文档库 最新最全的文档下载
当前位置:文档库 › 高中物理竞赛动量能量习题

高中物理竞赛动量能量习题

高中物理竞赛动量能量习题
高中物理竞赛动量能量习题

高中物理竞赛动量、能量习题

一、动量定理还是动能定理?

物理情形:太空飞船在宇宙飞行时,和其它天体的万有引力可以忽略,但是,飞船会定时遇到太空垃圾的碰撞而受到阻碍作用。设单位体积的太空均匀分布垃圾n 颗,每颗的平均质量为m ,垃圾的运行速度可以忽略。飞船维持恒定的速率v 飞行,垂直速度方向的横截面积为S ,与太空垃圾的碰撞后,将垃圾完全粘附住。试求飞船引擎所应提供的平均推力F 。

模型分析:太空垃圾的分布并不是连续的,对飞船的撞击也不连续,如何正确选取研究对象,是本题的前提。建议充分理解“平均”的含义,这样才能相对模糊地处理垃圾与飞船的作用过程、淡化“作用时间”和所考查的“物理过程时间”的差异。物理过程需要人为截取,对象是太空垃圾。

先用动量定理推论解题。

取一段时间Δ t ,在这段时间内,飞船要穿过体积Δ V = S·vΔt 的空间,遭遇nΔV 颗太空垃圾,使它们获得动量Δ P ,其动量变化率即是飞船应给予那部分垃圾的推力,也即飞船引擎的推力。

P M v m n V v m nSv t v 2

F = = = = = nmSv

t t t t 如果用动能定理,能不能解题呢?

同样针对上面的物理过程,由于飞船要前进x = vΔt 的位移,引擎推力 F 须做功W= F x ,它对应飞船和被粘附的垃圾的动能增量,而飞船的Δ E k为零,所

以:

W = 1ΔMv2

2

12

即: F vΔt =(n m S·vΔt )v2

2

得到: F = 1nmSv2

2

两个结果不一致,不可能都是正确的。分析动能定理的解题,我们不能发现,垃圾与飞船的碰撞是完全非弹性的,需要消耗大量的机械能,因此,认为“引擎做功就等于垃圾动能增加”的观点是错误的。但在动量定理的解题中,由于I =

F t ,由此推出的 F = P P必然是飞船对垃圾的

平 t

均推力,再对飞船用平衡条件, F 的大小就是引擎

推力大小了。这个解没有毛病可挑,是正确的。

(学生活动)思考:如图1 所示,全长L、总质量为M的柔软绳子,盘在一根光滑的直杆上,现用手握住绳子的一端,以恒定的水平速度v 将绳子拉直。忽略地面阻力,试求手的拉力F 。

解:解题思路和上面完全相同。

角为〈π-β〉 v 3(合冲量 I +I 2沿 BC 方向,故 v 3沿 BC 方向)。

,如图 3 所示),设 C 获得速度

对 A 用动量定理,

有:

I 1 = ① m 1 B 的动量定理是 一个矢量 方程: I 1 + m 2v 2 ,可化为两个分方向的标量式,即:

I 2cos α ②

I 2sinα= m 2 v 2sin β 质点 C 的动量定理方程为:

I - I 2 = m 3 v 3

AB 绳不可伸长,必有 v 1 = v 2cos β BC 绳不可伸长,必有 v 2cos

( β-α ) = v 六个方程解六个未知量( I 1 、I 2 、v 1 、 度非同一

般。解方程要注意条理性,否则易造成混乱。建议采取如下步骤 1、先用⑤⑥式消掉 v 2 、v 3 ,使六个一级式变成四个二级式:

I 1 = m 1 v 1 ⑴

I 2cosα-I 1 = m 2 v 1 ⑵ I 1 m 2 v 2cos 3 v 2 ④ ⑤ ⑥ v 3 、β)是可能的,但繁复程 答: Mv 2 答:

L 二、动量定理的分方向应用 物理情形:三个质点 A 、B 和C ,质量分 别为 m 1 、m 2 和 m 3 ,用拉直且不可伸长的绳子 AB

和 BC 相连,静止在水平面上,如图 2 所示,

AB 和 BC 之间的夹角为(π-α) 。现对质点

C 施加以冲量 I ,方向沿 BC ,试求质点 A 开

始运动的速度。

模型分析:首先,注意“开始运动”的理

解,它指绳子恰被拉直,有作用力和冲

量产 生,但是绳子的方位尚未发生变化。其二, 对三个质点均可用动量定理, 但是,B 质点受冲量不在一条直线上, 故最为复杂, 可采用分方向的形式表达。 其三, 由于两段绳子不可伸长, 故三质点的瞬时速度 可以寻求到两个约束关系

下面具体看解题过程 绳拉直瞬间, AB 绳对 A 、B 两质点的冲量大小相等(方向相反) ,设为 I 1 , BC 绳对 B 、C 两质点的冲量大小相等(方向相反) ,设为 I 2 ;设 A 获得速度 v 1 (由于 A 受合冲量只有 I 1,方向沿 AB ,故v 1的反向沿 AB ),设 B 获得速度 v 2(由 于 B 受合冲量为 I 1 + I 2 ,矢量和既不沿 AB ,也不沿 BC 方向,可设 v 2与 AB 绳夹

度。 I

β

I 2sin α = m 2 v 1 tg β ⑶

I - I 2 = m 3 v 1(cos α+ sin αtg β) ⑷

2、解⑶⑷式消掉β,使四个二级式变成三个三级式:

I 1 = m 1 v 1

㈠ I 2cosα-I 1 = m 2 v 1

m 2 3、最后对㈠㈡㈢式消 I 1 、I 2 ,解 v 1就方便多了。结果为:

Im 2 cos

v 1 = 2 2

m 2(m 1 m 2 m 3) m 1m 3 sin 2

(学生活动:训练解方程的条理和耐心)思考: v 2 的方位角β等于多少? 解:解“二级式”的⑴⑵⑶即可。⑴代入⑵消 I 1 ,得 I 2的表达式,将 I 2的 表达式代入⑶就行了。

三、动量守恒中的相对运动问题 物理情形:在光滑的水平地面上,有一辆车,车内有一个人和 N 个铅球,系 统原来处于静止状态。 现车内的人以一定的水平速度将铅球一个一个地向车外抛 出,车子和人将获得反冲速度。第一过程,保持每次相对地面抛球速率均为 v , 直到将球抛完;第二过程,保持每次相对车子抛球速率均为 v ,直到将球抛完。 试问:哪一过程使车子获得的速度更大?

模型分析: 动量守恒定律必须选取研究对象之外的第三方 (或第四、 第五方) 为参照物,这意味着,本问题不能选车子为参照。一般选地面为参照系,这样对 “第二过程”的铅球动量表达, 就形成了难点, 必须引进相对速度与绝对速度的 关系。至于“第一过程” ,比较简单: N 次抛球和将 N 个球一次性抛出是完全等 效的。

设车和人的质量为 M ,每个铅球的质量为 m 。由于矢量的方向落在一条直 线上,可以假定一个正方向后,将矢量运算化为代数运算。设车速方向为正,且 第一过程获得的速度大小为 V 1 第二过程获得的速度大小为 V 2 。

第一过程, 由于铅球每次的动量都相同, 可将多次抛球看成一次抛出。 车子、 人和 N 个球动量守恒。

0 = Nm(-v) + MV 1

Nm v M

第二过程,必须逐次考查铅球与车子(人)的作

用。 第一个球与(N –1)个球、人、车系统作用, 完毕

后, 值得注意的是,根据运动合成法则 v 球 地 v 球 车 v 车 地 ,铅球对地的速度并不

I = m 3 v 1 cos α+ I 2 m 2 m 3 sin

答: β= arc tg m 1 m 2 tg

m 2

得: V 1 = ① 设“系统” 速度为 u 1

是(-v ),而是(-v + u 1)。它们动量守恒方程为:0 = m(-v + u 1) + 〔M +(N-1)m〕u1

得: u 1 = v

M Nm

第二个球与( N -2 )个球、人、车系统作用,完毕后,设“系统”速度为 u 2 它们动量守恒方程为:

〔M+(N-1)m 〕u 1 = m(-v + u 2) + 〔M+(N-2)m 〕 u 2

mm v + v M Nm M (N 1)m

第三个球与( N -2 )个球、人、车系统作用,完毕后,设“系统”速度为 u 3 铅球对地的速度是( -v + u 3)。它们动量守恒方程为:

〔M+(N-2)m 〕u 2 = m(-v + u 3) + 〔M+(N-3)m 〕 u 3

我们再将①式改写成: 不难发现,①′式和②式都有 N 项,每项的分子都相同,但①′式中每项的 分母都比②式中的分母小,所以有: V 1 > V 2 。

结论:第一过程使车子获得的速度较大。

(学生活动)思考:质量为 M 的车上,有 n 个质量均为 m 的人,它们静止在 光滑的水平地面上。现在车上的人以相对车大小恒为 v 、方向水平向后的初速往 车下跳。第一过程, N 个人同时跳下;第二过程, N 个人依次跳下。试问:哪一 次车子获得的速度较大?

解: 第二 过程 结论 和上 面的 模型 完 全 相 同, 第一 过 程结论 为 V 1 =

答:第二过程获得速度大。

四、反冲运动中的一个重要定式

物理情形:如图 4 所示, 长度为 L 、质量为 M 的船停 止在静水中 (但未抛锚),船 头上有一个质量为 m 的人, 也是静止的。现在令人在船简通分

)? ?, u N 的通式已经可以找出: 得: u 3 = v + M Nm

M m (N v + 1)m M m (N v 2)m 以此类推(过程注意:先找 u N 和 u N-1 关系,再看 u N 和 v 的关系,不要急于化 M m v Nm +

M

m (N v 1)m + M m (N v 2)m + ? + m Mm

得: u 2 = 即: V 2 =

i 1 M im

V 1 =

N i1

①′ n i1 m

M nm

上开始向船尾走动,忽略水的阻力,试问:当人走到船尾时,船将会移动多远?(学生活动)思考:人可不可能匀速(或匀加速)走动?当人中途停下休息,船有速度吗?人的全程位移大小是L 吗?本系统选船为参照,动量守恒吗?模型分析:动量守恒展示了已知质量情况下的速度关系,要过渡到位移关系,需要引进运动学的相关规律。根据实际情况(人必须停在船尾),人的运动不可能是匀速的,也不可能是匀加速的, 运动学的规律应选择S =

vt 。为寻求时间t ,则要抓人和船的位移约束关系。

对人、船系统,针对“开始走动→中间任意时刻”过程,应用动量守恒(设末态人的速率为v ,船的速率为V),令指向船头方向为正向,则矢量关系可以化为代数运算,有:

0 = MV + m(-v)即:mv = MV 由于过程的末态是任意选取的,此式展示了人和船在任一时刻的瞬时速度大小关系。而且不难推知,对中间的任一过程,两者的平均速度也有这种关系。即:

m v = M V

设全程的时间为t ,乘入①式两边,得:mvt = M V t

设s和S分别为人和船的全程位移大小,根据平均速度公式,得:m s = M S ②

受船长L 的约束,s 和S 具有关系:s + S = L

③ 解②、③可得:船的移动距离S = m L

Mm (应用动量守恒解题时,也可以全部都用矢量关系,但这时“位移关系”表达起来难度大一些——必须用到运动合成与分解的定式。时间允许的话,可以做一个对比介绍。)

另解:质心运动定律人、船系统水平方向没有外力,故系统质心无加速度→系统质心无位移。先求出初态系统质心(用它到船的质心的水平距离x表达。根据力矩平衡知识,得:

),又根据,末态的质量分布与初态比较,相对整2(m M)体质心是左右对称的。弄清了这一点后,求解船的

质心位移易如反掌。

(学生活动)思考:如图5 所示,在无风的天空,人抓住气球

下面的绳索,和气球恰能静止平衡,人和气球地质量分别为m 和

M ,此时人离地面高h 。现在人欲沿悬索下降到地面,试问:要

人充分安全地着地,绳索至少要多长?

解:和模型几乎完全相同,此处的绳长对应模型中的“船的长

度”(“充分安全着地”的含义是不允许人脱离绳索跳跃着地)。

mM

h 。

答:

M

这样,特征就明显了:质点的轨迹是一个长、短半轴分别为 R 和 M R 的

Mm 椭圆。

五、功的定义式中 S 怎么取值?

学生活动)思考:如图 6 所示,两个倾角相同的斜面,互相倒扣着放在

光 滑的水平地面上, 小

斜面 在大斜面的顶端。

将它们 无初速释放后,

小斜面下 滑,大斜面后

退。已知大、 小斜面的

质量分别为 M 和 m ,底

边长分别为 a 和 b ,试

求:小斜面滑 到底端

时,大斜面后退的 距离

解:水平方向动量守恒。解题过程从略。

答: m ( a - b )。

Mm

进阶应用:如图 7所示,一个质量为 M ,

半 径为 R 的光滑均质半球,静置于光滑水平桌

面上, 在球顶有一个质量为 m 的质点,由静

止开始沿球 面下滑。试求:质点离开球面以前

的轨迹。

解说:质点下滑,半球后退,这个物理情

形 和上面的双斜面问题十分相似,仔细分析,

由于 同样满足水平方向动量守恒,故我们介绍

的 “定式”是适用的。定式解决了水平位移(位

置)的问题,竖直坐标则需要从数学的角度 想

为寻求轨迹方程,我们需要建立一个

坐 标:以半球球心 O 为原点,沿质点滑

下一侧 的水平轴为 x 坐标、竖直轴为 y

坐标。

由于质点相对半球总是做圆周运动的

(离开球面前),有必要引入相对运动

中半 球球心 O ′的方位角θ来表达质点的

瞬时位 置,如图 8 所示。

由“定式”,易得:

x = M Rsin θ Mm 不难看出,①、②两式实际上已经是一个轨迹的参数方程。为了明确轨迹的 性质,我们可以将参数θ消掉,使它们成为:

+ (M M m R)2 +

2

R y 22 = 1

在求解功的问题时,有时遇到力的作用点位移与受力物体的(质心)位移不等,S是取力的作用点的位移,还是取物体

(质心)的位移呢?我们先看下面一些事例。

1、如图9 所示,人用双手压在台面上推讲

台,结果双手前进了一段位移而讲台未移动。试

问:人是否做了功?

2、在本“部分”第3 页图1 的模型中,求拉力

做功时,S 是否可以取绳子质心的位移?

3、人登静止的楼梯,从一楼到二楼。楼梯是

否做功?

4、如图10 所示,双手用等大反向的力F压

定汽缸两边的活塞,活塞移动相同距离S,汽缸中封闭气体被压缩。施力者(人)是否做功?

在以上四个事例中,S 若取作用点位移,只有第1、2、4 例是做功的(注意第3例,楼梯支持力的作用点并未移动,而只是在不停地交换作用点),S 若取物体(受力者)质心位移,只有第2、3 例是做功

的,而且,尽管第2 例都做了功,数字并不相同。所

以,用不同的判据得出的结论出现了本质的分歧。

面对这些似是而非的“疑难杂症”,我们先回到“做功

是物体能量转化的量度”这一根本点。

第1 例,手和讲台面摩擦生了热,内能的生成必然是由人的生物能转化而来,人肯定做了功。S宜取作用点的位移;

第2 例,求拉力的功,在前面已经阐述,S 取作用点位移为佳;第3 例,楼梯不需要输出任何能量,不做功,S 取作用点位移;第4 例,气体内能的增加必然是由人输出的,压力做功,S 取作用点位移。但是,如果分别以上四例中的受力者用动能定理,第1 例,人对讲台不做功,S取物体质心位移;第2例,动能增量对应S取L/2 时的值——物体质心位移;第4 例,气体宏观动能无增量,S取质心位移。(第3 例的分析暂时延后。)以上分析在援引理论知识方面都没有错,如何使它们统一?原来,功的概念有广义和狭义之分。在力学中,功的狭义概念仅指机械能转换的量度;而在物理学中功的广义概念指除热传递外的一切能量转换的量度。所以功也可定义为能量转换的量度。一个系统总能量的变化,常以系统对外做功的多少来量度。能量可以是机械能、电能、热能、化学能等各种形式,也可以多种形式的能量同时发生转化。由此可见,上面分析中,第一个理论对应的广义的功,第二个理论对应的则是狭义的功,它们都没有错误,只是在现阶段的教材中还没有将它们及时地区分开来而已。

而且,我们不难归纳:求广义的功,S 取作用点的位移;求狭义的功,S 取物体(质心)位移。

那么我们在解题中如何处理呢?这里给大家几点建议:1 、抽象地讲“某某力做的功”一般指广义的功;2、讲“力对某物体做的功”常常指狭义的功;3、动能定理中的功肯定是指狭义的功。

当然,求解功地问题时,还要注意具体问题具体分析。如上面的第3 例,就相对复杂一些。如果认为所求为狭义的功,S 取质心位移,是做了功,但结论仍

然是难以令人接受的。下面我们来这样一个处理:将复杂的形变物体(人)看成这样一个相对理想的组合:刚性物体下面连接一压缩的弹簧(如图11 所示),人

每一次蹬梯,腿伸直将躯体重心上举,等效为弹簧将刚性物体举起。这样,我们就不难发现,做功的是人的双腿而非地面,人既是输出能量

(生物能)的机构,也是得到能量(机械能)的机构——这里的物

理情形更象是一种生物情形。本题所求的功应理解为广义功为

宜。

以上四例有一些共同的特点:要么,受力物体情形比较复杂

(形变,不能简单地看成一个质点。如第2、第3、第4 例),要

么,施力者和受力者之间的能量转化不是封闭的(涉及到第三方,或机械能以外的形式。如第1 例)。以后,当遇到这样的问题时,需要我们慎重对待。

学生活动)思考:足够长的水平传送带维持匀速v 运转。将一袋货物无初

速地放上去,在货物达到速度v 之前,与传送带的摩擦力大小为f ,对地的位移为S 。试问:求摩擦力的功时,是否可以用W = fS ?解:按一般的理解,这里应指广义的功(对应传送带引擎输出的能量),所以“位移”取作用点的位移。注意,在此处有一个隐含的“交换作用点” 的问题,仔细分析,不难发现,每一个(相对皮带不动的)作用点的位移为2S 。(另解:求货物动能的增加和与皮带摩擦生热的总和。)

答:否。

(学生活动)思考:如

图12 所示,人站在船上,

通过拉一根固定在铁桩的

缆绳使船靠岸。试问:缆

绳是否对船和人的系统做

功?

解:分析同上面的“第3

例”。

答:否。

六、机械能守恒与运动合成(分解)的综合

物理情形:如图13 所示,直角形的刚性杆被固定,水平和竖直部分均足够长。质量分别为m1 和m2 的A、B 两个有孔小球,串在杆上,且被长为L 的轻绳相连。忽略两球的大小,初态时,认为它们的位置在同一高度,且绳处于拉直状态

现无初速地将系统释放,忽略一切摩擦,试求B 球运动L/2 时的速度v2 。模型分析:A、B 系统机械能守恒。A、B 两球的瞬时速度不等,其关系可据

“第三部分”知识介绍的定式(滑轮小船)去寻求。

(学生活动)A 球的机械能是否守恒?B

球的机械能是否守恒?系统机械能守恒的理

由是什么(两法分析:a、“微元法”判断两个

W T的代数和为零;b、无非弹性碰撞,无摩

擦,没有其它形式能的生成)?

由“拓展条件”可以判断,A、B 系统机械

能守恒,(设末态A 球的瞬时速率为v1 )过

的方程为:

L m2g 2 = 在末态, 据“第三部分”知识介绍的定式,有: v 1 =

v/cos30 ° , v 2 = v/sin30

两式合并成: v 1 = v 2 tg30 °= v 2/ 3

m 1 m 2 七、动量和能量的综合(一)

物理情形:如图 14 所示,两根长度均为 L 的刚性轻杆,一端通过质量为 m 的球形铰链连接,另一端分别与质量为 m 和 2m 的小球相连。将此装置的两杆合 拢,铰链在上、竖直地放在水平桌面上,然后轻敲一下,使两小球向两边滑动, 但两杆始终保持在竖直平面内。忽略一

切摩擦,试 求:两杆夹角为 90°时,质量为 2m 的小

球的速度 v 2 。

模型分析:三球系统机械能守恒、水平方向动 量

守恒,并注意约束关系——两杆不可伸长。

(学生活动)初步判断:左边小球和球形铰链 的

速度方向会怎样?

设末态(杆夹角 90°)左边小球的

速度为 v 1(方 向:水平向左),球形铰

链的速度为 v 直方向夹θ角斜向左) ,

对题设过程,三球系统机械能守恒,

右边杆子不形变,有:

vcos (45 ° + θ )

四个方程,解四个未知量

v 和θ),是可行的。推荐解方程的步骤如下——

1、③、④两式用 v 2替代 v 1和 v ,代入②式,解θ值,得: tgθ= 1/4 ,设绳子的瞬时迁移速率为 v ,根 1212

m 1v 1 + m 2v 2

2 1 1 2 2 2 绳与水平杆的瞬时夹角为 30 解①、②两式,得: v 2 3m 2gL

方向:和竖 2 1 2 1 2 mg( L- L) = m v 12 + mv + 2 2 2

三球系统水平方向动量守恒,有: mv + mvsin θ

12 2m v 22 2mv 2 左边杆子不形变,有:

v 1cos45 ° = vcos (45

θ)

有:

v 2cos45 v 1 、v 2

2、在回到③、④两式,得:5

5 17 v1 = v2 , v = v2

3

3、将 v 1 、v 的替代式代入①式解 v 2 即可。结果: v 2 = 3gL (2 2)

20

(学生活动)思考:球形铰链触地前一瞬,左球、铰链和右球的速度分别是 多少?

解:由两杆不可形变,知三球的水平速度均为零,θ为零。一个能量方程足 以解题。

答: 0 、 2gL 、0 。

(学生活动)思考:当两杆夹角为 90°时,右边小球的位移是多少? 解:水平方向用“反冲位移定式” ,或水平方向用质心运动定律。

答: 3 6 L 。

8

进阶应用:在本讲模型“四、反冲??”的“进阶应用” (见图 8)中,当质 点 m 滑到方位角θ时(未脱离半球) ,质点的速度 v 的大小、方向怎样?

解说:此例综合应用运动合成、动量守恒、机械 能守恒知识,数学运算比较繁复, 是一道考查学生各 种能力和素质的难题。

据运动的合成,有:

v 点 半球 = v 点 地 + v 地 半球 = v 点 地 -

v 半球 地

其中 v 半球 地 必然是沿地面向左的,为了书写方

便,我们设其大小为 v 2 ;v 点 半球 必然是沿半球瞬时位

置切线方向(垂直瞬时半 径)的,设大小为 v 相 。根

据矢量减法的三角形法则,可以得到 v 点 地 (设大小 为 v 1)的示意图,如图 16 所示。同时,我们将 v 1的 x 、y 分量 v 1x 和 v 1y 也描绘在 图中。

由图可得: v 1y = (v 2 + v 1x )tg θ 质点和半球系统水平方向动量守恒,有: Mv 2 = mv 1x

1 1

2 m ( v 12x + v 12y )

v 2 、v 1x 、 v 1y )是可行的,但数学运

算繁复,推

对题设过程,质点和半球系统机械能守恒,有: mgR (1-cosθ ) =

2 m v 1 2 ,即: ① ② 1M v 2 + 2

mgR(1-cosθ) = 1 M v 22 + 22 三个方程,解三个未知量(

这就是最后的解。

一 个 附属 结 果: 质 点相 对 半球 的 瞬时 角 速 度 ω

3 。〕

R(M msin 2 )

八、动量和能量的综合(二)

物理情形:如图 17所示,在光滑的水平面上,质量为 M = 1 kg 的平板车左 端放有质量为 m = 2 kg 的铁块,铁块与车之间的摩擦因素μ = 0.5 。开始时, 车和铁块以共同速度 v = 6 m/s 向右运动,车与右边的墙壁发生正碰,且碰撞是 弹性的。车身足够长,使铁块不能和墙相碰。重力加速度 g = 10 m/s 2 ,试求: 1、铁块相对车运动的总路程; 2、平板车第一次碰墙后所走的总路程。

模型分析:本模 型介绍有两对相互 作用时的处理常规。 能量关系介绍摩擦 生热定式的应用。由 于过程比较复杂,动 量分析还要辅助以 动力学分析,综合程 度较高。

由于车与墙壁的作用时短促而激烈的,而铁块和车的作用是舒缓而柔和的, 当两对作用同时发生时, 通常处理成 “让短时作用完毕后, 长时作用才开始”(这 样可以使问题简化)。在此处,车与墙壁碰撞时,可以认为铁块与车的作用尚未 发生,而是在车与墙作用完了之后,才开始与铁块作用。

规定向右为正向,将矢量运算化为代数运算。

车第一次碰墙后, 车速变为- v ,然后与速度仍为 v 的铁块作用, 动量守恒, 作用完毕后,共同速度 v 1 = mv M( v) = v ,因方向为正,必朝墙运动。

m M 3

(学生活动)车会不会达共同速度之前碰墙?动力学分析:车离墙的最大位 1、由①、②式得: v 1x = M v 2 , m v 1y = ( m M tgθ) v 2 m 2、代入③式解 v ,得: v = 2 2m 3gR(1 cos ) 2 22 M 2

Mm (M m ) 2 tg 2

3 、 由 v 12 = 2 v 1x + 2 v 1y 解 v 1 , 得: v 1 2 2 2 2 2gR(1 cos )(M 2 2Mm sin 2

m 2sin 2 )

= 2 2 M 2 Mm m(M m)sin 2 v 1的方向:和水平方向成α角,α

= arctg v 1y = arctg

v 1x M M m tg

v 相

R

2g(m M)(1 cos )

2

运动。 车第三次碰墙,??共同速度 v 3 = 3 = 3v 3 ,朝墙运动

以此类推,我们可以概括铁块和车的运动情况—— 铁块:匀减速向右→匀速向右→匀减速向右→匀速向右?? 平板车:匀减速向左→匀加速向右→匀速向右→匀减速向左→匀加速向右→ 匀速向右??

显然,只要车和铁块还有共同速度,它们总是要碰墙,所以最后的稳定状态 是:它们一起停在墙角(总的末动能为零) 。

1、全程能量关系:对铁块和车系统,-Δ E k =ΔE 内 ,且,Δ E 内 = f 滑 S 相 , 12

即: (m + M )v = μmg ·S 相

2

代入数字得: S 相 = 5.4 m

2、平板车向右运动时比较复杂,只要去每次向左运动的路程的两倍即可。 而向左是匀减速的,故

n 次碰墙的总路程是: ΣS = 2( S 1 + S 2 + S 3 + ?

+ S n )= v 2 1 a ( 1 + 32 + a 3 1 314 + ? + 2(1n 1) ) 2(n 1) 2 = v ( 1 + 312

1 1 ? + 2( n 1) ) + 4 + mg 3

2 34 32(n 1) M

碰墙次数 n →∞,代入其它数字,得:Σ S = 4.05 m 移 S = v , 反向加速的位移 S ′ 2a

2

v 1 2a 1 ,其中 a = a 1 = M mg ,故 S ′< S ,所 以,车碰墙之前,必然已和铁块达到共同速度 v 1 。

车第二次碰墙后, 车速变为- v 1 ,然后与速度仍为 v 1的铁块作用,动量守恒, 作用完毕后,共同速度 mv 1 M ( v 1) mM v 1 3 v 2 ,因方向为正,必朝墙 第一次: S 1 =

第二次: S 2 =

2 v 12

= 1 2 v 2a 2a 32 2 1 2

v 2 = v 2a 2a 34 2 v

2a

(学生活动)质量为 M 、程度为 L 的木板固定在光滑水平面上,另一

个质 量为 m 的滑块以水平初速 v 0 冲上木板,恰好能从木板的另一端滑下。现解除木 板的固定(但无初速),让相同的滑块再次冲上木板, 要求它仍能从另一端滑下, 其初速度应为多少?

2 解:由第一过程,得滑动摩擦力 f = mv0 。

2L 第二过程应综合动量和能量关

系( “恰滑下”的临界是:滑块达木板的另 一端,和木板具有共同速度,设为 v ),设新的初速度为 v 0

m v 0 = ( 12 m v 0 20 解以上三式即可。

1( m + M )v 2 = fL 2

答:

mM

v0= M v0 。

物理竞赛角动量

物理竞赛角动量文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力F 分解为平行于轴的分量F∥和垂直于轴的分量F⊥两部 分,其中F1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选定的 参照系中,从参考点0 指向力的作用点P的矢量r与作 用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢. 根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点的位矢.当质点受 F1、F2、…、F N N个力同时作用时,诸力对某参考点的力矩的矢量和等 于合力F=F1+F2+…+F N对同一参考点的力矩,即 r×F1+r×F2+…+r×F N=r×(F1+F2+…+F N)=r×F (5. 1-3) 2. 作用于质点系的力矩

高中物理竞赛知识系统整理

物理知识整理 知识点睛 一.惯性力 先思考一个问题:设有一质量为m 的小球,放在一小车光滑的水平面上,平面上除小球(小球的线度远远小于小车的横向线度)之外别无他物,即小球水平方向合外力为零。然后突然使小车向右对地作加速运动,这时小球将如何运动呢? 地面上的观察者认为:小球将静止在原地,符合牛顿第一定律; 车上的观察者觉得:小球以-a s 相对于小车作加速运动; 我们假设车上的人熟知牛顿定律,尤其对加速度一定是由力引起的印象至深,以致在任何场合下,他都强烈地要求保留这一认知,于是车上的人说:小球之所以对小车有 -a s 的加速度,是因为受到了一个指向左方的作用力,且力的大小为 - ma s ;但他同时又熟知,力是物体与物体之间的相互作用,而小球在水平方向不受其它物体的作用, 物理上把这个力命名为惯性力。 惯性力的理解 : (1) 惯性力不是物体间的相互作用。因此,没有反作用。 (2)惯性力的大小等于研究对象的质量m 与非惯性系的加速度a s 的乘积,而方向与 a s 相反,即 s a m f -=* (3)我们把牛顿运动定律成立的参考系叫惯性系,不成立的叫非惯性系,设一个参考系相对绝对空间加速度为a s ,物体受相对此参考系 加速度为a',牛顿定律可以写成:a m f F '=+* 其中F 为物理受的“真实的力”,f*为惯性力,是个“假力”。 (4)如果研究对象是刚体,则惯性力等效作用点在质心处, 说明:关于真假力,绝对空间之类的概念很诡异,这样说牛顿力学在逻辑上都是显得很不严密。所以质疑和争论的人比较多。不过笔者建议初学的时候不必较真,要能比较深刻的认识这个问题,既需要很广的物理知识面,也需要很强的物理思维能力。在这个问题的思考中培养出爱因斯坦2.0版本的概率很低(因为现有的迷惑都被1.0版本解决了),在以后的学习中我们的同学会逐渐对力的概念,空间的概念清晰起来,脑子里就不会有那么多低营养的疑问了。 极其不建议想不明白这问题的同学Baidu 这个问题,网上的讨论文章倒是极其多,不过基本都是民哲们的梦呓,很容易对不懂的人产生误导。 二.惯性力的具体表现(选讲) 1.作直线加速运动的非惯性系中的惯性力 这时惯性力仅与牵连运动有关,即仅与非惯性系相对于惯性系的加速度有关。惯性力将具有与恒定重力相类似的特性,即与惯性质量正比。记为: s a m f -=* 2.做圆周运动的非惯性系中的惯性力 这时候的惯性力可分为离心力以及科里奥利力: 1)离心力为背向圆心的一个力: r m f 2ω=*

高中奥林匹克物理竞赛解题方法之七对称法

例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A , 抛出点离水平地面的高度为h ,距离墙壁的水平距离为s , 小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示. 求小球抛出时的初速度. 解析:因小球与墙壁发生弹性碰撞, 故与墙壁碰撞前后入射速度与反射速度具有对称性, 碰撞后小球的运 动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理, 效果上相当于小球从A ′点水平抛出所做的运动. 根据平抛运动的规律:?? ? ??==2 021gt y t v x 因为抛出点到落地点的距离为3s ,抛出点的高度为h 代入后可解得:h g s y g x v 2320 == 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距为d , 一个小球以初速度0v 从两墙正中间的O 点斜向上抛出, 与A 和B 各发生一次碰撞后正好落回抛出点O , 求小球的抛射角θ. 解析:小球的运动是斜上抛和斜下抛等三段运动组成, 若按顺序求解则相当复杂,如果视墙为一平面镜, 将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解. 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有 ? ??==?? ???-==0221sin cos 200y d x gt t v y t v x 落地时θθ 代入可解得2 202arcsin 2122sin v dg v dg == θθ 所以抛射角 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬 想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于 三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可. 由题意作图7—3, 设顶点到中心的距离为s ,则由已知条件得 a s 3 3 = 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为 v v v 2330cos = =' 由此可知三角形收缩到中心的时间为 v a v s t 32='= 此题也可以用递推法求解,读者可自己试解. 例4:如图7—4所示,两个同心圆代表一个圆形槽,质量为m ,内外半径几乎同为R. 槽内A 、B 两处分别放有一个质量也为m 的小球,AB 间的距离为槽的直径. 不计一切摩擦. 现将系统置于光滑水平面上,开始时槽静止,两小球具有垂直于AB 方向的速度v ,试求两小球第一次相距R 时,槽中心的速度0v . 解析:在水平面参考系中建立水平方向的x 轴和y 轴. 由系统的对称性可知中心或者说槽整体将仅在x 轴方向上 运动。设槽中心沿x 轴正方向运动的速度变为0v ,两小球相对槽心做角速度大小为ω的圆周运动,A 球处于

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

物理竞赛 角动量

第一节力矩和角动量 【知识要点】 一、力矩的定义 1.对轴的力矩 对轴的力矩可推动物体绕轴转动或改变物体绕轴转动的角速度.力矩的大小不仅 与力的大小和方向有关,而且与力的作用点有关.当力的作用线在垂直于轴的平面(π)上时(图5-1-1),力矩τ的大小与力的作用点P和轴的距离ρ成正比,与力在垂直于ρ方向上的分量Fφ成正比,因为力在ρ方向上的分量Fρ对物体的绕轴转动无作用,于是有 τ=ρFφ=Fρsinθ(5. 1-1) 式中θ是F与ρ的夹角,ρ就是从轴与平面π的交点O'指向P点的矢量,由于在力矩作用下引起的转动有两个可能的方向,力矩也有正、负两种取向.例如,先任意规定轴的正方向,当逆着轴的正方向去看力矩作用下所引起的物体的转动时,若物体沿逆时针方向转动,对应的力矩就取为正,反之为负.由于ρsinθ=d就是力的作用线与轴的距离,(5. 1-1)式又可写成 τ = Fd (5. 1-1a) d常称为力臂,这正是大家所熟知的力矩表达式. 当力的作用线不在垂直于轴的平面(π)上时,可将力 F分解为平行于轴的分量F ∥ 和垂直于轴的分量F⊥两 部分,其中F // 对物体绕轴转动不起作用,而F⊥就是 在垂直于轴的平面(π)上的投影,故这时F对轴的 力矩可写成 τ=ρF⊥sinθ(5. 1-1b) 这里的θ是F⊥与ρ的夹角(图5-1-2). 2.对参考点的力矩 可将上述对轴的力矩的概念推广到对点的力矩.在选 定的参照系中,从参考点0 指向力的作用点P的矢量r与作用力F的矢积称为作用力对于参考点0的力矩,即 Τ=r×F(5-1-2) r也可称为作用点相对参考点的位矢.当参考点是坐标原点时,r就是力的作用点的位矢.根据矢积的意义,力矩的大小等于以r和F两矢量为邻边所构成的平行四边形的面积,方向与r、F所在平面垂直并与r、F成右手螺旋。 二、作用于质点的力矩和作用于质点系的力矩 1.作用于质点的力矩 当质点m受力F作用时,F对参考点〇的力矩即为质点受到的力矩,这时力矩表达式(5.1-2)中的r就是参考点指质点的矢量,当参考点为坐标原点时,r就是质点 的位矢.当质点受F 1、F 2 、…、F N N个力同时作用时,诸力对某参考点的力矩的

高中物理竞赛经典方法 2.隔离法

二、隔离法 方法简介 隔离法就是从整个系统中将某一部分物体隔离出来,然后单独分析被隔离部分的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。 赛题精讲 例1:两个质量相同的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2 , 则物体1施于物体2的作用力的大小为( ) A .F 1 B .F 2 C .12F F 2+ D .12F F 2 - 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。先以整体为研 究对象,根据牛顿第二定律:F 1-F 2 = 2ma ① 再以物体2为研究对象,有N -F 2 = ma ② 解①、②两式可得N = 12 F F 2 +,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面( ) A .向左动 B .向右动 C .不动 D .运动,但运动方向不能判断 解析:A 的运动有两种可能,可根据隔离法分析 设AB 一起运动,则:a =A B F m m + AB 之间的最大静摩擦力:f m = μm B g 以A 为研究对象:若f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。 若μ< A B B A m m (m m )g + F ,则A 向右运动,但比B 要慢,所 以应选B 例3:如图2—3所示,已知物块A 、B 的质量分别为m 1 、m 2 ,A 、B 间的摩擦因数为μ1 ,A 与地面之间的摩擦因数为μ2 ,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大? 解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N = m 2g 。

高中物理竞赛流程详细解析

高中物理竞赛流程详细解析 高中物理竞赛国内竞赛主要分为:物理竞赛预赛、物理竞赛复赛、物理竞赛决赛三个流程,国际性赛事分为国际物理奥林匹克竞赛和亚洲物理奥林匹克竞赛。 一、全国中学生物理竞赛预赛(CPhO) 1、高中物理竞赛入门级赛事,每年9月上旬举办(也就是秋学期开学),由全国竞赛委员会统一命题,各省市、学校自行组织,所有中学生均可报名; 2、考试形式:笔试,共3小时,5道选择题、每题6分,5道填空题、每题10分,6道大题、每题20分,共计200分; 3、考试主要考力学、热学、电磁学、光学、近代物理等相关内容(回台回复“物竞考纲”查看明细); 4、比赛分别设置了一等奖、二等奖和三等奖,因为预赛主要是各省市为了选拔复赛选手而筹备的,所以一般一等奖可以参加复赛。 5、一般来说,考完试后2~3天即可在考点查询成绩。 二、全国中学生物理竞赛复赛(CPhO) 1、高中阶段最重要的赛事,其成绩对于自主招生及参加清北学科营等有直接影响,每年9月下旬举办(也就是预赛结束后)。 2、复赛分为笔试+实验: 笔试,共3小时,8道大题,每题40分,共计320分; 实验,共90分钟,2道实验,每道40分,共计80分; 总分400分。 3、笔试由全国竞赛委员会统一命题,各省市自行组织、规定考点,大多数省份只有预赛一等奖的同学可以参加; 实验由各省市自行命题,根据笔试成绩组织前几十名左右考生参加(也就是说实验不是所有人都考,只有角逐一等奖的同学才参加),最终根据实验和笔试的总成绩评定出一等奖、二等奖、三等。 4、各省市的实验时间稍有不同,具体可参考当地往年的考试时间。 5、考试内容在预赛的基础上稍有增加,具体考纲后台回复“物竞考纲”查看。 6、比赛设置了一等奖、二等奖、三等奖,也就是我们常说的省一、省二、省三,其中各省省一前几名入选该省省队,可参加决赛。 7、成绩有什么用? 省一等奖可基本满足除清华、北大、复旦以外其他985/211高校的自主招生条件; 省二等奖可满足部分985/211高校的自主招生条件; 省三等奖可满足大部分211学校的自主招生条件。 8、各省省队成员可参加清北金秋营、冬令营,并根据成绩获得降分优惠。

高中物理竞赛教程(超详细修订版)_第九讲_机械振动和机械波

第五讲 机械振动和机械波 §5.1简谐振动 5.1.1、简谐振动的动力学特点 如果一个物体受到的回复力回F 与它偏离平衡位置的位移x 大小成正比,方向相反。即满足: K F -=回的关系,那么这个物体的运动就定义为简谐振动。根据牛顿第二定律,物体的加速度m K m F a -== 回x ,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大 小成正比,方何相反。 现有一劲度系数为k 的轻质弹簧,上端固定在P 点,下端固定一个质量为m 的物体,物体平衡时的位置记作O 点。现把物体拉离O 点后松手,使其上下振动,如图5-1-1所示。 当物体运动到离O 点距离为x 处时,有 mg x x k mg F F -+=-=)(0回 式中 0x 为物体处于平衡位置时,弹簧伸长的长度,且有mg kx =0,因此 kx F =回 说明物体所受回复力的大小与离开平衡位置的位移x 成正比。因回复力指向平衡位置O ,而位移x 总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。 注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。 5.1.2、简谐振动的方程 由于简谐振动是变加速运动,讨论起来极不方便,为此。可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O 为圆心,以振幅A 为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度ω作匀速圆周运动,它在开始时与O 的连线跟x 轴夹角为0?,那么在时刻t ,参考圆上的质点与O 的连线跟 x 的夹角就成为 0?ω?+=t ,它在x 轴上的投影点的坐标 )cos(0?ω+=t A x (2) 这就是简谐振动方程,式中0?是t=0时的相位,称为初相:0?ω+t 是t 时刻的相位。 参考圆上的质点的线速度为ωA ,其方向与参考圆相切,这个线速度在x 轴上的投影是 0cos(? ωω+-=t A v ) (3) 这也就是简谐振动的速度 参考圆上的质点的加速度为2 ωA ,其方向指向圆心,它在x 轴上的投影是 02 cos(?ωω+-=t A a ) (4) 这也就是简谐振动的加速度 由公式(2)、(4)可得 x a 2ω-= 由牛顿第二定律简谐振动的加速度为 x m k m F a -== 因此有 m k = 2ω (5) 简谐振动的周期T 也就是参考圆上质点的运动周期,所以 图5-1-1 图5-1-2

高中物理竞赛讲义-角动量

角动量 一、力矩(对比力) 1、质点对轴的力矩可以使物体绕轴转动或改变物体的角速度 2、力矩可以用M 或τ表示 3、力矩是矢量 4、力矩的大小和方向 (1)二维问题 sin rF τθ= 注意,式中的角度θ为F 、r 两个矢量方向的夹角。 求力矩的两种方法:(类比求功的两种方法) (sin )r F τθ= (sin )r F τθ= 二维问题中,力矩的方向可以简单地用顺时针、逆时针表示。 (2)三维问题 r F τ=?r r r 力矩的大小为 sin rF τθ= 力矩的方向与r 和F 构成的平面垂直,遵循右手螺 旋法则 5、质点系统受到的力矩 只需要考虑外力的力矩,一对内力的力矩之和一定为0. 二、冲量矩(对比冲量) 1、冲量矩反映了冲量改变物体转动的效果,是一个过程量 2、冲量矩用L 表示 3、冲量矩的大小 L r I r Ft t τ=?=?=r r u r r r r 4、冲量矩是矢量,方向与r 和F 构成的平面垂直,遵循右手螺旋法则,即方向和力矩的方向相同 5、经常需用微元法(类比功和冲量这两个过程量的计算) 三、动量矩(即角动量)(对比动量) 1、角动量反映了物体转动的状态,是一个状态量 2、角动量用l 表示 3、角动量的大小 l r p r vm =?=?u r r r r r 4、角动量是矢量,方向与r 和v 构成的平面垂直,遵循右手螺旋法则 四、角动量定理(对比动量定理) 冲量矩等于角动量的变化量 L t l τ==?r r r

五、角动量守恒定律(对比动量守恒定律) 角动量守恒的条件:(满足下列任意一个即可) 1、合外力为0 2、合外力不为0,但合力矩为0 例如:地球绕太阳公转 此类问题常叫做“有心力”模型 3、合外力不为0,每个瞬时合力矩也不为0,但全过程总的冲量矩为0 例如:单摆从某位置摆动到对称位置的过程 注意:讨论转动问题一定要规定转轴,转轴不同结果也不同 六、转动惯量(对比质量) 1、转动惯量反映了转动中惯性 2、转动惯量用I 或J 表示 3、质点的转动惯量等于质量乘以和转轴距离的平方 2I mr = 4、转动惯量是标量 5、由于实际物体经常不能看作质点,转动惯量的计算需要用微元法或微积分 2 i i I m r =∑ 6、引入转动惯量后,角动量也可以表示为(类比动量的定义) l I ω=r r 七、转动问题中的牛顿第二定律(即转动定理)(对比牛顿第二定律) 合力矩等于转动惯量乘以角加速度 I τβ=r r 八、动能的另一种表示方式 221122 k E mv I ω= =

高中物理竞赛经典方法 7对称法

七、对称法 方法简介 由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中。应用这种对称性它不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法。利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。 赛题精析 例1:沿水平方向向一堵竖直光滑的墙壁抛出一个弹性小球A ,抛出点离水平地面的高度为h ,距离墙壁的水平距离为s ,小球与墙壁发生弹性碰撞后,落在水平地面上,落地点距墙壁的水平距离为2s ,如图7—1所示。求小球抛出时的初速度。 解析:因小球与墙壁发生弹性碰撞,故与墙壁碰撞前后入射速度与反射速度具有对称性,碰撞后小球的运动轨迹与无墙壁阻挡时小球继续前进的轨迹相对称,如图7—1—甲所示,所以小球的运动可以转换为平抛运动处理,效果上相当于小球从A ′点水平抛出所做的运动。 根据平抛运动的规律:02x v t 1y gt 2 =???=?? 因为抛出点到落地点的距离为3s ,抛出点的高度为h ,代入后可解得: v 0 = 3s 例2:如图7—2所示,在水平面上,有两个竖直光滑墙壁A 和B ,间距

为d ,一个小球以初速度v 0从两墙正中间的O 点斜向上抛出,与A 和B 各发生一次碰撞后正好落回抛出点O ,求小球的抛射角θ。 解析:小球的运动是斜上抛和斜下抛等三段运动组成,若按顺序求解则相当复杂,如果视墙为一平面镜,将球与墙的弹性碰撞等效为对平面镜的物、像移动,可利用物像对称的规律及斜抛规律求解。 物体跟墙A 碰撞前后的运动相当于从O ′点开始的斜上抛运动,与B 墙碰后落于O 点相当于落到O ″点,其中O 、O ′关于A 墙对称,O 、O ″对于B 墙对称,如图7—2—甲所示,于是有: 02 0x v cos t 1y v sin t gt 2 =θ??? ?=θ?-??,落地时x 2d y 0=??=? 代入可解得:sin2θ = 20 2gd v 所以,抛射角θ =1 2 arcsin 20 2gd v 例3:A 、B 、C 三只猎犬站立的位置构成一个边长为a 的正三角形,每只猎犬追捕猎物的速度均为v ,A 犬想追捕B 犬,B 犬想追捕C 犬,C 犬想追捕A 犬,为追捕到猎物,猎犬不断调整方向,速度方向始终“盯”住对方,它们同时起动,经多长时间可捕捉到猎物? 解析:以地面为参考系,三只猎犬运动轨迹都是一条复杂的曲线,但根据对称性,三只猎犬最后相交于三角形的中心点,在追捕过程中,三只猎犬的位置构成三角形的形状不变,以绕点旋转的参考系来描述,可认为三角形不转动,而是三个顶点向中心靠近,所以只要求出顶点到中心运动的时间即可。 由题意作图7—3 ,设顶点到中心的距离为s ,则由已知条件得: 由运动合成与分解的知识可知,在旋转的参考系中顶点向中心运动的速度为: v ′= vcos30° =

镜像法-高中物理竞赛讲义

镜像法 思路 用假想的镜像电荷代替边界上的感应电荷。 保持求解区域中场方程和边界条件不变。 使用范围:界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 使用范围 界面几何形状较规范,电荷个数有限,且离散分布于有限区域。 步骤 确定镜像电荷的大小和位置。 去掉界面,按原电荷和镜像电荷求解所求区域场。 求解边界上的感应电荷。 求解电场力。 平面镜像1 点电荷对平面的镜像 (a) 无限大接地导体平面上方有点电荷q (b)用镜像电荷-q代替导体平面上方的感应电荷 图4.4.1 点电荷的平面镜像 在无限大接地导体平面(YOZ平面)上方有一点电荷q,距离导体平面的高度为h。 用位于导体平面下方h处的镜像电荷-q代替导体平面上的感应电荷,边界条件维持不变,即YOZ平面为零电位面。 去掉导体平面,用原电荷和镜像电荷求解导体上方区域场,注意不能用原电荷和镜像电荷求解导体下方区域场。

电位: (4.4.2.1 ) 电场强度: (4.4.2.2) 其中, 感应电荷:=> (4.4.2.3) 电场力: (4.4.2.4) 图4.4.2 点电荷的平面镜像图4.4.3 单导线的平面镜像 无限长单导线对平面的镜像 与地面平行的极长的单导线,半径为a,离地高度为h。

用位于地面下方h处的镜像单导线代替地面上的感应电荷,边界条件维持不变。 将地面取消而代之以镜像单导线(所带电荷的电荷密度为) 电位: (4.4.2.5) 对地电容 : (4.4.2.6 平面镜像2 无限长均匀双线传输线对平面的镜 像 与地面平行的均匀双线传输线, 半径为a,离地高度为h,导线间距离为d, 导线一带正电荷+,导线二带负电荷-。 用位于地面下方h处的镜像双 导线代替地面上的感应电荷,边界条件维 持不变。 将地面取消而代之以镜像双导线。 图 4.4.4 无限长均匀传输线对地面的镜像 求解电位: (4.4.2.8) (4.4.2.9)

高中物理竞赛教程(超详细)电场

第一讲电场 §1、1 库仑定律和电场强度 1.1.1、电荷守恒定律 大量实验证明:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,正负电荷的代数和任何物理过程中始终保持 k 数, 0ε q F E = 式中q 是引入电场中的检验电荷的电量,F 是q 受到的电场力。 借助于库仑定律,可以计算出在真空中点电荷所产生的电场中各点的电场强度为 2 2r Q k q r Qq k q F E === 式中r 为该点到场源电荷的距离,Q 为场源电荷的电量。

1.1.4、场强的叠加原理 在若干场源电荷所激发的电场中任一点的总场强,等于每个场源电荷单独存在时在该点所激发的场强的矢量和。 原则上讲,有库仑定律和叠加原理就可解决静电学中的全部问题。 例1、如图1-1-1(a )所示,在半径为R 、体电荷密度 为ρ的均匀带电球体内部挖去半径为R '的一个小球,小球球心O '与大球球心O 相距为a ,试求O '的电场强度,并证明空腔内电场均匀。 ρ,R O 1.1.5.电通量、高斯定理、 (1)磁通量是指穿过某一截面的磁感应线的总条数,其大小为θsin BS =Φ,其中θ 为截面与磁感线的夹角。与此相似,电通量是指穿过某一截面的电场线的条数,其大小为 θ?sin ES = θ为截面与电场线的夹角。 高斯定量:在任意场源所激发的电场中,对任一闭合曲面的总通量可以表示为 ∑=i q k π?4 ( 041πε= k ) Nm C /1085.82120-?=ε为真空介电常 数 O O ' P B r a )

式中k是静电常量,∑i q为闭合曲面所围的所有电荷电量的代数和。由于高中缺少高等数学知识,因此选取的高斯面即闭合曲面,往往和电场线垂直或平行,这样便于电通 量的计算。尽管高中教学对高斯定律不作要求,但笔者认为简单了解高斯定律的内容,并 利用高斯定律推导几种特殊电场,这对掌握几种特殊电场的分布是很有帮助的。 (2)利用高斯定理求几种常见带电体的场强 ①无限长均匀带电直线的电场 一无限长直线均匀带电,电荷线密度为η,如图1-1-2(a)所示。考察点P到直线的 距离为r。由于带电直线无限长且均匀带电,因此直线周围的电场在竖直方向分量为零, 即径向分布,且关于直线对称。取以长直线为主轴,半径为r,长为l的圆柱面为高斯面, E 图1-1-5

高中物理竞赛辅导讲义-5.3角动量例题

5.3角动量例题 例1、在一根长为3l的轻杆上打一个小孔,孔离一端的距离为l,再在杆 的两端以及距另一端为l处各固定一个质量为M的小球。然后通过此孔将杆悬挂于一光滑固定水平细轴O上。开始时,轻杆静止,一质量为m 的铅粒以v0的水平速度射入中间的小球,并留在其中。求杆摆动的最大高度。

例2、质量m=1.1 kg的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动.圆盘边缘绕有绳子,绳子下端挂一质量m1=1.0 kg的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v0=0.6 m/s匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动. 例3、两个质量均为m的质点,用一根长为2L的轻杆相连。两质点 以角速度ω绕轴转动,轴线通过杆的中点O与杆的夹角为θ。试求以 O为参考点的质点组的角动量和所受的外力矩。

例4、小滑块A位于光滑的水平桌面上,小滑块B位于桌 面上的小槽中,两滑块的质量均为m,并用长为L、不可 伸长、无弹性的轻绳相连。开始时,A、B之间的距离为 L/2,A、B间的连线与小槽垂直。突然给滑块A一个冲 击,使其获得平行与槽的速度v0,求滑块B开始运动时 的速度 例5、有一半径为R的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?

例6、一质量为M a,半径为a的圆筒A,被另一质量为M b,半 径为b的圆筒B同轴套在其外,均可绕轴自由旋转。在圆筒A 的内表面上散布了薄薄的一层质量为M o的沙子,并在壁上开了许多小孔。在t=0时,圆筒A以角速度ω0绕轴匀速转动,而圆筒B静止。打开小孔,沙子向外飞出并附着于B筒的内壁上。设单位时间内喷出的沙子质量为k,若忽略沙子从A筒飞到B筒的时间,求t时刻两筒旋转的角速度。 *例7、如图,CD、EF均为长为2L的轻杆,四个端点各有 一个质量为m的质点,CE、DF为不可伸长的轻绳,CD的 中点B处用一细线悬于天花板A点。突然剪断DF,求剪断 后瞬间,CE、AB上的张力分别是多少?

高中物理竞赛精彩试题及问题详解

高中物理竞赛模拟试卷(一) 说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟. 第Ⅰ卷(选择题共40 分) 一、本题共10 小题,每小题 4 分,共40 分,在每小题给出的 4 个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得 4 分,选不全的得2 分,有错选或不答的得0 分. 1.置于水平面的支架上吊着一只装满细砂的漏斗,让漏斗左、右摆动,于是桌面上漏下许多砂子,经过一段时间形成一砂堆,砂堆的纵剖面最接近下图Ⅰ-1中的哪一种形状 2.如图Ⅰ-2所示,甲乙两物体在同一光滑水平轨道上相向运动,乙上连有一段轻弹簧,甲乙相互作用过程中无机械能损失,下列说确的有 A.若甲的初速度比乙大,则甲的速度后减到0 B.若甲的初动量比乙大,则甲的速度后减到0 C.若甲的初动能比乙大,则甲的速度后减到0 D.若甲的质量比乙大,则甲的速度后减到0 3.特技演员从高处跳下,要求落地时必须脚先着地,为尽量保证安全,他落地时最好是采用哪种方法 A.让脚尖先着地,且着地瞬间同时下蹲 B.让整个脚板着地,且着地瞬间同时下蹲 C.让整个脚板着地,且着地瞬间不下蹲 D.让脚跟先着地,且着地瞬间同时下蹲 4.动物园的水平地面上放着一只质量为M的笼子,笼有一只质量为m的猴子.当猴以某一加速度沿竖直柱子加速向上爬时,笼子对地面的压力为F1;当猴以同样大小的加速度沿竖直柱子加速下滑时,笼子对地面的压力为F2(如图Ⅰ-3),关于F1和F2的大小,下列判断中正确的是 A.F1 = F2>(M + m)g B.F1>(M + m)g,F2<(M + m)g C.F1>F2>(M + m)g D.F1<(M + m)g,F2>(M + m)g 5.下列说法中正确的是 A.布朗运动与分子的运动无关 B.分子力做正功时,分子间距离一定减小 C.在环绕地球运行的空间实验室里不能观察热传递的对流现象 D.通过热传递可以使热转变为功 6.如图Ⅰ-4所示,虚线a、b、c代表电场中的三个等势面,相邻等势面之间的电势差相等,即U ab= U bc,实线为一带正电的质点仅在电场力作用下通过该区域时的运动轨迹,P、Q 图Ⅰ-3 图Ⅰ-4 图Ⅰ-2

高中物理竞赛(解题方法:整体法)

高中奥林匹克物理竞赛解题方法 、整体法 方法简介 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具 有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合 作为一个融洽加以研究的思维形式。整体思维是一种综合思维,也可以说是一种综合思维,也是多 种思维的高度综合,层次深、理论性强、运用价值高。因此在物理研究与学习中善于运用整体研究 分析、处理和解决问题,一方面表现为知识的综合贯通,另一方面表现为思维的有机组合。灵活运 用整体思维可以产生不同凡响的效果,显现“变”的魅力, 把物理问题变繁为简、变难为易。 赛题精讲 例1如图1—1所示,人和车的质量分别为m和M,人用水 平力F拉绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩 擦,若人和车保持相对静止,且水平地面是光滑的,则车的加速度为 ________________________________________________ . 解析:要求车的加速度,似乎需将车隔离出来才能求解,事实 上,人和车保持相对静止,即人和车有相同的加速度,所以可将人和车看做一个整体,对整体用 牛顿第二定律求解即可 将人和车整体作为研究对象,整体受到重力、水平面的支持力和两条绳的拉力 向重力与支持力平衡,水平方向绳的拉力为2F,所以有: 2F=(M+m)a,解得: 2F a M m 例2用轻质细线把两个质量未知的小球悬挂起来,如图 1 —2所示,今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续施加一个向右 偏上30°的同样大小的恒力,最后达到平衡,表示平衡状态的图可能是 ?在竖直方解析

舒幼生《物理竞赛培优教程》word版下载

第二节电场和电场强度 【知识要点】 从电场的观点看,电荷间的相互作用可分为两个基本问题:电荷产生电场和电场对电荷的作用. 电场强度,简称场强,是指放人电场中某一点电荷受到的电场力 F 跟它的电量q 的比值.数学表达式为 q为检验电荷, F 为q在场中受到的力.场强的方向规定为正电荷的受力方向. 只要有电荷存在,在电荷的周围就存在着电场.静止电荷在其周围的真空中产生电场,叫静电场,该电荷称为真空中静电场的场源电荷,电场对放人场中的电荷有力的作用. 在点电荷组成的电场里、任一点的场强等于各个点电荷单独存在时各自在该点产生的场强的矢量和,这就是场强叠加原理. 几种典型电场的场强: ( 1 )点电荷电场:由场强的定义和库仑定律可得,真空中点电荷的场 强分布为 ( 2 )均匀带电球壳的电场设有带电量为Q ,半径为R 的均匀带电球壳.由电场线的分布可知,只要球壳内没有电荷,壳内就没有电场线分 为0 布,即内部的场强 E 内 对于球壳外,电场线分布与点电荷Q 在球心处的电场线一样.因此 壳外的场强 E 外为 ( 3 )匀强电场 设有电荷面密度为δ的无限大带电平板,求其两侧的场强.根据场强叠加原理,空间某一点的场强,应是板上所有点电荷在该点产生场的叠加.由于平板是无穷大,根据对称性,板两侧的电场方向如图9 一 2 一 1 所示,且是匀强电场,但用叠加原理求场强的 大小要用到高等数学. 下面我们用不很严密的方法介绍一个定理,并根据它 求上述场强,先考虑点电荷,设一电量为Q 的点电荷, 则空间的场分布为

现取以Q 为球心,R 为半径作一球面,则Q 发出的电场线全部穿过这个面.像这样穿过一个面的电场线总数叫做穿过这个面的电通量,用 符号Φ表示.对于点电荷 由上式可知电通量与所取的面无关,即取任一面,只要这个面内包含Q ,通过此面的电通量为4πk Q . 推论 1 若所取的面不包含Q ,则通过此面的电通量为零. 推论 2 通过任意一个闭合曲线的电通量等于该面所包围的电荷电量的代数和的 4 π倍. 推论2通常叫高斯定理,利用高斯定理可以很方便地求出许多对称场的场强分布.如无限大平板,我们可以取关于板对称的圆柱体面,如图所示,设圆柱面的横截面半径为r ,高为l ,则 因此,电荷面密度为,的无限大带电平板两侧的场强为 E = 2πkδ 【例题分析】 例 1 如图9 一 2 论所示,电荷均匀分布在半球面上, 它在这半球面的中心O 处的电场强度等于E0,( l )证明 半球面底部的平面是等势面;( 2 )两个平面通过同一直径, 夹角为 a ,从半球中分出一部分球面.试求所分出的这部分球面上的电荷在O 处的电场强度 E . 分析与解 (l )证明一个平面是等势面一般有以下两条思路: a .根据电势叠加原理求出各点的电势,判断是否相等; b .根据场强叠加原理求出各点的场强,判断场强方向是否垂直平面. 设想有另一个完全相同的半球面与此半球面构成完整的球壳,则球壳及其内部各点电势都相等.根据对称性可知上、下两个半球壳分别在底面上各点引起的电势是相等的,再由电势叠加原理可知,当只有半球壳存在时,半球壳在底面上各点引起的电势也是相等的,而且电势是两个球壳的一半.场强是矢量,场强叠加比电势叠加要复杂.此题直接在底面上计算场 强较困难.我们可用反证法来说明场强方向一定垂直底面.假 定半球壳在底面产生的场强不垂直底面,则当把半球壳补完 整时,两半球壳在底面产生的合场强也不垂直底面,这与球 壳是等势体相矛盾.因此,假设不成立. ( 2 )由对称可知,E0的方向如图9 一 2 一 3 所示, 同样我们可知分出两部分的电场强度E1、E2,由矢量图可 得

高中物理竞赛内容标准

高中物理竞赛内容标准 一、理论基础 力学 物理必修1 本模块是高中物理的第一模块。在本模块中学生,学生将进一步学习物理学的内容和研究方法,了解物理学的思想和研究方法,了解物理学在技术上的应用和物理学对社会的影响。 本模块的概念和规律是进一步学习物理的基础,有关实验在高中物理中具有基础性和典型性。要通过这些实验学习基本的操作技能,体验实验在物理学中的地位及实践人类在认识世界中的作用。 本模块划分两个四主题: ·运动的描述 ·相互作用与运动规律 ·抛体运动与圆周运动 ·经典力学的成就与局限性 (一)运动的描述 1.内容标准 (1)通过史实,初步了解近代实验科学产生的背景,认识实验对物理学发展的推动作用。 例1 了解亚里士多德、迪卡尔等关于力与运动的主要观点与研究方法。 例2 了解伽利略的实验研究工作,认识伽利略有关实验的科学思想和方法。 (2)通过对质点的认识,了解物理学中物理模型特点,体会物理模型在探索自然规律中的作用。 例3 在日常生活中,物体在哪些情况下可以看做质点? (3)经历匀变速直线运动的实验过程,理解参考糸、位移、时间、时刻、路程、速度、相对速度、加速度的概念及物理量的标矢性,掌握匀变速直线运动的规律,体会实验在发现自然运动规律中作用。 例4 用实验方法和图像方法研究物体的运动。

例5 通过实例描述物体的变速运动,运动的矢量性。 例6 通过史实及实验研究自由落体运动。 (4)能用公式和图像描述匀变速直线运动,掌握微元法,积分法等数学思想在研究物理问题中的重要性。 (5)对过位移、速度、加速度的学习,理解矢量与标量在物理学中重要性。掌握矢量的合成和分解。 例7 通过实例研究物体竖直上抛运动,体会物体在共线条件下的矢量合成与分解。 2.活动建议 (1)通过研究汽车的运行来分析交通事故的原因。 (2)通过实验研究自由落体运动的影响因素。 (3)通过查阅物理学史,了解并讨论伽利略对物体运动的研究在科学发展和人类进步上的重大意义。 (二)相互作用与运动规律 1.内容标准 (1)知道常见的形变,通过实验了解物体的弹性,知道胡克定律。 例1 调查在日常生活和生产中所用弹簧的形状及使用目的。 例2 制作弹簧秤并用胡克定律解释。 (2)通过实验认识滑动摩擦、静摩擦的规律,理解静摩擦力、滑动摩擦力、摩擦角的概念。能用动摩擦因数计算滑动摩擦力。 例3 设计实验测量摩擦力。体会摩擦力与摩擦角的实际意义。 (3)通过实验,理解力的合成与分解,掌握共点的平衡条件,物体平衡的种类。用力的合成与分解分析日常生活中的问题。 例4 通过实验,研究两个共点力在不同夹角时与合力的关系。 例5 调查日常生活和生产中平衡的类型,分析平衡原理。

相关文档
相关文档 最新文档