文档库 最新最全的文档下载
当前位置:文档库 › 膜片钳技术的原理

膜片钳技术的原理

膜片钳技术的原理
膜片钳技术的原理

膜片钳技术的原理及应用(综述)

Intro:

细胞是构成生物体的基本单位。细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。

一. 膜片钳技术的基本原理

膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。(如图1)

图1 膜片钳技术原理图

Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。

用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。在场效应运算放大器的正负输入端子为等电位。向正输入端子施加指令电位(Command Voltage,V CMD)时,由于短路负端子和膜片都可等电位地达到钳制的目的,当膜片微电极尖端与膜片之间形成10 GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流(I)可全部作为来自膜片电极的记录电流(Ip)而被测量出来。(如图1)

二. 膜片钳技术的各种模式

图2是表示膜片钳技术各种模式(mode)的示意图。首先建立的单通道记录法(Singl e Channel Recording)是细胞吸附模式(Cell-attached Mode),其后又建立了膜内面向外(Inside-out)和膜外面向外(Outside-out)的模式。后来又建立了开放的细胞吸附式膜内面向外(Open cell-attached inside-out mode)和穿孔囊泡膜外面向外(Perforated vesicle out side-out mode)模式。全细胞记录法是在常规方法的基础上附加穿孔膜片(perforated patc h mode)的模式。

图2 膜片钳技术的各种模式

1. 单通道记录法-细胞吸附模式(Cell-attached Mode)

微电极在显微镜下贴近细胞后,给微电极施加一负压,形成高阻抗封接。此时可看到背景噪音明显减少,通常选取电极下仅有一个通道的膜片进行分析,即单通道记录,以利于不失真的观察一个通道的活动状态。该方法的优点是对细胞膜结构和调制系统干扰最小,能准确反映通道的活动状态并对此进行客观分析。但缺点是电流小,分辨率地,对技术要求高,难度较大,且工作量大而成功率又较低。

2. 全细胞记录法

在高阻抗封接做好后,再给一个很小的负压,将电极覆盖的膜吸破,使电极内与整个细胞内相通,用这个方法可记录进出整个细胞的电流。该方法的优点是电流大,信噪比好,既可以做电流钳制又可以做电压钳制,且可以改变细胞内容物。但此法只能用于直径小于3μ的细胞,且仅能观察膜电流的变化,不能分析变化的产生机制。

3. 外面向外(Outside-out),内面向外(Inside-out)模式

这两种技术分别是在细胞吸附式和全细胞记录的基础上改进而成,优点是可以分别观察化学因素对细胞膜内侧面和外侧面结构的影响。

三. 膜片钳技术在植物生理方面的应用

1. 用膜片钳技术测定植物原生质体膜电位

原生质体是研究植物细胞膜特性的适宜材料。由于对原生质体不必考虑细胞比的自由空间等因素,故更便于定量分析膜调节的各种细胞代谢活动。如H+,矿质离子,物质流及植物激素的运输和作用方式等。这类研究的一个重要参数就是膜电位。

常规的植物细胞膜电位测量方法是插入法。该方法是将微电极插入细胞进行测量,故容易使细胞造成较大的损伤,尤其是没有细胞壁保护的原生质体更是如此。而且微电极边缘与伤口不能严密封接,导致较大的漏电流产生,易使膜电位去极化,影响测量结果。所以为了提高可靠性,此法只能用于直径达的植物细胞。而高等植物细胞直径都较小,故很难获得可靠的结果。用膜片钳技术的全细胞法就可以解决这一难题。如前文中的原理所述,该方法与插入法相比对细胞的伤害小,只限于管口范围内(管口直径为1-2μm)。而且由于高阻封接,漏电流很小,所以测得的结果要可靠得多。

例如,用膜片钳技术测定烟草或小麦的原生质体膜电位时,将直径为1.5-1.8mm,中央带有纤维的玻璃毛细管拉制成2-3cm长,尖端直径1-2μm的玻璃微吸管,并作热抛光。用时注入充灌液(140mmol/L KCl,2mmol/LMgCl2,1mmol/LCaCl2,10mmol/L HEPES-KOH,11 mmol/L EGTA-KOH, pH5.2),微吸管电阻4.3MΩ(0.03MΩ,n=100),封接电阻(0.06M Ω,n=100)。微吸管和压力调节装置固定在显微操纵器上,吸管中Ag/AgCl2电极与BMA -7101双路微电极放大器连接。测量时,先加一负压,使微吸管吸牢原生质体,再加一脉动负压吸破质膜随即读数。

以拟南芥A rabidopsis thaliana Columbia根为材料,利用膜片钳技术测定其根细胞原生质体质膜内向K+电流,并对N a+对其K+电流的影响进行的研究发现,N a+可明显抑制拟南芥根细胞原生质体的内向K+电流;外施Ca2+可缓解N a+对内向K+电流的抑制。说明Ca2+参与了质膜上K+通道对K+,Na+的选择性吸收的调节,从而使植物适应盐胁迫。

2. 用膜片钳技术研究植物细胞质膜的离子通道

离子通道是生物膜上由蛋白质大分子组成的孔道,它属于膜蛋白分类中的B 型蛋白质,通常由几个跨膜的大亲水区构成,可为化学或电学方式激活或抑制,从而控制离子通过膜的

顺势流动,在跨膜离子梯度的形成和维持以及信号转导等生理过程中起着非常重要的作用。

自从在蚕豆保卫细胞膜上发现植物离子通道以来,人们对植物细胞乃至作为细胞器的液泡膜上离子通道的认识迅速深入。

用膜片钳技术研究蚕豆保卫细胞质膜上的钾离子通道时发现,在一部分细胞的质膜上存在有高通导性的阳离子通道。无论在全细胞记录法还是但离子通道记录水平都得到了类似结果。全细胞记录法表明这些高通导性的阳离子通道为钾离子通道。在膜电位为-180mV 时,通过具有高通道性阳离子通道的保卫细胞整个质膜的内向钾电流约为1.5-2.5nA,而通过一般保卫细胞整个质膜的内向钾电流约为0.3-0.5nA。但离子通道记录显示,一些分离膜片上存在高通导性的内向阳离子通道。当膜电位为-118mV时,该内向阳离子通道的通导性约为一般内向钾离子通道的通导性的5倍。这些具有高通导性阳离子通道的特殊保卫细胞的存在可能与逆境条件下气孔的快速效应机制有关。

3. 用膜片钳技术研究高等植物液泡离子通道

液泡是成熟植物细胞和许多真菌、藻类(原核细胞除外) 的重要组成部分。中央大液泡是植物的贮存库,占细胞总体积的90 % 以上。膜片钳技术的研究表明,许多离子和代谢物通过离子通道和离子泵跨液泡膜运送。

Pantoja 等应用膜片钳技术在景天科酸代谢植物和甜菜液泡上发现了苹果酸渗透的液

泡阴离子通道, 此后,在拟南芥液泡上也发现了该通道。它具有强烈的内向整流性质,是一种慢激活的通道;只有在负的生理膜电位时才能被激活;内液中的Cl -可以降低开放几率,从而抑制通道电流,但这并不影响单通道的电导;值得注意的是, 外液中Ca2 + 的浓度和ATP 都不影响VMAL 通道。通道对于MAL -具有极高的选择性, 此外,拟南芥中,其它二价有机阴离子如琥珀酸离子和延胡索酸离子也具有与MAL -相当的通透能力,而草酸乙酰离子的通透能力相对较弱;在甜菜液泡上,也有文献报道称NO -、Ac -和H2PO 4-能够部分通过该通道。VMAL 通道是使MAL -被吸收而进入液泡内的一种途径,但它却不能通过此通道从液泡中流出, 后者采取的途径还有待于进一步研究。

随着膜片钳及其它相关技术地发展,

膜片钳原理

膜片钳技术原理 可兴奋膜的电学模型 细胞膜由脂类双分子层和和蛋白质构成。脂质层的电导很低,由于双分子层的结构特点,形成了细胞的膜电容,通道蛋白的开闭状况主要决定了膜电导的数值。在细胞膜的电学模型中,膜电容和膜电导构成了一个并联回路。在细胞膜的电兴奋过程中,脂质层膜电容的反应是被动的,其电流电压曲线是线性的;而由通道蛋白介导的膜电导构成了膜反应的主动成分,它的电流电压关系是非线性的。 当改变跨膜电位时,膜电容和膜电导分别引发被动和主动电流:Im=Ii+CdV/dt,其中Im是流过膜的总电流,Ii是通道电流,CdV/dt是由膜电容介导的电容电流。为了考察通道电流就必须消除电容电流的影响,此时可以令dV/dt=0,即将膜电位钳制在一固定数值,使其不随时间变化,这就是电压钳技术的实质所在。 电压钳技术 离子通道的近代观念源于Hodgkin、Huxley、Katz等人在20世纪30—50年代的开创性研究。在1902年,Bernstein创造性地将Nernst的理论应用到生物膜上,提出了“膜学说”。他认为在静息状态下,细胞膜只对钾离子具有通透性;而当细胞兴奋的瞬间,膜的破裂使其丧失了选择通透性,所有的离子都可以自由通过。Cole等人在1939年进行的高频交变电流测量实验表明,当动作电位被触发时,虽然细胞的膜电导大为增加,但膜电容却只略有下降,这个事实表明膜学说所宣称的膜破裂的观点是不可靠的。1949年Cole在玻璃微电极技术的基础上发明了电压钳位(voltage clamp technique)技术,基本原理如下: 电压钳技术的核心在于将膜电位固定在指令电压的水平,这样才能研究在给定膜电位下膜电流随时间的变化关系。在上图中,膜电位Vm由高输入阻抗的电压跟随器所测量。钳制放大器在比较了膜电位和指令电位E之后,通过电阻Ra将电流注入膜内以控制膜电位。钳制放大器的输出:Vo=A(E-Vm),因为这个输出由电阻Ra和膜所分压,所以输出电流:I=(Vo-Vm)/Ra。由这两个关系可推出:Vm=EA/(1+A)-RaI/(1+A)。因此若钳制放大器的增益A极大,膜电位Vm和指令电位E之间的差别就可以忽略,即实现了电压钳制。 Hodgkin、Huxley和Katz应用电压钳技术研究枪乌贼巨轴突,结合同位素示踪和胞内灌流等技术发现:动作电位的初期,细胞膜主要对钠离子的通透性发生改变,胞外的钠离子迅速内流,并产生所谓的“超射”现象(overshoot);随后对钠的通透性的急剧减少并且对钾离子的通透性增加。兴奋期的膜电位存在“超射”现象也是膜学说所不能解释的。 根据这些实验,Hodgkin、Huxley和Katz在其1949—1952年的一系列论文中提出了“离子学说”或“钠学说”。认为当膜的去极化超过一个临界值时,就会触发动作电位的产生。在此期间,钠电导迅速上升,钠离子大量内流,使得膜电位接近钠的平衡电位;随后钠电导迅速失活,钾电导逐渐增加,引起膜电位的复极化。 Hodgkin和Huxley通过对电压钳位实验数据的分析,给出了所谓的Hodgkin—Huxley方程。他们将膜电位钳制在不同的水平,观察钾电导或钠电导随时间的变化,然后用一个常微分方程去逼近所得到的实验曲线,而这些微分方程中的参数则假定跟离子通道上的“粒子”相关。根据H—H方程,能够推导出动作电位的阈值、形状、幅度等性质。并且在去除电压钳制的条件下,可以得到一个以电压和时间为变量的偏微分方程,由它可以给出和真实状况相符合的神经冲动的传导。 膜噪声和噪声分析 Katz等人在1970年代初期研究了蛙神经肌肉接头处肌纤维膜电位的波动。他们根据对这种膜电位“噪声”的分析,提出了量子释放的概念,认为神经递质是以囊泡的形式从突触前膜释放到突触间隙中。并且Katz等人借助这种新的“噪声分析”方法(fluctuation analysis),能从突触后膜电位的“噪声”中推测出单位事件的幅度和时程。Anderson、Stevens、Colquhoun和Sigworth等人进一步发展了“噪声分析”。 “噪声分析”的实质在于二项分布期望和方差之间的关系。假定通道只有开和关两个状态,并且各个通道的开关是独立的。若N是通道的总数,p是通道的开放概率,i是单通道电流,I是膜电流的期望值。则有:I=Npi,var(I)=Np(1-p)i2,即:var(I)=iI-I2/N。用var(I)对I作图,这显然是一个开口朝下的抛物线。微分这个二次方程得到曲线的斜率:dvar(I)/dI=i-2I/N,当I=0时的斜率就是单通道电流,根据钳制电位和反转电位之间的差就可以算出单通道电导;在抛物线的顶点即当:dvar(I)/dI=0时,I=Ni/2,由此可算出

膜片钳技术的发展和应用

膜片钳的发展和应用 1.背景 细胞是生物的基本组成单元,细胞外围有一层薄膜,彼此分离又互相联系,细胞间与细胞内的通信、信号传递依靠其膜上的离子通道来进行,离子和离子通道是细胞兴奋性的基础,亦是产生生物电的基础。生物电信号通常是用电学或电子学的方法进行测量。早期多采用双电极电压钳技术作胞内记录,近年来逐渐被膜片钳所取代,这项技术为从细胞和分子水平了解生物膜离子单通道“开启”和“关闭”的门控动力学及各种不同离子通道的通透性和选择性等膜信息提供了最直接的手段。 膜片钳记录(patch clamp recording)是利用玻璃微电极吸引封接面积仅为几个um2的细胞膜片,在10-12A水平,记录单个或几个通道的离子电流,已达到当今电子测量的极限。此技术广泛用于细胞膜离子通道电流的测量和细胞分泌、药理学、病理生理学、神经科学、脑科学、植物细胞的生殖生理等领域的研究。从而点燃了细胞和分子水平的生理学研究的生命之火,并取得了丰硕的成果。 2.膜片钳技术简介 2.1 基本原理和记录方法 电压钳(V oltage-clamp)是由英国学者Huxley和Katz最先应用的[1]。其实质是通过负反馈微电流放大器在兴奋性细胞膜上外加电流,保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流的情况。膜电流的改变反映了膜电阻和膜电容的变化,因此电压钳可用来研究整个细胞膜或一大块细胞膜上所有离子通道的活动,但该技术由于在细胞内插人两根电扳,对细胞损伤很大,在小细胞中难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致,而逐渐被膜片钳所取代。 膜片钳技术(patch-clamp)是在电压钳基础上发展起来一种新技术,与电压钳的主要区别有二:一是钳制膜电位的方法不同;二是电位固定的细胞膜面积不同,即所研究的离子通道数目不同。与电压钳一样,膜片钳也是利用负反馈电子线路,将微电板尖端所吸附的一个至几个平方微米的细胞膜电位固定在一定水平,观察流过通道的离子电流。其实现膜电位固定的关键是在玻璃微电极尖端边缘与细胞膜之间形成高阻封接,使电极尖开口处与相接的细胞膜小区域(膜片)形成无论是从机械上还是电学上都极为紧密地封接,从而可反映细胞上单一(或多数)离子通道的分子活动[2]。1976年,德国科学家Neher和Sakmann首先用此技术对蛙胸皮肌细胞膜上的己酰胆碱受体通道进行了研究,记录出了量值在皮安级(10-12 A)的微弱电流[3,4]。1981年,经Hamill等[5]后人的进一步完善,其电流测量灵敏度已达1pA,时间和空间分辨率达10 us和1 um。 随着膜片钳技术的出现,目前有几种不同的记录方式: (1)细胞吸附式(cell-attached patch)将两次拉制后,经热抛光的微管电极置于清洁的细胞膜表面, 形成高阻封接,在细胞膜表面隔离出一小片膜,即通过微管电极对膜片进行电压钳制,从而测量膜电流。 (2)内面向外模式(inside-out patch)高阻封接形成后,将微管电极轻轻提起,使其与细胞分离,电极端形成密封小泡,在空气中短暂暴露几秒钟后,小泡破裂再回到溶液中,使小泡的外半部分破裂即得。

膜片钳使用规则

膜片钳使用规则 一、工作原理: 1.膜片钳是一种可以直接观察单一的离子通道蛋白质分子对相应离子通透难易程度等特性的一种实验技术。其基本原理是用一个尖端光洁,直径约为0.5~3um 的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极另一端开口处施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在这一小片膜周边与微电极开口处的玻璃边沿之间,会形成紧密的封接,其电阻可达数个或数十个千兆欧,这实际上把吸附在微电极尖端开口处的那一片膜同其余部分的膜在化学上完全隔离出来,由微电极记录到的电流变化只同该膜片中通道分子的功能状态有关。如果在这一小片膜中只包含了一个或少数几个通道蛋白分子,那么通过微电极测量出的电流,就是某种带电离子经由开放的单一通道蛋白质分子进行跨膜移动的结果。 二、操作步骤: 1.打开总电源。 2.依次打开电脑、显微镜、监视器、微操、放大器。 3.打开PULSE软件,在E盘建立自己的文件夹。 4.灌注玻璃电极并排空气体。 5.装上玻璃电极,浸入液面并调至视野范围。 6.点击set-up,将增益调为0.5,点Auto,记录电极电阻。

7.封接细胞,若上G,提起或吸破细胞。 8.依次点击on-cell,whole-cell补偿。 9.选定In-out或whole-cell模式进行实验。 10.用毕请关闭仪器,并切断总电源。 三、注意事项: 1.每天做实验前请用清水拖地,以防尘埃、静电伤害机器。 2.拉制仪使用前需预热15-30min。 3.银丝电极及地线发白时,请先用砂纸轻微打磨,再浸入新鲜的次 氯酸钠溶液镀氯化银,如果银丝电极30min未变黑,则考虑更换 次氯酸钠。 4.先开放大器,后开软件;先关软件,后关放大器。 5.非必须用到汞灯时请不要打开汞灯电源,打开后至少需1个小时 才可关闭。 6.在放大器打开时绝对不能用手、金属物品或其它导电的物品接触 电极丝(包括地线),在取放细胞片时请关闭放大器。 7.向玻璃微电极灌注内液时切勿灌太多(1cm左右为适),以防液 体进入银丝底部增加噪声。 8.安装玻璃微电极时,电极应与银丝平行,防止刮蹭银丝电极。 9.玻璃微电极需先用甲醇浸泡,再用酒精灯微烧两端,使其平滑。 10.换液时应时刻观察浴槽,防止液面过低或液体溢出污染镜头,最 适液面为微高于出液口。

膜片钳记录和分析技术

膜片钳记录和分析技术 2010-12-15 16:41 来源:美国分子仪器点击次数:2186 关键词:膜片钳细胞信号 分享到: ?收藏夹 ?腾讯微博 ?新浪微博 ?开心网 细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。 早期的研究多使用双电极电压钳技术作细胞内电活动的记录。现代膜片钳技术是在电压钳技术的基础上发展起来的。 1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位

的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sakmann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 二、膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。

膜片钳技术在药学研究中的应用

膜片钳技术在药学研究中的应用 前言 德国物理学家Neher和Sakmann[1.2]建立的膜片钳技术(patch clamp technique)是一种以记录通过离子通道的离子电流来反映细胞上单一的(或多数的)离子通道活动的技术,已被广泛应用。作为先进的细胞电生理技术,它一直被奉为研究离子通道的“金标准”。应用膜片钳技术可以证实细胞膜上离子通道的存在,并能对其电生理特性、分子结构、药物作用机制等进行深入的研究。基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。 关键词膜片钳技术;药学研究;应用 Abstract [ ]The patch-clamp technique , a dominant technique in cellular electrophysiology , is always being regarded as the gold standard for ion channel research.. Application of the patch-clamp technique can demonstrate the existences of ion channels and provide valuable information for ion channels, including their electrophysiological properties , molecular structures and the mechanism of drug action .Genomics and proteomics research has showed that the development of drugs for ion channel target would be very promising in future. Key words Patch-clamp technique ; Study on Medicinal chemistry ; Application 80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段,该技术的兴起与应用,使人们不仅对生物体的电现象和其它生物现象有更进一步的了解,而且基因组学、蛋白质组学研究表明,以离子通道为靶标的药物研究在未来具有很大的发展空间。为了突破由于筛选技术所造成的对离子通道为靶标的药物开发的瓶颈,近年来,对膜片钳技术进行了改进以适合药物高通量筛选的要求,由此产生了一些技术。 一、膜片钳技术原理及特点

膜片钳技术原理与基本操作

膜片钳技术原理与基本操作 1976 年Neher 和Sakmann 建立了膜片钳技术(Patch clamp technique),这是一种以记录通过离子通道的离子电流来反映细胞膜上单一的或多数的离子通道分子活动的技术。1981 年Hamill, Neher 等人又对膜片钳实验方法和电子线路进行了改进,形成了当今广泛应用的膜片钳实验技术。该技术可应用于许多细胞系的研究,也是目前唯一可记录一个蛋白分子电活动的方法,膜片钳技术和克隆技术并驾齐驱给生命科学研究带来了巨大的前进动力,这一伟大的贡献,使Neher 和Sakmann 获得1991 年诺贝尔医学与生理学奖。 一、膜片钳技术的基本原理 用一个尖端直径在1.5~3.0μm 的玻璃微电极接触细胞膜表面,通过负压吸引使电极尖端与细胞膜之间形成千兆欧姆以上的阻抗封接,此时电极尖端下的细胞膜小区域(膜片,patch)与其周围在电学上分隔,在此基础上固定(钳制,Clamp)电位,对此膜片上的离子通道的离子电流进行监测及记录。 基本的仪器设备有膜片钳放大器、计算机、倒置显微镜、示波器、双步电极拉制器、三轴液压显微操纵器、屏蔽防震实验台、恒温标本灌流槽、玻璃微电极研磨器。膜片钳放大器是离子单通道测定和全细胞记录的关键设备,具有高灵敏度、高增益、低噪音及高输入阻抗。膜片钳放大器是通过单根电极对细胞或膜片进行钳制的同时记录离子流经通道所产生的电流。膜片钳放大器的核心部分是以运算放大器和反馈电阻构成的电流-电压(I-V)转换器,运算放大器作为电压控制器自动控制,使钳制电位稳定在一定的水平上。 二、操作步骤 1.膜片钳微电极制作 (1) 玻璃毛细管的选择:有二种玻璃类型,一是软质的苏打玻璃,另一是硬质的硼硅酸盐玻璃。软质玻璃在拉制和抛光成弹头形尖端时锥度陡直,可降低电极的串联电阻,对膜片钳的全细胞记录模式很有利;硬质玻璃的噪声低,在单通道记录时多选用。玻璃毛细管的直径应符合电极支架的规格,一般外部直径在 1.1~1.2mm。内径1mm。 (2) 电极的拉制:分二步拉制。第一部是使玻璃管中间拉长成一窄细状,第二次拉制窄细部位断成二根,其尖端直径一般在1~5μm,充入电极内液后电极电阻在1~5MΩ为宜。调节第一步和第二步拉制时加热线圈的电流强度,即可得到所需要的电极尖端直径。电极必须保持干净,应现用现拉制。 (3) 涂硅酮树酯:记录单通道电流时,为了克服热噪声、封接阻抗噪声及电极浸入溶液产生的浮游电容性噪声,需要在电极尖颈部(距离微电极尖端50mm)的表面薄薄地涂一层硅酮树酯(sylgard),它具有疏水性、与玻璃交融密切、非导

膜片钳技术SOP

膜片钳技术SOP 关键词:膜片钳 目的: 研究膜片上几个甚至一个离子通道的电流,对单个离子通道在各种电位状态及每种电位状态下对产生电流的离子作出定性、定量的分析,来反映细胞膜上离子通道活动,为研究离子通道结构与功能关系提供关于生物电特性的新资料。基本原理: 膜片钳制技术(patch clamp technique)是对一块单独的细胞膜片(或整个细胞)的电位进行钳制的一项电生理技术。 通过对膜电位的钳制可以观察通过离子通道的电流,膜片钳放大器正是通过维持电压的恒定而测出这种电流。运用膜片钳技术记到的最小电流可达到pA级(10-12 A)。膜片钳的本质属于电压钳范畴,其基本工作原理是:采用经典的负反馈放大技术作电压固定,但改用细胞外微吸管作电极,将微电极管尖端与细胞膜表面接触,经负压抽吸,形成具极高阻抗的紧密封接,其电阻值高达10-100千欧(即GΩ=109Ω)。只有在这种封接存在时,通过膜电极引导记录的电流才是通过该膜的离子通道电流。 膜片钳技术原理示意图 Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线)内的高阻抗负反馈电阻(Rf)的电压降而被检测出。

药品和试剂: 根据不同的实验设计选择不同的药品和试剂。 主要仪器设备与材料: ①屏蔽防震实验台(TMC 63-544) ②数字式超级恒渐浴槽(HSS-1 CHENDU INSTRUMENT China) ③微管电极拉制器(PP-83 NARISHIGE Japan) ④微管电极抛光仪(ME-83 NAEISHIFE Japan) ⑤电子刺激器(SEN-2030, NIHON KOHDEN, Japan) ⑥膜片钳放大器(AXOPATCH 200B Axon Instruments U.S.A) ⑦倒置相差显微镜(AXIOVERT 135 ZEISS Germany) ⑧计算机(PⅢ 800) ⑨A/D、D/A转换器(DIGIDATA-1200 Axon Instruments U.S.A) ⑩pClamp软件(10.0)Axon Instruments U.S.A ) 实验对象: 兔、大鼠、猪、和人的组织细胞(直径小于30μm的细胞),都可用于膜片钳实验。动物由泸州医学院(许可证号:SYXK(川)2008-063)提供;人体组织来源于临床手术丢弃物。本SOP以猪冠状动脉平滑肌细胞为例,选取体重约120~150 Kg的猪,雌雄不拘,猪心脏购自泸州市屠宰场。 实验环境: 常温(22o C)下进行, 湿度(70-80%) 操作步骤: 1.液体配制 主要根据研究通道的不同,所用细胞的不同,配制相应的液体,可参考相应的文献进行调整。包括:电极液;细胞外液等。基本原则是保持2个平衡,渗透压平衡和酸碱平衡。另外,所有液体在使用前必须过滤,以保持液体洁净。(详见细胞的分离与培养SOP:L Y-XJD-SYJS-014/015) 2.标本制备 膜片钳实验一般是在单个细胞上进行。实验用单细胞主要来自培养细胞或急性酶分离的细胞,也可来自脑片细胞中的原位细胞。常用的酶是胶原酶和蛋白酶,

膜片钳技术

2008级硕士研究生膜片钳技术试题 请用A4纸书面手写,严禁抄袭。下学期开学后两周内交于先知楼2002室陆巍老师处,过期不侯! 问答题(共100分) 1、什么是膜片钳技术?它的基本工作原理是什么? 答:膜片钳技术是以记录通过离子通道的离子电流来反映细胞上单一的(或多个的)离子通道分子活动的技术,具体说来就是利用微玻管(膜片电极或膜片吸管)接触细胞膜,以吉欧姆(GΩ)以上的阻抗使之封接,使与电极尖开口处相接的细胞膜的小区域(膜片)与其周围在电学上绝缘,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)(10-12A)进行监测记录的方法。 膜片箝的基本原理是:用一个尖端光洁、直径约0.5-3um的玻璃微电极同神经或肌细胞的膜接触而不刺入,然后在微电极的另一段开口施加适当的负压,将与电极尖端接触的那一小片膜轻度吸入电极尖端的纤细开口,这样在小片膜周边与微电极开口的玻璃之间形成紧密封接,在理想状态下电阻可达数十兆欧。实际上把吸附在微电极尖端开口的那小片膜同其余部分的膜在电学上完全分开,如果这小片膜上只含一个或几个通道分子,那么微电极就可以测量出单一开放的离子电流或电导,对离子通道的其他功能进行研究。 2、膜片钳记录方法分为四类?各有何特点? 答:膜片箝有四种分类: (1)单通道记录法-细胞吸附模式(Cell-attached Mode) 微电极在显微镜下贴近细胞后,给微电极施加一负压,形成高阻抗封接。此时可看到背景噪音明显减少,通常选取电极下仅有一个通道的膜片进行分析,即单通道记录,以利于不失真的观察一个通道的活动状态。该方法的优点是对细胞膜结构和调制系统干扰最小,能准确反映通道的活动状态并对此进行客观分析。但缺点是电流小,分辨率地,对技术要求高,难度较大,且工作量大而成功率又较低。 (2)全细胞记录法(Whole-cell recording) 在高阻抗封接做好后,再给一个很小的负压,将电极覆盖的膜吸破,使电极内与整个细胞内相通,用这个方法可记录进出整个细胞的电流。该方法的优点是电流大,信噪比好,既可以做电流钳制又可以做电压钳制,且可以改变细胞内容物。但此法只能用于直径小于3μ的细胞,且仅能观察膜电流的变化,不能分析变化的产生机制。 (3)膜内面向外式(Inside-out) 按照细胞密着式将电极封接好之后,再将电极拉开,使之与胞体脱离即可,也是用以记录封在电极尖端口下的膜片中的离子通道电流。是在细胞吸附式的基础上改进而成。其优点是可以观察化学因素对细胞膜内侧面结构的影响,但其操作难度较高。 (4)膜外面向外(Outside-out)在全息胞记录式的基础上,拉开电极使之与胞体脱离,这是附在电极尖端的膜片又可自动地将电极尖端口封住。此膜片的外侧面向外其是在全细胞记录的基础上改进而成,优点是可以分别观察化学因素对细胞膜外侧面结构的影响。 3、膜片钳技术的应用范围有哪些? 答:应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性,同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流

膜片钳技术资料汇编

丁香园膜片钳技术讨论区 资料汇编 整理人:xiaoxuanzi 发起人:tianx775 2006年6月

目录 第一节膜片钳技术介绍 (1) 应用 (1) 基本概念 (2) 第二节仪器操作和维护 (3) 仪器的使用 (3) 噪声 (4) 玻璃微电极的制备 (5) 第三节 实验操作 (7) 1.细胞的分离、培养 (7) (1)心肌细胞 (7) (2)平滑肌细胞 (17) (3)其他细胞 (19) 2.电极的拉制与电镀 (23) 3.电极内外液与渗透压 (25) 4.串联、封接、电极电阻 (28) 5.补偿 (37) 6.刺激方案 (40) 7.动作电位记录 (42) 8.电流记录 (42) (1)钙电流 (42) (2)钾电流 (45) (3)钠电流 (47) (4)其他电流 (48) 9.穿孔 (50) 10.单通道记录 (51) 11.脑片 (54) 12.数据分析与处理 (55) 第四节 相关电子文献及书籍 (61)

第一节 膜片钳技术介绍 一、应用 1.全细胞记录技术的应用 [Cactuswzw](1)离子通道宏观性质的分析,例如,离子通道的性质和分类(电压门控通道、膜受体激活通道、配体门控通道、胞内第二信使激活通道等) (2)离子通道微观性质分析,例如单一离子通道活动的测定的测定,离子通道的构造,分布和机能的分析等。 (3)膜电容的测量及其对细胞分泌活动的研究。 (4)胞内钙离子浓度和钙通道电流的同时定量检测。 (5)组织切片的全细胞记录。 (6)植物细胞的电生理研究。 二、基本概念 1.刚刚接触patch,有些概念都很模糊 holding potential与command potential? Axon200B的放大器控制面板上有ext. command,又是什么东东? 都分别什么时候给予? 在我理解,pipette capacity compesation就是快电容补偿,而Cm补 偿为慢电容补偿,那为何Axon200B的面板上在pipette capacitance compensation下面列了FAST和SLOW的magnitude以及时间常数的调节 扭? [baxiansheng]Holding potential 是钳制电压,这是实验中从头至尾 通过电极用于钳制细胞的一个电压,和膜电位的关系取决于采用的实验 模式。而command voltage是在holding potential基础上施加的刺激 方案,比如全细胞实验中可以设置Holding potential在-80mV,然后 去极化至+10mV 400ms,那么这个去极化至+10mV的方波就是command voltage,当然command voltage的设置可以根据实验设置得更复杂。 Axon200B放大器控制面板的ext. command是用于接外接刺激器的,通 过外接刺激器来施加command voltage,当然现在完全由计算机代替了。 pipette capacity是电极电容,因为时间常数小,所以称快电容,而 Cm是膜电容,因为时间常数大,所以称为慢电容。Axon200B的面板上 在pipette capacitance compensation下面列了FAST和SLOW的 magnitude以及时间常数的调节扭,那是对电极电容的补偿方式。实际 上电极电容中也有一些时间常数较大的成分,单纯补偿FAST效果并不 完美,需要再稍稍调节一下SLOW。 2.我的课题是关于心血管系统中离子通道方面的研究。离子通道一般有备 用关闭状态(close),激活状态(active)和失活状态(inavtive)。但 最近我看文献有去激活状态,英文为deactivation,我想跟失活肯定不是 一个概念,但又找不到确切的含义,有谁能帮我解释一下这几种通道状 态个代表什么含义? [coolworm]C<----->O<------->I

膜片钳技术

1976年[1]德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp reco rding technique)。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的或多个的离子通道分子活动的技术。它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。 这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。 [编辑本段] 一、膜片钳技术发展历史 1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。 1980年Sigworth等在记录电极内施加5-50 cmH2O的负压吸引,得到10-100GΩ的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。 1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1μm的空间分辨率和10μs的时间分辨率。 1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。Sak mann 和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。 [编辑本段] 二:膜片钳技术原理 膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来,由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。 膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。 [编辑本段] 三:全自动膜片钳技术 膜片钳技术被称为研究离子通道的“金标准”。是研究离子通道的最重要的技术。目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Aut omated patch clamp technique)。 传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,它不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录大量细胞的基础实验研究。全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。这两个优点使得膜片钳技术的工作效率大大提高了!签于全自动膜片钳技术的这些优点,目前已经广泛的用于药物筛选。 [编辑本段]

膜片钳实验技术入门---基本原理与操作

膜片钳实验技术入门------基本原理与操作 关兵才 李国华 刘理望 按:本文乃于2003年根据较旧型号的仪器写成,后被《机能实验科学》 (郑先科主编,北大医学版,2006)收入。因新旧仪器基本原理和操作步骤大同小异,现对原文略作修改和标注,供同学们参考。 【实验目的】 1. 了解膜片钳技术的基本原理和操作。 2. 初步学习电压依赖性离子通道电流的基本记录方法。 【实验原理】 一、膜片钳技术原理简介 膜片钳(patch clamp)是一种主要用于检测细胞膜离子通道活动的电生理技术,按工作方式可区分为电压钳(voltage clamp)和电流钳是最基本的工作方式,即对细胞膜电位进行人为控制,如将膜电位钳制于某一固定水平,或在此基础上再施以阶跃(step)式或斜坡式(ramp)电压刺激,同时记录跨膜电流,从而分析细胞膜通道的活动。电流钳即人为控制经微电极对细胞进行注射的电流(等于离子通道电流与细胞膜电容电流之和),同时记录膜电位及其变化。若注射电流为零即常用的零位钳流,用于测量细胞膜静息电位,若注射方波脉冲刺激电流,用于诱发、观测动作电位。另外,膜片钳技术还常用于观测细胞膜电容, 从而推测分泌细胞的活动情况。下面主要介绍其电压钳工作方式的基本原理。(注:在电生理资料中,因通常将细胞外液和记录系统的“地”点相连作为参考点即零电位点,所以电位和电压两个概念经常混用。) 根据膜片钳实验中受检细胞膜的型式(configuration)不同,又可将膜片钳分为全细胞式(whole-cell)、细胞贴附式(cell-attached 或on-cell)、内面朝外式(inside-out)、外面朝外式(outside-out)等四种模式。 (一)全细胞式 1.电压钳制和电流记录的实现 图9-9为全细胞式膜片钳工作原理示意图。 图9-9 全细胞膜片钳实验原理示意图 A1:运算放大器;A2:单倍增益差动放大器;R f:反馈电阻;V p:电极电位(A1反向输入端电位);

膜片钳技术的基本原理

膜片钳技术的基本原理 膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaohm seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA 级)进行检测记录。 膜片钳技术的原理及应用(综述) Intro: 细胞是构成生物体的基本单位。细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。1976年,德国的两位细胞生物学家埃尔温. 内尔(Erwin Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。 一. 膜片钳技术的基本原理 膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaohm seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。(如图1) 图1 膜片钳技术原理图 Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。Rs通常为1-5MΩ,若Rseal高达10GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。 用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。在场效应运算放大器的正负输入端子为等电位。向正输入端子施加指令电位(Command Voltage,V CMD)时,由于短路负端子和膜片都可等电位地达到钳制的目的,当膜片微电极尖端与膜片之间形成10 GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流(I)可全部作为来自膜片电极的记录电流(Ip)而被测量出来。(如图1) 二. 膜片钳技术的各种模式 图2是表示膜片钳技术各种模式(mode)的示意图。首先建立的单通道记录法(Single Channel Recording)是细胞吸附模式(Cell-attached Mode),其后又建立了膜内面向外(Inside-out)和膜外面向外(Outside-out)的模式。后来又

膜片钳常见问题解答汇总

膜片钳常见问题解答(一) 1.什么是电压钳与膜片钳,有什么区别? 答:电压钳技术是通过向细胞内注射一定的电流,抵消离子通道开放时所产生的离子流,从而将细胞膜电位固定在某一数值。由于注射电流的大小与离子流的大小相等、方向相反,因此它可以反映离子流的大小和方向。膜片钳技术钳制的是“膜片”,是指采用尖端经过处理的微电极与细胞膜发生紧密接触,使尖端下的这片细胞膜在电学上与其它细胞膜分离,这大大降低了背景噪声,使单通道微弱的电流得以分辨出来。采用电压钳技术将这片膜的电位钳制在某一数值,可记录到单通道电流。从这点上看,膜片钳技术是特殊的电压钳技术。随着膜片钳技术的发展,它已经不仅仅局限于“膜片”的概念,也不仅仅采用电压钳技术,还常采用电流钳技术。 2. 离子通道电导的单位是什么?如何换算? 答:离子通道电导的单位是西门子(Siemens, S),旧称姆欧,即安培/伏特。常用皮西门子(pS),1pS=10E-12 S,1,000 pS=1 pA/mV。 3. MultiClamp 700A中,在放大器和信号器的连接中,放大器的raw output是否需要连接信号器的 ANALOG IN 接口? scaled output,raw output有什么区别? 答:Raw output为原始信号输出,放大器输出的信号没有经过处理(如滤波、放大等),scaled output为定标输出,输出的信号经过了处理。后者的灵活度大,因此多采用。目前膜片钳放大器多设有scaled output,你可将其与数模转换器(你所说的信号器)的ANALOG IN连接,这样放大器的输出信号就能传送给计算机了,此时已经没有必要再使用Raw output了。若你想记录两个输出,则需要将Raw output与数模转换器的另一个ANALOG IN连接。 4. 在Clampex的Edit protocol/Wave中,Step和ramp各有什么适用范围?答:Ramp多用于电流衰减缓慢的离子通道以及失敏不明显的受体通道的I-V曲线制作,如多用于钾、钙离子通道。而像钠通道,其衰减非常迅速,在持续去极化的情况下,通道很快失活,无法使用ramp,另外诸如烟碱受体通道等具有明显失敏特征的受体通道也不宜采用ramp。 5. 什么是ramp?有什么作用?

膜片钳技术

膜片钳技术 80年代初发展起来的膜片钳技术(patch clamp technique)为了解生物膜离子单通道的门控动力学特征及通透性、选择性膜信息提供了最直接的手段。该技术的兴起与应用,使人们不仅对生物体的电现象和其他生命现象更进一步的了解,而且对于疾病和药物作用的认识也不断的更新,同时还形成了许多病因学与药理学方面的新观点。本文拟对膜片钳的基本原理及在心血管研究中的应用作一综述。 1膜片钳技术基本原理与特点 膜片钳技术本质上也属于电压钳范畴,两者的区别关键在于:①膜电位固定的方法不同;②电位固定的细胞膜面积不同,进而所研究的离子通道数目不同。电压钳技术主要是通过保持细胞跨膜电位不变,并迅速控制其数值,以观察在不同膜电位条件下膜电流情况。因此只能用来研究整个细胞膜或一大块细胞膜上所有离子通道活动。目前电压钳主要用于巨大细胞的全性能电流的研究,特别在分子克隆的卵母细胞表达电流的鉴定中发挥着其他技术不能替代的作用。该技术的主要缺陷是必须在细胞内插入两个电极,对细胞损伤很大,在小细胞如中枢神经元,就难以实现,又因细胞形态复杂,很难保持细胞膜各处生物特性的一致。 膜片钳的基本原理则是利用负反馈电子线路,将微电极尖端所吸附的一个至几个平方微米的细胞膜的电位固定在一定水平上,对通过通道的微小离子电流作动态或静态观察,从而研究其功能。膜片钳技术实现膜电流固定的关键步骤是在玻璃微电极尖端边缘与细胞膜之间形成高阻密封,其阻抗数值可达10~100 GΩ(此密封电阻是指微电极内与细胞外液之间的电阻)。由于此阻值如此之高,故基本上可看成绝缘,其上之电流可看成零,形成高阻密封的力主要有氢健、范德华力、盐键等。此密封不仅电学上近乎绝缘,在机械上也是较牢固的。又由于玻璃微电极尖端管径很小,其下膜面积仅约1 μm2,在这么小的面积上离子通道数量很少,一般只有一个或几个通道,经这一个或几个通道流出的离子数量相对于整个细胞来讲很少,可以忽略,也就是说电极下的离子电流对整个细胞的静息电位的影响可以忽略,那么,只要保持电极内电位不变,则电极下的一小片细胞膜两侧的电位差就不变,从而实现电位固定。 另外,高阻封接技术还大大降低了电流记录的背景噪声,从而戏剧性地提高了时间、空间及电流分辨率,如时间分辨率可达10 μs、空间分辨率可达1平方微米及电流分辨率可达10-12A。影响电流记录分辨率的背景噪声除了来自于膜片钳放大器本身外,最主要还是信号源的热噪声。信号源如同一个简单的电阻,其热噪声为 σn=4Kt△f/R

膜片钳技术的原理

膜片钳技术的原理及应用(综述) Intro: 细胞是构成生物体的基本单位。细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。 一. 膜片钳技术的基本原理 膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。(如图1) 图1 膜片钳技术原理图 Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。 用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。在场效应运算放大器的正负输入端子为等电位。向正输入端子施加指令电位(Command Voltage,V CMD)时,由于短路负端子和膜片都可等电位地达到钳制的目的,当膜片微电极尖端与膜片之间形成10 GΩ以上封接时,其间的分流电流达到最小,横跨膜片的电流(I)可全部作为来自膜片电极的记录电流(Ip)而被测量出来。(如图1) 二. 膜片钳技术的各种模式 图2是表示膜片钳技术各种模式(mode)的示意图。首先建立的单通道记录法(Singl e Channel Recording)是细胞吸附模式(Cell-attached Mode),其后又建立了膜内面向外(Inside-out)和膜外面向外(Outside-out)的模式。后来又建立了开放的细胞吸附式膜内面向外(Open cell-attached inside-out mode)和穿孔囊泡膜外面向外(Perforated vesicle out side-out mode)模式。全细胞记录法是在常规方法的基础上附加穿孔膜片(perforated patc h mode)的模式。 图2 膜片钳技术的各种模式 1. 单通道记录法-细胞吸附模式(Cell-attached Mode)

相关文档
相关文档 最新文档