文档库 最新最全的文档下载
当前位置:文档库 › 实验一语音信号端点检测

实验一语音信号端点检测

实验一语音信号端点检测
实验一语音信号端点检测

实验一语音信号端点检测

一、 实验目的

1.学会MATLAB 的使用,掌握MATLAB 的程序设计方法;

2.掌握语音处理的基本概念、基本理论和基本方法;

3.掌握基于MATLAB 编程实现带噪语音信号端点检测;

4.学会用MATLAB 对信号进行分析和处理。

5. 学会利用短时过零率和短时能量,对语音信号的端点进行检测。

二、 实验仪器设备及软件

MATLAB

三、 实验原理

端点检测是语音信号处理过程中非常重要的一步,它的准确性直接影响到语音信号处理的速度和结果。本次实验利用短时过零率和短时能量相结合的语音端点检测算法利用短时过零率来检测清音,用短时能量来检测浊音,两者相配合便实现了信号信噪比较大情况下的端点检测。

算法对于输入信号的检测过程可分为短时能量检测和短时过零率检测两个部分。算法以短时能量检测为主,短时过零率检测为辅。根据语音的统计特性,可以把语音段分为清音、浊音以及静音(包括背景噪声)三种。在本算法中,短时能量检测可以较好地区分出浊音和静音。对于清音,由于其能量较小,在短时能量检测中会因为低于能量门限而被误判为静音;短时过零率则可以从语音中区分出静音和清音。将两种检测结合起来,就可以检测出语音段(清音和浊音)及静音段

1、短时能量计算

定义n 时刻某语言信号的短时平均能量En 为:

∑∑--=+∞∞--=-=n N n m m n w m x m n w m x En )1(22

)]()([)]()([

式中N 为窗长,可见短时平均能量为一帧样点值的平方和。特殊地,当窗函数为矩形窗时,有∑--==

n N n m m x En )1(2)(

2、短时过零率

过零就是指信号通过零值。过零率就是每秒内信号值通过零值的次数。

对于离散时间序列,过零则是指序列取样值改变符号,过零率则是每个样本的改变

符号的次数。对于语音信号,则是指在一帧语音中语音信号波形穿过横轴(零电平)的次数。可以用相邻两个取样改变符号的次数来计算。

如果窗的起点是n=0,短时过零率Z 为

波形穿过横轴(零电平)的次数

|))1(())((|211

0∑-=--=N n w w n S Sgn n S Sgn Z {0

0,1,1)sgn(≥<-=x x x

短时过零可以看作信号频率的简单度量

浊音的短时平均幅度最大,无声的短时平均幅度最小,清音的短时过零率最大,无

声居中,浊音的短时过零率最小。

3、短时自相关函数

∑--=+=1

)()()(k N n w

w w k n s n s k R ①是偶函数;

②s(n)是周期的,那么R (k )也是周期的;

③可用于基音周期估计和线性预测分析

4、判断语音信号的起点和终点

利用短时平均幅度和短时过零率可以判断语音信号的起点和终点。语音端点检测方法可采用测试信号的短时能量或短时对数能量、联合过零率等特征参数,并采用双门限判定法来检测语音端点,即利用过零率检测清音,用短时能量检测浊音,两者配合。首先为短时能量和过零率分别确定两个门限,一个是较低的门限数值较小,对信号的变化比较敏感,很容易超过;另一个是比较高的门限,数值较大。低门限被超过未必是语音 的开始,有可能是很短的噪声引起的,高门限被超过并且接下来的自定义时间段内的语音。

四、 实验步骤及程序

(1) 实验步骤:

1、取一段录音作为音频样本。

2、利用公式分别编程计算这段语音信号的短时能量和短时过零率,然后分别画出它们的曲线。

3、调整能量门限。

4、进行幅度归一化并设置帧长、短时能量阈值、过零率阈值等参数。

5、编写程序实现语音端点检测。

6、最后得到语音端点检测图像。

(2) 语音信号的端点检测程序流程图:

输入语音信号

幅度归一化

设置参数

计算短时能量和过零率

调整能量门限

开始端点检测

输出样本端点检测图像

图 1.1 语音信号的端点检测程序流程图

(3) 语音信号的端点检测实验源程序:

[x,fs,nbits]=wavread('1.wav');

x = x / max(abs(x));

FrameLen = 256;

inc = 90;

amp1 = 10;

amp2 = 2;

zcr1 = 10;

zcr2 = 5;

minsilence = 6;

minlen = 15;

status = 0;

count = 0;

silence = 0;

tmp1 = enframe(x(1:end-1), FrameLen,inc);

tmp2 = enframe(x(2:end) , FrameLen,inc);

signs = (tmp1.*tmp2)<0;

diffs = (tmp1 -tmp2)>0.02;

zcr = sum(signs.*diffs,2);

amp = sum((abs(enframe(filter([1 -0.9375], 1, x), FrameLen, inc))).^2, 2);

amp1 = min(amp1, max(amp)/4);

amp2 = min(amp2, max(amp)/8);

for n=1:length(zcr)

goto = 0;

switch status

case {0,1}

if amp(n) > amp1

x1 = max(n-count-1,1);

status = 2;

silence = 0;

count = count + 1;

elseif amp(n) > amp2 || zcr(n) > zcr2

status = 1;

count = count + 1;

else

status = 0;

count = 0;

end

case 2,

if amp(n) > amp2 ||zcr(n) > zcr2

count = count + 1;

else

silence = silence+1;

if silence < minsilence

count = count + 1;

elseif count < minlen

status = 0;

silence = 0;

count = 0;

else

status = 3;

end

end

case 3,

break;

end

end

count = count-silence/2;

x2 = x1 + count -1;

subplot(3,1,1)

plot(x)

axis([1 length(x) -1 1])

xlabel('帧数');ylabel('Speech');

line([x1*inc x1*inc], [-1 1], 'Color', 'red');

line([x2*inc x2*inc], [-1 1], 'Color', 'red');

subplot(3,1,2)

plot(amp);

axis([1 length(amp) 0 max(amp)])

xlabel('帧数');ylabel('Energy');

line([x1 x1], [min(amp),max(amp)], 'Color', 'red'); line([x2 x2], [min(amp),max(amp)], 'Color', 'red');

subplot(3,1,3)

plot(zcr);

axis([1 length(zcr) 0 max(zcr)])

xlabel('帧数');ylabel('ZCR');

line([x1 x1], [min(zcr),max(zcr)], 'Color', 'red'); line([x2 x2], [min(zcr),max(zcr)], 'Color', 'red');

五、实验结果与分析

图1.2语音信号的端点检测实验结果输出图像

(1)从图中可以明显看出,浊音的短时能量大、短时过零率低。清音的短时能量小、短时过零率高。

(2)门限的选取对语音检测结果有很大影响。

(3)仅仅根据能量判断是比较粗糙的,还需要根据过零率进行判断。因为清音和噪声的短时平均过零率比背景噪声的平均过零率要高出好几倍。

六、实验体会

这次的实验,,给我最大的收获就是培养了独立思考和动手的能力,还有就是实验的灵活性,总得来说就是在独立与创新这二个环节,我更加掌握MATLAB的程序设计方法,进一步的了解了掌握基于MATLAB编程实现带噪语音信号端点检测的原理,这充分锻炼了我们独立的动手能力和独立的解决所遇到的问题,让我对这门课程又有了新的理解。

语音端点检测

目录 摘要........................................................................................ 错误!未定义书签。Abstract .................................................................................. 错误!未定义书签。第1章绪论.. 0 1.1课题背景 0 1.2语音端点检测现状 0 1.3相关工作 (2) 1.4本文主要研究内容 (3) 第2章语音信号时频域分析及预处理 (4) 2.1语音信号简述 (4) 2.2语音信号分析 (4) 2.2.1 时域分析 (5) 2.2.2 频域分析 (5) 2.3语音信号分析处理 (7) 2.3.1 预加重 (7) 2.3.2 加窗分帧 (8) 2.4本章小结 (9) 第3章语音端点检测算法研究 (10) 3.1语音端点检测 (10) 3.1.1 简述 (10) 3.1.2 语音端点检测原理 (10) 3.1.3 语音端点检测算法及实施方案 (12) 3.2基于短时能量和短时过零率的语音端点检测 (13) 3.2.1 短时平均能量 (14) 3.2.2 短时过零率 (16) 3.2.3 基于短时能量和短时过零率的双门限端点检测 (18) 3.2.4 双门限语音端点检测实验 (19) 3.3基于倒谱特征的语音端点检测 (20) 3.3.1 倒谱特征 (20) I

3.3.2 倒谱距离 (21) 3.3.3 倒谱距离的检测算法流程 (23) 3.3.4 基于倒谱特征的语音端点检测试验分析 (25) 3.4基于谱熵的语音端点检测 (26) 3.4.1 谱熵特征 (26) 3.4.2 基于谱熵的端点检测流程 (27) 3.4.4 基于谱熵特征的语音端点检测试验分析 (28) 3.5算法比较 (30) 3.6本章小结 (33) 结论.................................................................................... 错误!未定义书签。参考文献................................................................................ 错误!未定义书签。致谢.................................................................................... 错误!未定义书签。附录1..................................................................................... 错误!未定义书签。附录2..................................................................................... 错误!未定义书签。附录3..................................................................................... 错误!未定义书签。附录4..................................................................................... 错误!未定义书签。附录5..................................................................................... 错误!未定义书签。

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微弱信号检测 课程设计

LDO 低输出噪声的分析与优化设计 1 LDO 的典型结构 LDO 的典型结构如下图所示,虚线框内为LDO 芯片内部电路,它是一个闭环系统,由误差放大器(Error amplifier)、调整管(Pass device)、反馈电阻网络(Feedback resistor network)组成,其闭环增益是: OUT REF V Acloseloop V = (1) 此外,带隙基准电压源 ( Bandgap reference)为误差放大器提供参考电压。 LDO 的工作原理是:反馈电阻网络对输出电压进行分压后得到反馈电压,该电压输入到误差放大器的同相输入端。误差放大器放大参考电压和反馈电压之间的差值, 其输出直接驱动调整管,通过控制调整管的导通状态来得到稳定的输出电压。例如,当反馈电压小于基准电压时,误差放大器输出电压下降,控制调整管产生更大的电流使得输出电压上升。当误差放大器增益足够大时,输出电压可以表示为: R1(1+)R2 OUT REF V V = (2) 所谓基准电压源就是能提供高精度和高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,其原理是利用PN 结电压的负温度系数和不同电流密度下两个PN 结电压差的正温度系数电压相互补偿,而使输出电压达到很低的温度漂移。传统基准电压源是基 于晶体管或齐纳稳压管的原理而制成的,其αT =10-3/℃~10-4/℃,无法满足现代电子测量之 需要。20世纪70年代初,维德拉(Widlar)首先提出能带间隙基准电压源的概念,简称带隙(Bandgap)电压。所谓能带间隙是指硅半导体材料在0K 温度下的带隙电压,其数值约为 1.205V ,用U go 表示。带隙基准电压源的基本原理是利用电阻压降的正温漂去补偿晶体管发射结正向压降的负温漂,从而实现了零温漂。由于未采用工作在反向击穿状态下的稳压管,因而噪声电压极低。带隙基准电压源的简化电路如下图所示。

基于能量和过零率的语音端点检测

课题:基于能量和过零率的语音端点检测姓名:陈启望简盛龙颜艳丹 专业:2008级电子科学与技术(2)班 指导老师:胡朝炜 国立华侨大学信息科学与工程学院

一、前言 在复杂的应用环境下,从信号流中分辨出语音信号和非语音信号,是语音处理的一个基本问题。端点检测就是从包含语音的一段信号中确定出语音的起始点和结束点。正确的端点检测对于语音识别和语音编码系统都有重要的意义,它可以使采用的数据真正是语音信号的数据,从而减少数据量和运算量并减少处理时间。 二.方案选择 判别语音段的起始点和终止点的问题主要归结为区别语音和噪声的问题。 ①短时能量——如果能够保证系统的输入信噪比很高(即使最低电平的语音的能量也比噪声能量要高),那么只要计算输入信号的短时能量就基本能够把语音段和噪声背景区别开来。但是,在实际应用中很难保证这么高的信噪比,仅仅根据能量来判断是比较粗糙的。 ②短时平均过零率——它是语音信号时域分析中的一种特征参数。它是指每帧内信号通过零值的次数。在离散时间语音信号情况下,如果相邻的采样具有不同的代数符号就称为发生了过零。如果是正弦信号,其平均过零率就是信号频率的两倍除以采样频率,而采样频率是固定的。因此过零率在一定程度上可以反映信号的频率信息。语音信号不是简单的正弦序列,所以平均过零率的表示方法就不那么确切。 ③两级判决法——在用短时能量判断的同时,还需进一步利用短时平均过零率进行判断,因为清音比噪声的短时平均过零率比背景

噪声的平均过零率要高出高几倍。即基于能量和过零率的端点检测方法,也称双门限比较法。 综上所述,选择第三种方法,更加准确,实现的程序也不是很复杂。 三、方法的理论介绍 1.第一级判决 a.先根据语音短时能量的轮廓选取一个较高的门限T1,进行一个粗 判:语音起止点位于该门限与短时能量包络交点所对应的时间间隔之外(即AB段之外)。 b.根据背景噪声的平均能量确定一个较低的门限T2,并从A点往左、 从B点往右搜索,分别找到短时能量包络与门限T2相交的两个点C和D,于是CD段就是用双门限方法根据短时能量锁判定的语音段。 2.第二级判决 以短时平均过零率为标准,从C点往左和从D点往右搜索,找到短时平均过零率低于某个门限T3的两点E和F,这便是语音段的起

基于Matlab的语音端点检测实验研究

浙江科技学院学报,第19卷第3期,2007年9月Jo ur na l of Zhejiang U niv ersity of Science and T echnolog y Vo l.19No.3,Sep.2007 收稿日期:2007 04 23 作者简介:张震宇(1976 ),男,浙江兰溪人,讲师,硕士,主要从事电子技术和语音信号处理的研究。 基于Matlab 的语音端点检测实验研究 张震宇 (浙江科技学院自动化与电气工程学院,杭州310023) 摘 要:端点检测在语音识别中占有十分重要的地位,直接影响着系统的性能。今借助于M atlab 这一功能强大的工具,成功地开展了语音端点检测的实验研究。首先简介端点检测涉及的几个基本概念,然后分析端点检测的基本方法,最后分别进行孤立字、孤立词的语音检测实验;重点阐述实验开展的具体过程,并给出部分关键源代码。实验取得了良好的效果。 关键词:端点检测;短时能量;过零率;M atlab 中图分类号:T P391.42 文献标识码:A 文章编号:1671 8798(2007)03 0197 05 Expe rime ntal Study on Speec h Endpoint Detection Base d on Matlab ZH ANG Zhen y u (Schoo l o f Automat ion and Electr ical Engineer ing,Zhejiang U niv ersity of Science and T echnolog y,H angzhou,310023,China) Abstract:Endpoint detection plays an important ro le in speech recog nition,w hich dir ectly af fects perform ance of the speech system.With M atlab,exper im ents to detect speech endpoint are developed successfully.Firstly ,several basic concepts are introduced briefly.T hen,the basic method for endpoint detection is analyzed.At last,2experiments for isolated wo rd are car ried out.T he detailed ex perim ent procedure is focused on and par t of key source codes is given,w hich gains favourable effect. Key words:endpo int detection;short term energy ;zer o crossing r ate(ZCR);M atlab 所谓端点检测,就是从一段给定的语音信号中找出语音的起始点和结束点。在语音识别系统中,正确、有效地进行端点检测不仅可以减少计算量和缩短处理时间,而且能排除无声段的噪声干扰、提高语音识别的正确率。研究表明,即使是在安静的环境下,语音识别系统一半以上的错误可能主要来自端点检测 [1] 。除此之外,在语音合成、编码等系统 中,高效的端点检测也直接影响甚至决定着系统的主要性能。因此,端点检测的效率、质量在语音处理系统中显得至关重要,广泛开展端点检测实现手段方面的研究,有一定的现实意义。 笔者查阅了大量关于端点检测的文献资料,典型的如文献[2 5]等,发现大部分文献把重点放在理论分析层面上,集中研究了如何较好地改进检测方

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

基于MATLAB的语音端点检测

短时能量matlab实现: [x]=wavread('song1.wav'); x=x/max(abs(x)); figure; subplot(3,1,1); plot(x); axis([1 length(x) -1 1]); ylabel('Speech'); FrameLen=240; FrameInc=80; yframe=enframe(x,FrameLen,FrameInc); amp1=sum(abs(yframe),2); subplot(3,1,2); plot(amp1); axis([1 length(amp1) 0 max(amp1)]); ylabel('Amplitude'); legend('amp1=∑│x│'); amp2=sum(abs(yframe.*yframe),2); subplot(3,1,3); plot(amp2); axis([1 length(amp2) 0 max(amp2)]); ylabel('Energy'); legend('amp1=∑│x*x│'); 短时过零率matlab实现: [x]=wavread('song1.wav'); figure; subplot(3,1,1); plot(x); axis([1 length(x) -1 1]); ylabel('Speech'); FrameLen = 240; FrameInc = 80; amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); subplot(312) plot(amp); axis([1 length(amp) 0 max(amp)]) ylabel('Energy'); tmp1 = enframe(x(1:end-1), FrameLen, FrameInc); tmp2 = enframe(x(2:end) , FrameLen, FrameInc); signs = (tmp1.*tmp2)<0; diffs = (tmp1 -tmp2)>0.02; zcr = sum(signs.*diffs, 2); subplot(3,1,3); plot(zcr);

实验二实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形 成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出 时钟之间的关系;了解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口 (TP502),观测时以TP504同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的 关系:质量,电平,延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的 模拟信号电平,观测输出信号电平相对变化随输入信号频率变化的相对关系;

2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信 号电平,定性观测解码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统 (1)观察得到的抽样脉冲序列和正弦波输入信号如下所示: 上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示:

基于DSP的微弱信号检测采集系统设计

基于DSP的微弱信号检测采集系统设计 通常所用的数据采集系统,其采样对象都为大信号,即有用信号幅值大于噪声信号。但在一些特殊的场合,采集的信号很微弱,其幅值只有几个μV,并且淹没在大量的随机噪声中。此种情况下,一般的采集系统和测量方法无法检测该信号。本采集系统硬件电路针对微弱小信号,优化设计前端调理电路,利用测量放大器有效抑制共模信号(包括直流信号和交流信号),保证采集数据的精度要求。针对被背景噪声覆盖的微弱小信号特性,采用简单的时域信号的取样积累平均方法,有利于减少算法实现难度。 DSP芯片因其具有哈佛结构、流水线操作、专用的硬件乘法器、特殊的DSP指令、快速的指令周期等特点,使其适合复杂的数字信号处理算法。本系统采用TI公司的TMS320C542作为处理器,通过外部中断读取ADC数据,并实现取样累加平均算法。 1. 取样积累平均理论 微弱信号检测(Weak Signal Detection)是研究从微弱信号中提取有用信息的方法。通过分析噪声产生的原因和规律,利用被测信号的特点和相干性,检测被背景噪声覆盖的有用信号。常用的微弱信号检测方法有频域信号的相干检测、时域信号的积累平均、离散信号的计数技术、并行检测方法。其中时域信号积累平均是常用的一种小信号检测方法。 取样是一种频率压缩技术,将一个高重复频率信号通过逐点取样将随时间变化的模拟量,转变成对时间变化的离散量的集合,从而可以测量低频信号的幅值、相位或波形。时域信号的取样积累方法是在信号周期内将时间分成若干间隔,在这些时间间隔内对信号进行多次测量累加。时间间隔的大小取决于要求恢复信号的精度。某一点的取样值都是信号和噪声

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

语音端点检测方法研究

语音端点检测方法研究1 沈红丽,曾毓敏,李平,王鹏 南京师范大学物理科学与技术学院,南京(210097) E-mail:orange.2009@https://www.wendangku.net/doc/907649394.html, 摘要: 端点检测是语音识别中的一个重要环节。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题.鉴于此,本文介绍了语音端点算法的基本研究现状,接着讨论并比较了语音信号端点检测的方法,分析了各种方法的原理及优缺点,如经典的基于短时能量和过零率的检测方法,基于频带方差的检测方法,基于熵的检测方法,基于倒谱距离的检测方法等.并基于这些方法的分析,对端点检测方法做了进行了总结和展望,对语音信号的端点检测的进一步研究具有深远的意义。 关键词:语音信号;端点检测;噪声 中图分类号:TP206. 1 1. 引言 语音信号处理中的端点检测技术,是指从包含语音的一段信号中确定出语音信号的起始点及结束点。语音信号的端点检测是进行其它语音信号处理(如语音识别、讲话人识别等)重要且关键的第一步. 研究表明[1],即使在安静的环境中,语音识别系统一半以上的识别错误来自端点检测器。因此,作为语音识别系统的第一步,端点检测的关键性不容忽视,尤其是噪声环境下语音的端点检测,它的准确性很大程度上直接影响着后续的工作能否有效进行。 确定语音信号的起止点, 从而减小语音信号处理过程中的计算量, 是众多语音信号处理领域中一个基本而且重要的问题。有效的端点检测技术不仅能减少系统的处理时间,增强系统处理的实时性,而且能排除无声段的噪声干扰,增强后续过程的识别性。可以说,语音信号的端点检测至今天为止仍是有待进一步深入的研究课题。 2. 语音端点检测主要方法和分析 在很长一段时间里,语音端点检测算法主要是依据语音信号的时域特性[2].其采用的主要参数有短时能量、短时平均过零率等,即通常说的基于能量的端点检测方法。这些算法在实验室环境下具有良好的性能,但在噪声环境下,则无法达到其应有的效果。近年来,随着通信业的迅猛发展,又出现了很多的语音端点检测算法。它们主要是通过采用各种新的特征参数,以提高算法的抗噪声性能。如基于倒谱系数[3]、频带方差[4]、自相关相似距离[5] 、信息熵[6]等也逐渐的被应用到端点检测中。有时,还通过将信号的几种特征组合成为一个新的特征参数来进行端点检测。 2.1基于短时能量和短时平均过零率的检测方法 该方法也称为双门限比较法,它是在短时能量检测方法的基础上,加上短时平均过零率,利用能量和过零率作为特征来进行检测.在信噪比不是很低的情况下,根据语音信号的能量大于噪声噪声能量的假设,通过比较输入信号的能量与语音能量阈值的大小,可以对语音段和非语音段加以区分[7].输入每帧信号的能量可由下式得到[7-8]: 1本课题得到江苏省普通高校自然科学研究计划资助项目(项目批准号:07KJD510110)的资助。

微弱信号检测技术练习思考题DOC

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

信号检测论有无法实验报告材料材料

信号检测论有无法实验报告 摘要:本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。 关键词:信号检测论;有无法;先定概率;辨别力d′;判定标准β。 1. 引言:信号检测论(SDT)是以统计判定论为根据的理论,基本原则是把刺激的肯定程度用有序的方法数量化。具体做法是把人类个体比作一个信号感受器,具有对信息辨别的感受能力,能在信号和背景噪音不易分清的实验条件下,根据可供选择的假说,选定一个假说做为判断标准,然后报告出现的刺激是信号还是噪音。 信号检测论把刺激的判断看成对信号的侦察并作出决策的过程,其中既包括感觉过程也包括决策过程。感觉过程是神经系统对信号或噪音的客观反应,它仅取决于外在的刺激的性质,即信号和噪音之间的客观区别;而决策过程受到主观因素的影响。前者决定了被试的感受性大小,信号检测论多选用辨别力指标d’来作为反映客观感受性的指标;后者则决定被试的决策是偏向于严格还是偏向于宽松,信号检测论用判定标准β或报告标准C来对反应倾向进行衡量。并学习绘制ROC曲线。 2. 实验方法: 2.1被试:上海师范大学天华学院13应用心理1班女生一名 2.2仪器:采用计算机和Psytech心理实验系统。4种频率声音:1000Hz、1005Hz、1010Hz和1015Hz。 2.3程序:1.登录并打开PsyTech心理实验软件主界面,选中实验列表中的“信号检测论(有无法)”单击呈现实验简介。点击“进入实验”到“操作向导”。在参数设置中,实验者可以让被试先进行预备实验确定信号的频率。如果不做预备实验可以人工选取 1005、1010、 1015中的一种频率的声音作为信号,直接开始实验。 2.预备实验的指导语是:这是一个预备实验,使用1号反应盒。每次实验计算机将先后发出两个不同频率的声音。请你判断哪个声音的频率更高。如果你觉得第二个声音比第一个声音的频率高,请按“+”键;如果觉得第二个声音比第一个声音的频率低,请按“-”键。预备实验将进行30次。当你明白了上述指导语后,请点击下面的“预备实验”按钮开始。3.预备实验结束后,实验者在“预备实验结果”中将正确百分比中最接近80%的频率作为正式实验的信号(SN),而1000HZ则作为噪声(N)。

相关文档
相关文档 最新文档