理论延时0.5s)。

(3)相位失真信道—(1)

(1),2(),2

j f j f Fs e f H f Fs e f ππ---+?≤??=?

?>?? 1、相位失真信道的幅频、相频响应

由图知,相位失真信道是全通网络,幅度增益为1。由表达式知其相位延时为0.5s 。对比相位失真相频特性与幅度失真和无失真相位特性,可知相位失真相频响应有初始相位π,相位变化为~ππ-,且0~

2s F 初始相位为-π,~2

s s F

F 初始相位为π。由表达式知,信道的有延时0.5s 。

2、相位失真信道的输入输出

对初始相位不敏感,但是存在0.5s的延时,说明信号对相位失真不敏感。

过孔对信号的影响

过孔对信号的影响 过孔对信号的影响一、过孔的寄生电容 过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1)过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,这部分电容引起的上升时间变化量为:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。 二、过孔的寄生电感 同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。 三、高速PCB中的过孔设计 通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,

信道是指以传输媒质为基础的信号通道11页

第4章信道 信道是指以传输媒质为基础的信号通道,是将信号从发送端传送到接收端的通道。 如果信道仅是指信号的传输媒质,这种信道称为狭义信道。如果信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这些装置可以是发送设备、接收设备、馈线与天线、调制器、解调器等。这种信道称为广义信道。 无线信道利用电磁波在空间的传播来传播信号;有线信道利用导线、波导、光纤等媒质来传播信号。常把广义信道简称为信道。 4.1 无线信道 信道是对无线通信中发送端和接收端之间通路的一种形象比喻。 对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。 信道具有一定的频率带宽,正如公路有一定的宽度一样。 电磁波传播主要分为地波、天波和视线传播三种。 地波:频率在2MHz以下,电磁波沿大地与空气的分界面传播。传播时无线电波可随地球表面的弯曲而改变传播方向。在传播途中的衰减大致与距离成正比。地波的传播比较稳定,不受昼夜变化的影响,所以长波、中波和中短波可用来进行无线电广播。 根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。地面上的障碍物一般不太大,长波可以很好地绕过它们。中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领很差。 由于地波在传播过程中要不断损失能量,而且频率越高,损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所以长波很少用于无线电广播,多用于超远程无线电通信和导航等。 天波:天波是靠电磁波在地面和电离层之间来回反射而传播的,频率范围在 2~30MHz。天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地

通信原理课程设计----多径信道对信号影响的仿真和分析

课程设计 课程设计名称:通信原理课程设计 专业班级: 学生姓名: 学号: 指导教师: 课程设计时间:

1 需求分析 给定单频信号,使其经过多径信道,观察信号的变化,分析多经信道对传播信号的影响。 本次课程设计要求分析多径信道对信号的影响,信号选用单频信号,选中20条衰减相同,时延的大小随时间变化的路径。 任务要求如下: 1.用MATLAB产生一个幅度为1、频率为10Hz的单频信号,使其经过20条路径传输,设这20条路径的衰减相同,但时延的大小随时间变化,每径时延的变化规律为正弦型,变化的频率从0-2Hz随机均匀抽取。仿真其输出波形及频谱。 2.分析多径信道对传输信号的影响。 2 概要设计 ↓ ↓ 此次课程设计是关于信号经过多径传输后变化的分析,所用的仿真软件是matlab,多径传播对信号的影响称为多径效应,会对信号传输质量造成很大的影响。本次课程设计是考察多径信号对单频正弦信号产生频域弥散的验证。

所使用的主要函数如下: 1.si=a0*cos(2*pi*f0*t)。此函数是用来产生单频信号。 2.r=rand(1,20)*2。此函数用来产生随机的时延。 3.sf=fft(s)。此函数用来把时域变换到频域。 4.for end。此函数用来产生循环,计算多次时延。 5.abs(n)。此函数用来得出绝对值。 3 运行环境 硬件环境:win7/windows xp/ 软件系统:Matlab软件 4 开发工具和编程语言 开发工具:MATLAB 7.1 软件语言:Matlab编程语言 5 详细设计 多径效应指电波传播信道中的多径传输现象所引起的干涉延时效应。在实际的包含所有频率的无线电波传播信道中,常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化。由此引起合成波场的随机变化。从而形成总的接收场的衰落。因此多径效应是衰落的重要原因。在此对多径效应对单频信号的影响进行仿真分析。 设计的思想原理比较简单,首先需要产生一个单频信号,然后经由多径信道时延传输,得出传输后结果,最后对结果进行分析。 发送的单频信号为si=a0*cos(2*pi*f0*t) 振幅衰减为0.8,时延v=abs(sin(2*pi*r(i)*t)) 信道m20 s0=a1*cos(2*pi*f0*(t-v)) 接收信号s=sum(s) 函数1. r=rand(1,20) 此函数用来产生随机的时延

过孔与电流的关系

1、10mil的孔20mil的pad对应20mil的线过0.5A电流,20mil的孔40mil的焊盘对应40mil的线过1A电流,0.5oz。 2、过孔电感的计算公式为: L=5.08h[ln(4h/d)+1] L:通孔的电感 h:通孔的长度 d:通孔的直径 其实孔的大小对其感抗影响不是很大,倒是它的长度影响大些, 感抗大,其上面的压降就大些。 对于电流,应该与它的载流截面积有关,截面积越大,载流能力越大。孔越大,截面积越大,孔壁铜层越厚,截面积越大。 3、1,金属化过孔镀层厚度只有20几到几微米,经不起大电流!因此电源线、地线、有大电流的线非得通过过孔到另一面时可在此处多加几个过孔,或通过一个穿过两面的原件。2,脚较粗且多的器件如CD 型插座,应尽可能少从原件面出线。如非出不可有条件可在器件脚边加一过孔。固为多个插脚同时插下时容易破坏孔中的金属化镀层。 4、过孔的直径至少应为线宽的1/3 5、在走线的Via孔附近加接地Via 孔的作用及原理是什么?

答:pcb板的过孔,按其作用分类,可以分为以下几种: 1、信号过孔(过孔结构要求对信号影响最小) 2、电源、地过孔(过孔结构要求过孔的分布电感最小) 3、散热过孔(过孔结构要求过孔的热阻最小) 上面所说的过孔属于接地类型的过孔,在走线的Via孔附近加接地Via孔的作用是给信号提供一个最短的回流路径。注意:信号在换层的过孔,就是一个阻抗的不连续点,信号的回流路径将从这里断开,为了减小信号的回流路径所包围的面积,必须在信号过孔的周围打一些地过孔提供最短的信号回流路径,减小信号的emi 辐射。这种辐射随之信号频率的提高而明显增加。 请问在哪些情况下应该多打地孔?有一种说法:多打地孔,会破坏地层的连续和完整。效果反而适得其反。 答:首先,如果多打过孔,造成了电源层、地层的连续和完整,这种情况使用坚决避免的。这些过孔将影响到电源完整性,从而导致信号完整性问题,危害很大。打地孔,通常发生在如下的三种情况: 1、打地孔用于散热; 2、打地孔用于连接多层板的地层; 3、打地孔用于高速信号的换层的过孔的位置; 但所有的这些情况,应该是在保证电源完整性的情况下进行的。那就是说,只要控制好地孔的间隔,多打地孔是允许的吗?在五分之一的波长为间隔打地孔没有问题吗? 假如我为了保证多层板的地的连接,多打地孔,虽然没有隔断,那会

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

恒参信道及其特性

模块2 恒参信道及其特性(ZY3200102002) 【模块描述】本模块介绍了恒参信道及其特性,包含几种恒参信道及其特性、均衡的基本概念。通过概念介绍、图形讲解,掌握恒参信道的特性及其对信号传输的影响。 【正文】 恒参信道是指由电缆、光导纤维、人造卫星、中长波地波传播、超短波及微波视距传播等传输媒质构成的信道。 一、有线电信道 1.对称电缆 对称电缆是指在同一保护套内有许多对相互绝缘的双导线的传输媒质。导线材料主要是铜或铝,直径为0.4~1.4mm。为了减小各线对之间的干扰,每一对线都拧成扭绞状。对称电缆的传输损耗相对较大但其传输特性比较稳定。 2.同轴电缆 如图ZY3200102002-1所示。同轴电缆由同轴的两个导体构成,外导体是一个圆柱形的空管,在可弯曲的同轴电缆中,它可以由金属丝编织而成。内导体是金属线。它们之间填充着塑料或空气等介质。 图ZY3200102002-1同轴电缆的基本结构 二、光纤信道 光纤信道是以光导纤维(简称光纤)为传输媒质、以光波为载波的信道。它能够实现大容量的传输。光纤具有损耗低、频带宽、线径细、重量轻、可弯曲半径小、不怕腐蚀以及不受电磁干扰等优点。 三、无线电视距中继 无线电视距中继是指工作频率在超短波和微波波段时,电磁波基本上是沿视线传播,通信距离依靠中继方式延伸的无线电电路。相邻中继站之间的距离一般在40~50公里。 图ZY3200102002-2 无线电中继信道图ZY3200102002-5 卫星中继信道无线电中继信道的构成如图ZY3200102002-2所示。它由终端站、中继站及各站间的电波传播路径构成。具有传输容量大、发射功率小、通信稳定可靠等优点。主要用于长途干线、移动通信网以及某些数据收集系统。 四、卫星中继信道 保 护 层 外 导 体 绝 缘 层 内 导 体

CBTC无线通信子系统的设计与测试

CBTC无线通信子系统的设计与测试 发布日期:2013-06-20 22:30 CBTC无线通信子系统的设计与测试 摘要:对CBTC无线通信子系统在隧道中的无线菲涅尔区和无线隧道损耗模型进行计算,提出了无线通信子系统AP设置的合理间距。结合杭州地铁现场环境,对模拟系统进行测试,结果满足设计要求。 关键词:无线通信;子系统;设计;测试 CBTC是基于通信的列车控制系统。CBTC无线通信子系统(以下简称系统),实时传 输控制命令和列车位置信息,是地铁运营安全、高效、可靠的保证。系统由分布式系统、轨旁无线接入点AP、车载无线通信单元和无线传输媒介等四部分组成。分布式系统,用来连接不同基本服务区(BSA)的通信信道,一般采用大容量、高速有线传输网。轨旁无线接入点AP,是无线网络和有线网络的桥节点。车载无线通信单元,安装在车头和车尾的车载设备机架内,是AP的通信客户端。无线传输媒介,包括漏缆、波导管和空间波等。列车在隧道区间运行时,地面AP机箱通过有线冗余网络将数据传至控制中心及各车站,实现车-地之间控制命令的上、下传递。 目前,国内外CBTC系统均采用2. 4 GHz频段,列车运行要求如下。 1 .传输带宽:列车高速移动时能满足系统传输速率需求, 于 1 Mb /s 。 2.丢包率:无线传输系统丢包率应不影响系统的有效性, 3.传输延时:越区切换中断时间应满足不间断通信要求, 最不利情况下传输带宽不小 要求双网的丢包率为0. 01% 。ATP允许的报文传输(更

新)延时时间最大为0. 5 s。 1系统设计 为确保隧道空间运行中的列车控制信息在任何地点、时间都能双向传输,系统设计时除 了考虑无线协议、调制方式、切换机制和网络安全外,还必须进行合理的AP布点。下面 以杭州地铁1号线CBTC无线通信子系统AP布点为例进行介绍。 1. 1隧道中的菲涅耳区 无线电波在发射机和接收机之间传播时,存在着一个对电波传播起主要作用的空间区域 即传播主区,可用菲涅耳区来表示。不同路径的电磁波通过第一菲涅耳区到达接收天线时, 由于作用相同,接收点的信号最强。当收发机天线只利用第一菲涅耳区传播电磁波时,接收天线能得到所有传播环境中最大的辐射场。第一菲涅耳区的大小可以用菲涅耳半径r表示: r =淫他(|) 其中,d1、d2分别表示发射天线和接收天线与平面(该平面以收发天线连线垂直,与菲涅尔椭球相交形成的半径称为菲涅尔半径)间的距离;d为发射天线与接收天线间的距离。当 (I E二丛=丄r = —./ x d - 时,菲涅尔半径最大 2 。假设隧道空间满足自由空间传播条件,若隧道宽为w,高位h,令r max= w /2 ,则: d max = W 2/ 入(2) 2400MHz 电磁波长入=0. 125m 。典型地铁隧道为圆弧形、矩形或马蹄形截面,可近似等效为边长为6 m的矩形截面,由(2)式计算可得 d max = 288 m。

通信原理 第2章 习题解答

习题解答 2-1、什么是调制信道?什么是编码信道?说明调制信道和编码信道的关系。 答:所谓调制信道是指从调制器输出端到解调器输入端的部分。从调制和解调的角度来看,调制器输出端到解调器输入端的所有变换装置及传输媒质,不论其过程如何,只不过是对已调制信号进行某种变换。 所谓编码信道是指编码器输出端到译码器输入端的部分。从编译码的角度看来,编码器的输出是某一数字序列,而译码器的输入同样也是某一数字序列,它们可能是不同的数字序列。因此,从编码器输出端到译码器输入端,可以用一个对数字序列进行变换的方框来概括。 根据调制信道和编码信道的定义可知,编码信道包含调制信道,因而编码信道的特性也依赖调制信道的特性。 2-2、什么是恒参信道?什么是随参信道?目前常见的信道中,哪些属于恒参信道?哪些属 于随参信道? 答:信道参数随时间缓慢变化或不变化的信道叫恒参信道。通常将架空明线、电缆、光纤、超短波及微波视距传输、卫星中继等视为恒参信道。 信道参数随时间随机变化的信道叫随参信道。短波电离层反射信道、各种散射信道、超短波移动通信信道等为随参信道。 2-3、设一恒参信道的幅频特性和相频特性分别为: 其中,0K 和d t 都是常数。试确定信号)(t s 通过该信道后的输出信号的时域表示式,并讨论之。 解:传输函数 d t j j e K e H H ωω?ωω-==0)()()( 冲激响应 )()(0d t t K t h -=δ 输出信号 )()()()(0d t t s K t h t s t y -=*= 结论:该恒参信道满足无失真条件,故信号在传输过程中无失真。 2-4、设某恒参信道的传输特性为d t j e T H ωωω-+=]cos 1[)(0,其中,d t 为常数。试确定信号)(t s 通过该信道后的输出信号表达式,并讨论之。 解: 输出信号为: d t K H ωω?ω-==)()(0 )(21)(21)()(2121)(21]cos 1[)(00) ()(00000T t t T t t t t t h e e e e e e e e T H d d d T t j T t j t j t j T j T j t j t j d d d d d d --++-+-=++=++=+=+--------δδδωωωωωωωωωω

过孔基础知识与差分过孔设计

过孔基础知识与差分过孔设计 导读:在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 1. 过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图 2. 过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。

表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容 (C-L-C) 元件组成。表格2显示的是过孔尺寸的影响。 表2:过孔尺寸的直观影响

通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁 (EM) 场解算程序可以根据PCB布局布线中使用的尺寸来预测结构阻抗。通过重复调整结构尺寸和运行3D仿真,可优化过孔尺寸,来实现所需阻抗和带宽要求。 3. 设计一个透明的差分过孔 在实现差分对时,线路A与线路B之间必须高度对称。这些对在同一层内走线,如果需要一个过孔,必须在两条线路的临近位置上打孔。由于差分对的两个过孔距离很近,两个过孔共用的一个椭圆形隔离盘能够减少寄生电容,而不是使用两个单独的隔离盘。接地过孔也被放置在每个过孔的旁边,这样的话,它们就能够为A和B过孔提供接地返回路径。 图2显示的是一个地-信号-信号-地 (GSSG) 差分过孔结构示例。两个相邻过孔间的距离被称为过孔间距。过孔间距越小,互耦合电容越多。 图2:使用背面钻孔的GSSG差分过孔 不要忘记,在传输速率超过10Gbps时,过孔残桩会严重影响高速信号完整性。幸运的是,有一种背面钻孔PCB制造工艺,此工艺可以在未使用的过孔圆柱上钻孔。根据制造工艺公差的不同,背面钻孔去除了未使用的过孔金属,并最大限度地将过孔残桩减少到10mil以下。 3D EM仿真器用来根据所需的阻抗和带宽来设计差分过孔。这是一个反复的过程。此过程重复地调整过孔尺寸,并运行EM仿真,直到实现所需的阻抗和带宽。 4. 如何验证性能 图2中显示的差分过孔设计已构建完毕并经测试。测试样片包括顶层的一对差分线,之后是到内部差分线的差分过孔,然后第二对差分过孔再次连接至顶层的球状引脚栅格阵列封装 (BGA) 接地焊盘。信号路径的总长度大约为1330mil。我用差分时域反射仪 (TDR) 测得其差分阻抗,用网络分析仪测得了带宽,并用高速示波器测量了数据眼图来了解其对信号的影响。图3,4,5分别显示了阻抗、带宽和眼图。左图是使用背面钻孔时的测试结果,而右图是无背面钻孔的测试结果。在图5中的带宽波特图中,我们可以很清楚地看到背面钻孔对于在数据速率大于10Gbps 的情况下实现高性能是必不可少的。

带限基带传输系统地仿真

一、实验目的 1、掌握Matlab的基本使用方法;提高独立学习的能力; 2、掌握Simulink仿真模型的建立及各功能模块的处理方法; 3、熟悉基带传输系统的基本结构; 4、掌握带限数字基带传输系统的仿真方法及性能分析; 5、通过观测眼图来判断信号的传输质量; 6、培养发现问题、解决问题和分析问题的能力。 二、实验设备 硬件:PC机一台 软件:MATLAB 三、实验原理 在实际通信中传输信道的带宽是有限的,这样的信道称为带限信道。带限 信道的冲激响应在时间上是无限的,因此一个时隙内的代表数据的波形经过带 限信道后将在邻近的其他时隙上形成非零值,称为波形的拖尾。拖尾和邻近其 他时隙上的传输波形相互叠加后,形成传输数据之间的混叠,造成符号间干扰,也称为码间干扰。接收机中,在每个传输时隙中的某时间点上,通过对时域混 叠后的波形进行采样,然后对样值进行判决来恢复接收数据。在采样时间位置 上符号间的干扰应最小化(该采样时刻称为最佳采样时刻),并以适当的判决 门限来恢复接收数据,使误码率最小(该门限称为最佳判决门限)。 在工程上,为了便于观察接收波形中的码间干扰情况,可在采样判决设备 的输入端以恢复的采样时钟作为同步,用示波器观察该端口的接收波形。利用 示波管显示的暂时记忆特性,在示波管上将显示多个时隙内接收信号的重叠波 形图案,称为眼图。对于传输符号为等概的双极性码,最佳判决门限为0,最佳采样时刻为眼图开口最大处,因为该时刻上的码间干扰最小。当无码间干扰时,在最佳采样时刻上眼图波形将会聚为一点。

显然,只要带限信道冲击响应的拖尾波形在时隙周期整数倍上的值为0,那么在采样时刻就没有码间串扰,例如抽样函数。然而,抽样函数的频谱时门函数,物理不可实现,即使近似实现也十分困难。还存在一类无码干 扰的时域函数,具有升余弦频率特性,幅频响应是缓变的,在工程上容易实现,其冲激响应为 其中,Ts为码元时隙宽度,α为滚降系数。α=0时,退化为矩形 门函数;α=1时为全升余弦,其傅里叶变换即为相应的系统函数。 设发送滤波器为,物理信道的传递函数为,接收滤波器为,则带限信道总的传递函数为=。 对于物理信道是AWGN信道的情况,足以证明,当发送滤波器与接收滤波器 相互匹配时,即=,系统误码率最小。对于理想的物理信道 (),收发滤波器相互匹配时有 == 由此可得收发滤波器传递函数的实数解为 == 无码间干扰条件下,信道总的传递函数是滚升余弦的,匹配的收发滤波器 称为平方根滚升余弦滤波器,有 == 四、实验内容及运行结果 任务一:升余弦波形及其频谱研究

设一恒参信道的幅频特性和相频特性分别为

第三章 信道 3-1 设一恒参信道的幅频特性和相频特性分别为 ? ??-==d t K H ????)(|)(|0 其中0K 和d t 都是常数。试确定信号)(t s 通过该信道后的输出信号的时域表示式,并讨论之。 解:传输函数 d t j j K H H ?????-== e e |)(|)(0)( 冲激响应 )()(0d t t K t h -=δ 输出信号 )()(*)()(0d t t s K t h t s t y -== 讨论:该恒参信道满足无失真条件,故信号在传输过程中无失真。 3-2 设某恒参信道的传输特性为: d t j T H ???-+= e ]cos 1[)(0 其中,d t 为常数。试确定信号)(t s 通过该信道后的输出信号表达式,并讨论之。 解: d d d t j T j T j t j t j T H ???????----++=+= e )e e (2 1e e ]cos 1[)(000 )(2 1)(21)()(00T t t T t t t t t h d d d --++-+-=δδδ 输出信号 )(2 1)(21)()(*)()(00T t t s T t t s t t s t h t s t y d d d --++-+-== 讨论:该信道的幅频特性为0cos 1|)(|T H ??+=,因此幅度随?发生变化,必然产生幅频失真;而信道的相频特性是?的线性函数,而不会发生相频失真。 3-3 设某一恒参信道可用图3-3所示的线性二端网络来等效。试求它的传输函数)(?H ,并说明信号通过该信道时会产生哪些失真? 解: RC j RC j R C j R H ????+=+=11)( 幅频特性 2221|)(|C R RC H ???+= 相频特性 RC ???arctan 90)(-?= 讨论 常数≠|)(|?H ,???与)(非线性关系,因此会产生幅频失真和相频失真。 3-4 今有两个恒参信道,其等效模型分别如图3-4)(a ,)(b 所示。试求这两个信道的群迟延特性并画出它们的群迟延曲线,并说明信号通过它们时有无群迟延失真? 图3-1

PCB过孔对信号传输的影响

PCB过孔对信号传输的影响 -----Maxconn整理 https://www.wendangku.net/doc/8712230564.html,/blog/maxconn/3796/message.aspx 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于: C="1".41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C="1".41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

通信原理信道习题

1.以下属于恒参信道的是()。 A.微波对流层散射信道 B.超短波电离层散射信道 C.短波电离层反射信道 D.微波中继信道 2.改善恒参信道对信号传输影响的措施是()。 A.采用分集技术 B.提高信噪比 C.采用均衡技术 D.降低信息速率3.随参信道所具有的特点是()。 A.多经传播、传输延时随时间变化、衰落 B.传输损耗随时间变化、多经传播、衰落 C.传输损耗随时间变化、传输延时随时间变化、衰落 D.传输损耗随时间变化、传输延时不随时间变化、多经传播 4.根据信道的传输参数的特性可分为恒参信道和随参信道,恒参信道的正确定义是()。 A.信道的参数不随时间变化 B.信道的参数不随时间变化或随时间缓慢变化C.信道的参数随时间变化 D.信道的参数随时间快速变化 5.以下信道属于随参信道的是()。 A.电缆信道 B.短波信道 C.光纤信道 D.微波中继信道 6.调制信道的传输特性不好将对编码信道产生影响,其结果是对数字信号带来()。 A.噪声干扰 B.码间干扰 C.突发干扰 D.噪声干扰和突发干扰7.改善随参信道对信号传输影响的措施是()。 A.提高信噪比 B.采用分集技术 C.采用均衡技术 D.降低信息速率8.连续信道的信道容量将受到“三要素”的限制,其“三要素”是()。 A.带宽、信号功率、信息量 B.带宽、信号功率、噪声功率谱密度 C.带宽、信号功率、噪声功率 D.信息量、带宽、噪声功率谱密度 9.以下不能无限制地增大信道容量的方法是()。 A.无限制提高信噪比 B.无限制减小噪声 C.无限制提高信号功 D.无限制增加带宽 10.根据香农公式以下关系正确的是()。 A.信道容量一定,信道的带宽越宽信噪比的要求越小; B.信道的容量与信道的带宽成正比; C.信道容量一定,信道的带宽越宽信噪比的要求越高; D.信道的容量与信噪比成正比。 11.起伏噪声是加性噪声的典型代表,起伏噪声包括:、和。 12.当无信号时,则传输信道中将加性干扰,乘性干扰。 13.信道对信号的影响可分为两类,一类是干扰、另一类为干扰。 14. 将乘性干扰k(t)不随或基本不随时间变化的信道称为信道。15.恒参信道对信号传输的影响主要体现在特性和特性的不理想,其影响可以采用措施来加以改善。 16.改善随参信道对信号传输的影响可以采用分集技术,分集技术包括:空间分集、频率分集、分集、分集。 17.随参信道的三个特点是:、和。 18.根据香农公式,当信道容量一定时,信道的带宽越宽,则对要求就越小。19.某信源集包含32个符号,各符号等概出现,且相互统计独立。现将该信源发送的一系

过孔对信号传输的影响

过孔对信号传输的影响 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感: L=5.08h[ln(4h/d)+1]

信道特性

恒参信道: 有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。 ? 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。 从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。 网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线. 随参信道: 短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。 属于随参的传输媒质主要以电离层反射、对流层散射等为代表。 ? 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。 ? 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。 随参信道图: 共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。 多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。 —— 由第i 条路径的随机相位; ————由第i 条路径到达的接收信号振幅 _______ 由第i 条路径达到的信号的时延; 都是随机变化的 (1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号; (2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。 通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。 ) ()(0t t i i τω?-=)(t i μ)(t i τ) (),(),(t t t i i i ?τμω ω?ω τd d )()(=

信号在PCB走线中传输时延

信号在PCB走线中传输时延 摘要:信号在媒质中传播时,其传播速度受信号载体以及周围媒质属性决定。在PCB(印刷电路板)中信号的传输速度就与板材DK(介电常数),信号模式,信号线与信号线间耦合以及绕线方式等有关。随着PCB走线信号速率越来越高,对时序要求较高的源同步信号的时序裕量越来越少,因此在PCB设计阶段准确知道PCB走线对信号时延的影响变的尤为重要。本文基于仿真分析DK,串扰,过孔,蛇形绕线等因素对信号时延的影响。 关键词:传输时延, 有效介电常数,串扰DDR 奇偶模式 1.引言 信号要能正常工作都必须满足一定的时序要求,随着信号速率升高,数字信号的发展经历了从共同步时钟到源同步时钟以及串行(serdes)信号。在当今的消费类电子,通信服务器等行业,源同步和串行信号占据了很大的比重。串行信号比如常见PCIE,SAS,SATA,QPI,SFP+,XUAI,10GBASE-KR等信号,源同步信号比如DDR信号。 串行信号在发送端将数据信号和时钟(CLK)信号通过编码方式一起发送,在接收端通过时钟数据恢复(CDR)得到数据信号和时钟信号。由于时钟数据在同一个通道传播,串行信号对和对之间在PCB上传输延时要求较低,主要依靠锁相环(PLL)和芯片的时钟数据恢复功能。 源同步时钟主要是DDR信号,在DDR设计中,DQ(数据)信号参考DQS(数据选通)信号,CMD(命令)信号和CTL(控制)信号参考CLK(时钟)信号,由于DQ的速率是CMD&CTL信号速率2倍,所以DQ 信号和DQS信号之间的传输延时要求比CMD&CTL和CLK之间的要求更高。目前市场上主流的为DDR1/ DDR2/ DDR3。DDR4预计在2015年将成为消费类电子的主要设计,随着DDR信号速率的不断提高,在DDR4设计中特别是DQ和DQS之间传输时延对设计者提出更高的挑战。 在PCB设计的时候为了时序的要求需要对源同步信号做一些等长,一些设计工程师忽略了这个信号等长其实是一个时延等长,或者说是一个‘时间等长’。 2.传输时延简介 Time delay又叫时延(TD),通常是指电磁信号或者光信号通过整个传输介质所用的时间。在传输线上的时延就是指信号通过整个传输线所用的时间。 Propagation delay又叫传播延迟(PD),通常是指电磁信号或者光信号在单位长度的传输介质中传输的时间延迟,与“传播速度”成反比例(倒数)关系,单位为“Ps/inch”或“s/m”。

差分对:与过孔有关的四件事

差分对:与过孔有关的四件事 在一个高速印刷电路板(P C B)中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。 幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。在这篇博客中,我将讨论以下内容: 1.过孔的基本元件 2.过孔的电气属性 3.一个构建透明过孔的方法 4.差分过孔结构的测试结果 1.过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图

2.过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。 层过孔元件电气属性 层1(顶层)过孔焊盘过孔焊盘在焊盘和下方的接地层之间引入 寄生电容。 1-2层(过孔)信号过孔过孔是一个电感器。 层2(平面层)隔离盘隔离盘在金属圆柱表面和附近的过孔周围 接地层之间产生边缘电容。 2-3层(过孔)信号过孔电感。 层3(信号)过孔焊盘焊盘与其上下的接地层之间的寄生电容。3-4层(过孔)过孔残桩过孔的未使用部分形成电容短截线效应。层4(平面层)隔离盘电容。 4-5层(过孔)过孔残桩过孔的未使用部分形成电容短截线效应。层5(底层)过孔焊盘电容。 表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容(C-L-C)元件组成。表格2显示的是过孔尺寸的影响。 相关尺寸电气属性对电容阻抗(Z o)的影 响 过孔焊盘小焊盘直径C↓Z o↑ 过孔大小小孔直径L↑Z o↑ 隔离盘大隔离盘直径C↓Z o↑ 过孔长度更长的过孔长度L↑Z o↑ 电源/接地层更多平面层C↑Z o↓ 过孔残桩更长的过孔残桩C↑Z o↓ 过孔间距更小的过孔间距C↑Z o↓ 表2:过孔尺寸的直观影响 通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁(E M)场解

相关文档
相关文档 最新文档