文档库 最新最全的文档下载
当前位置:文档库 › 材料结构和性能解答(全)

材料结构和性能解答(全)

材料结构和性能解答(全)
材料结构和性能解答(全)

1、离子键及其形成的离子晶体陶瓷材料的特征。

答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。这种斥力与吸引力达到平衡的时候就形成了离子键。此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。因此,离子键是由正负离子间的库仑引力构成。由离子键构成的晶体称为离子晶体。离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。

离子键、离子晶体及由具有离子键结构的陶瓷的特性有:

A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构;

B、离子键没有方向性

C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点;

D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良;

E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。

F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。

2、共价键及其形成的陶瓷材料具有的特征。

答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。由于共价键的方向性,使共价晶体不密堆排列。这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。

共价键及共价晶体具有以下特点:

A、共价键具有高的方向性和饱和性;

B、共价键为非密排结构;

C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。

D、具有较低的热膨胀系数;

E、共价键由具有相似电负性的原子所形成。

3、层状结构材料的各向异性。

答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。

4、影响陶瓷材料密度的因素。

答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更奥一些,如锆石英。

5、硬度所反映的材料的能力;静载荷压入法测定硬度的原理。

答:硬度代表材料抵抗硬的物体压陷表面或破坏的能力。静载荷压入法测定硬度的基本原理:将一硬的物体在静载荷的作用下压入被测物体的表面,以凹面单位面积的载荷表示被测物体的硬度。分为:布氏硬度、维式硬度和洛氏硬度三种。

6、影响陶瓷材料硬度的因素。

答:大多数陶瓷具有较高的硬度,但有部分陶瓷的硬度较低,这主要取决于化学键及其内部结构。虽然硬度在一定程度上可以反映材料的耐磨损性,但是有些耐磨损性很好的陶瓷硬度也不是很大。所以硬度测试不能代替耐磨损性测试来衡量材料的耐磨损性。陶瓷、矿物、晶体的硬度主要取决于结合建类型、晶体结构和化学组成。离子半径越小,离子电价越高、配位数越大、结合能越大,抵抗外力摩擦、刻划及压入的能力也就越强,所以硬度就较大.此外,陶瓷材料的微观结构、裂纹、杂质等都对硬度有影响。温度对陶瓷的硬度也有影响,一般温度升高,硬度下降。

7、影响固体材料的熔点的主要因素。

答:固体材料的熔点主要取决于内部质点间结合力的大小,即晶体中化学键的类型和它的强弱程度。结合力越大,破坏质点间的联系所需的能量就越大,熔点就越高;反之,则熔点就越低。从微观上讲,融化过程是一个很复杂的过程,影响材料熔点的因素不是单一的,还和晶体结构的类型、配位状况、离子半径的大小、极化作用等许多因素有关。

8、结构陶瓷材料的力学性能特征。

答:与金属材料和有机材料不同,陶瓷材料具有弹性模量高、抗压强度和高温强度高、高温蠕变小等力学性能,同时其断裂韧性又比较低,表现出脆性断裂。

材料的弹性模量的工程意义;影响陶瓷材料的弹性模量的因素。

答:材料的弹性模量的工程意义:弹性模量在工程上反映了材料刚度大小,在微观上反映原子的键合强度。键合越强,则使原子间隙加大所需的应力越大,弹性模量就越高。因此弹性模量与陶瓷的键合类型有关,通常具有共价键的陶瓷其价键强,E值也高。

影响陶瓷材料的弹性模量的因素:若陶瓷材料的结合键在不同方向上有所不同,其E也不同;气孔率会影响陶瓷弹性模量,其影响总是使弹性模量降低;温度对材料的弹性模量也有影响,通常温度升高,弹性模量E稍微降低。

10、陶瓷材料的实际强度与理论强度。

答:陶瓷材料的强度,若根据原子键断裂来计算可得到理论强度;若将材料内部和表面的各种缺陷,如裂纹、气孔或夹杂物都考虑进去,则为实际强度。材料的刚性(弹性模量)越大,表面能越大,原子间距越小,即结合得越紧密,理论强度越大。但由于材料中存在着制造缺陷和结构缺陷,如气孔夹杂物、裂纹、团聚等,从而导致应力集中,使材料在远低于理论强度的载荷下发生断裂。

11、四点弯曲试验、三点弯曲试验、单轴向拉伸试验测定的强度值特点。

答:四点弯曲试件的最大应力是在两个加载点之间的整个拉伸表面内,拉伸应力从加载点至底部支点降为零。三点弯曲强度测试的最大应力位于试件加载点对面的表面中线上,应力沿着试件两端呈线性下降,在试件底部支点处应力降为零。拉伸强度实验在测量断面的整个体积内都处于最高应力状态,从而试件内缺陷都处于高应力下,因此对于给定的陶瓷材料,四

点弯曲实验得出的强度值比三点弯曲实验得出的数值要低一些,单轴向拉伸顺眼得出的强度值低于弯曲强度值。

12、加载速率对陶瓷材料强度测定值的影响。

答:陶瓷的强度随加载速率的增加而增加。从某种程度上讲,可以将强度随加载速率变化看作是缺陷对强度的影响,随加载速率而变化。加载速率越大,缺陷对强度的影响越小。对于相同的试样和相同的尺寸的裂纹,高速载荷下的强度测试值要比慢速载荷下的强度高的多,因为在慢速载荷上裂纹有足够的时间扩展。

13、单边切口梁法和压痕法测定材料断裂韧性的优缺点。

答:单边切口梁法定义:在矩形截面的长柱状陶瓷部件中部开一个很小的切口作为预置裂纹,切口宽度最好不大于0.25mm,切口深度约为试件的0.4~0.5倍,采用三点或四点弯曲对试样加载直至断裂。

主要优点是:

①试样加工比较简单,采用矩形长试样[2mmx4mmx(36~40mm)],中间用金刚石圆形刀开一狭

窄的切口(切口宽《0.25mm,深度为0.4~0.5W);

②测定值比较稳定,可比较性好,又比较接近真实的Kic;

③可在高温或不同介质与气氛中试验。因此,该法已被许多国家用作标准方法。

缺点:断裂韧性受开口宽度的影响,Kic随切口宽度的增大而增大,这样,若开口宽度控制单边切口梁法所测定的断裂韧性Kic可能偏高。

压痕法定义:在陶瓷表面进行精密抛光,表面光洁度达到1μm以上,在硬度以上用Vickers 金刚石压头以适当的载荷加载,制造压痕及延压痕对角线扩展的裂纹。

主要优点:

①对试样尺寸、数量要求低,便于制备,可用小尺寸样品测试断裂韧性;

②试样加工简单,仅需对表面精密抛光;

③不需预制裂纹,测试速度快;

④不需要特殊的装置和夹具,只要不同的硬度计;

⑤可以测试同一个试样的Kic的不均匀性。

缺点:

①受材料组织均匀性影响,对某些材料,如气孔率高和组织非常不均匀的材料不适用;

②测量值分散性大;

③压痕应力场复杂,解析结果中含很多假设,各计算公式得到的值差别较大。

所以,应尽量增加测试点数,以提高结果准确性。

14、共价键陶瓷的热膨胀系数较低,而离子键陶瓷或金属材料相对较高的原因。答:物体的体积或长度随温度的升高而增大的现象称为热膨胀性。用热膨胀系数α来表征。通常共价键陶瓷具有较低的热膨胀系数。这是由于共价键的方向性使这类陶瓷中易产生一些空隙,受热时各原子产生振动的振幅中有一些被结构内的空隙和键角的改变所吸收,从而使

整个部件的膨胀小的多。而对于离子键陶瓷或金属材料,由于它们具有紧密堆积结构,受热时每个原子的振幅累积起来使得整个材料发生比较大的膨胀。

15、气孔对陶瓷材料热导率的影响。

答:热导率的物理意义是指在单位温度梯度下,单位时间内通过单位垂直面积的热量。通常,陶瓷含有一定量的气孔,气孔对热导率的影响是较复杂的。一般情况下,气孔的体积分数越高,陶瓷材料的热导率就越低,气孔率大的陶瓷保温材料往往具有很低的热导率。对于陶瓷粉末和纤维材料,其热导率比烧结状态时低的多,这是因为这期间气孔又形成了连续相,因此,材料的热导率就会在很大程度上受气孔相的热导率的影响。这也是通常情况下陶瓷粉末和纤维类材料能有良好的隔热性能的原因。

16、材料的抗热震性的概念。陶瓷材料热应力的产生方式。

答:材料的抗热震性是指材料承受温度的急剧变化而不被破坏的能力。也可称为抗热冲击性,或热稳定性。由于温度变化而引起的内应力称为热应力。热应力可能导致材料热冲击破坏或者热疲劳破坏。而抗热震性实际上就是抵抗热应力。陶瓷材料热应力的产生主要有一下集中方式:a、温度梯度引起热应力;b、热膨胀系数不同引起热应力;c、陶瓷部件被约束时产生热应力。

17、多晶陶瓷材料的热震破坏的类型。

答:多晶陶瓷材料的热震破坏有两种类型:一种是材料发生的瞬时断裂,抵抗这类破坏的性能称为抗热震断裂性,一般玻璃和致密陶瓷材料大都属于这种情况。另一种是在热冲击循环作用下,材料表面开裂和剥落并不断延伸和发展,最终碎裂或失效,抵抗这类破坏的性能称为抗热震损伤性。一般含有微孔的陶瓷和耐火材料及非均质的金属陶瓷容易发生此种特征的热震破坏。

18、影响热震断裂的因素及其影响情况。

答:对于因热应力是陶瓷发生瞬时断裂的情况,从R和R’银子可以知道,材料的强度σ、弹性模量E、热膨胀系数α和热导率λ是主要影响因素。

①提高材料强度σ有利于抗热震性的改善,而弹性模量ED大,弹性小,在热冲击条件下材料难以通过变形来波分抵消热应力,因而对抗热震性不利、另外,若使σ∕E提高对改善抗热震性也有利。

②热膨胀系数α。在同样的温度下,α小的材料产生的热应力小,其R也大。

③热导率λ。热导率大,材料内温度梯度会减小,温差应力就小,有利于改善抗热震性。此外,断裂韧性高的陶瓷有利于抗热震性的改善。对于热震损伤这种缓慢的材料破坏,从R’’’和R’’’’因子可知,低的σ值和大的E值更有利,在微观结构上能够吸收断裂功的结构有利于抗热震性。热膨胀系数α和热导率λ的影响同上述讨论一直。此外,减少陶瓷制品表面的热传递系数h是提高陶瓷产品质量及成品率的重要措施。而减小产品的有效厚度r eff 也有利于对热震损伤性的减小。

19、掺杂氧化锆陶瓷的导电机理。

答:材料的导电性主要取决于载流子,有电流通过就意味着有带电质点的定向运动,这些带电质点携带电荷进行定向输送形成电流,故称为“载流子”。ZrO 2掺杂或在高温下呈典型的离子电导而具有导电性,ZrO 2这一特性课用于氧敏检测装置和高温发热体。在ZrO 2中添加某些阳离子半径与Zr 4+

离子半径相差12%以内的低价氧化物如CaO 、MgO 、Y 2O 3、Yb 2O 3,经高温固溶处理以后,低价阳离子部分地置换了高价的Zr 4+离子,为保持系统的电中性,该结构中就形成了氧缺位型的固溶体。氧离子缺位以及氧缺位附近的氧离子在晶格中扩散形成电导,电导大小取决于环境温度和氧的分压。ZrO 2在空气中加热到一定温度范围可由绝缘体转变为导电体。在1000℃左右时离子电导已占其全部电导95%以上,因此,此时的电导形式成为离子电导。 20、陶瓷材料的介电损耗、衡量方式及影响因素。

答:介电损耗是陶瓷材料在交变电场内,由于电导和极化过程产生的能量损耗。常用陶瓷介质损耗角正切值tan δ来衡量介电损耗大小,称介电损耗因子。介电损耗因子tan δ值与电场频率和环境温度有关,在频率增高时tan δ值减小;温度升高后离子易于运动,会使tan δ值增大,在50Hz 时温度由20℃升高至100℃,瓷器的tan δ值可能增大5~10倍。此外,陶瓷介电材料的tan δ值对湿度也很敏感,受潮后试样的tan δ值急剧增大。

21、影响陶瓷材料透光率的主要因素及提高多晶材料的透光性的措施。

答:多晶陶瓷材料的透光性主要是与反射系数m ,吸收系数α,散射系数s 密切相关,其透

过光强为()x s e I I )(+=α-2

0m -1,吸收系数α的值在可见光范围内是比较低的,在影响透光率的因素中不占主要地位。反射系数与材料对周围环境的相对折射率及材料表面光洁度有关,减小折射率差异和提高光洁度有利于改善透光性。而由陶瓷内部气孔、杂质、晶界等非均匀结构导致的散射是影响透光率的最主要因素。因此,消除杂质和气孔,特别是消除大气孔,减小颗粒与晶界相折射率的差值都将显著提高多晶材料的透光性。对于具有双折射特定的非立方结构的多晶陶瓷材料,通过晶粒定向排列形成织构,使晶粒的光轴趋于平行,可大大提高其透光性,而对于MgO 、Y 2O 3、MgAl 2O 4等立方晶系陶瓷,没有双折射现象,可制的几乎完全透明的陶瓷材料。

22、含Cr 2O 3的Al 2O 3陶瓷的呈色机理。

答:当陶瓷材料中某些离子还有易激发的电子,可见光范围的光线可能被吸收,这是陶瓷就呈现出颜色。Al 2O 3瓷料中引入Cr 2O 3和MnO 而致。还1%左右Cr 2O 3的Al 2O 3陶瓷常呈现红色,就是因为固溶到α- Al 2O 3晶格中的Cr 3+

离子对可见光的蓝绿色频段有强烈的选择性吸收,从而使瓷体呈现蓝绿色的补色,即粉红色。 23、激光材料是的组成、基质的作用、激活离子。

答:激光材料由基质和激活离子组成,基质的作用主要是为激活离子(发光中心)提供一个合适的晶格场,使之产生受激发射,应用最广的基质是氧化物及氟化物晶体,如Al 2O 3、Y 3Al 5O 15,、YAlO 3、BaF 2、SrF 2、YLiF 等。作为发光中心的少量掺杂离子称为激活离子,主要

是过渡族金属离子、三价稀土离子等。

24、材料的脆性-延性转变温度。

答:一般而言,在较低温度范围内,陶瓷的断裂破换属脆性行为,即没有塑性变形,同时极限应力很小,对微小缺陷很敏感。但在高温区,陶瓷在断裂前可产生微小塑性变形,极限应变大大增加,有少量碳素性行为。此外,强度对缺陷的敏感程度有很大变化,产生这种材料性能变化的低温区和高温区的分界线通常称为脆性-延性转换温度。

25、陶瓷蠕变断裂的机理。

答:

A、位错运动。晶相的位错在低温下受到障碍难以发生运动,在高温下原子热运动加剧,可以使位错从障碍中解放出来,引起蠕变。当温度增加时,位错运动的速度加快,除位错运动产生滑移外,位错潘移也产生宏观上的变形。热运动有助于使位错从障碍中解放出来,并使位错运动加速。当受到的阻碍较小时,容易运动的位错解放出来完成蠕变后,蠕变速率就会下降。

B、晶界滑移。通常认为晶界是蠕变和裂纹的起源,因为多晶陶瓷中的晶界易于富集杂质、气孔,形成玻璃相或微晶相。同时晶界也是应力集中的地方,所以相邻晶粒间的滑移是陶瓷高温蠕变的一种重要微观过程。高温下形变的主要部分是晶界滑移,因此蠕变断裂的主要形式是沿晶断裂。

C、空位扩散。蠕变是在外应力作用下空位定向扩散的过程。应力造成空位浓度差,质点由高浓度向低浓度扩散,导致晶粒沿受拉方向伸长,引起形变。对于空位扩散,受拉的晶界上空位浓度大大增加,这些空位大量聚集,可形成可观裂纹,折后再弄个裂纹逐步扩散就导致断裂。

26、抗蠕变能力强的陶瓷材料的特性。

答:抗蠕变能力较强的陶瓷材料具有如下特征:具有初始难熔相;高纯,玻璃相含量低;晶界干净,无杂质和气孔;大晶粒尺寸存在有利抵抗晶界的滑移。

27、降温对陶瓷材料的理论结合强度的影响。

答:温度降低时组成陶瓷材料的晶体中原子间距减小,原子振动减弱,原子间作用力增强,宏观表现为材料的弹性模量E和自由表面能γ增大,因此,理论结合强度提高。

室内构成1-材料的物理特性(带图文)复习课程

第二章:室内技术构成 第一节:室内装饰材料的构成: 一材料的物理特性: 1材料的物理特性 a声学特性; 主要指吸音特性:内部呈孔状,材质较松软 常用吸音材料:木质吸音板、矿棉吸音板、布艺吸音板、陶瓷蜂窝吸音板、聚酯纤维吸音板、吸声软包等等 槽木吸音板:是一种在密度板的正面开槽、背面穿孔的狭缝共振吸声材料。常用于墙面或天花装饰。 产品结构 芯材:15mm或18mm厚的MDF板材。木质吸音板通常用密度为720kg/cu.m的二级MDF 板料做成,亦可根据用户要求使用一级的MDF板料。 饰面:三聚氰胺涂饰层,请按公司色卡选择,真木皮饰面,可按客户要求选择木皮和油漆及颜色。 吸声薄毡:颜色为黑色,粘贴在吸声板背面,具防火吸声性能。 板条宽度:128mm或按照客户要求订做。 板条长度:最长2440mm或按客户要求订做。 允许公差:宽度为0.1MM,长度为2MM。 拼版: 板条长边根据实际需要做成90度角的企口和凹口来拼接。 产品特点 科技产业——多种材质根据声学原理,合理配合,具有出色的降噪吸音性能,对中、高频吸音效果尤佳。 艺术产品——既有天然木质纹理,古朴自然;亦有体现现代节奏的明快亮丽的风格,产品的装饰性极佳,可根据需要饰以天然木纹、图案等多种装饰效果,提供良好的视觉享受。 环保产品——所有材料符合国家环保标准,甲醛含量极低,产品还具有天然木质的芳香。具有木质最高的防火等级B1。这点己通过国家权威部门检测通过。 安装简易——标准化模块设计,采用插槽、龙骨结构,安装简便、快捷。 产品用途 槽木吸音板适用于歌剧院,影剧院,录音室,录音棚,播音室,试音室,电视台,电台,商务办公厅,多功能厅,会议室,演播厅,音乐厅,大礼堂,体育馆,琴房,学校,休闲娱乐城,酒店,ktv,band房,机房,厂房,高级别墅或家居生活等对声学要求较严格的场所。 孔木吸音板:孔木吸音板是一种在密度板的正面,背面都开圆孔的结构吸声材料;不仅具有传统装饰隔热、防火、防尘、质轻、不改性、不腐烂等特点,更具有吸音效果佳、强度高、装饰性好、施工方便、环保性能优等特点;该产品填补装饰行业中高档吸声板材料的空白,使业主和设计师在选用声学材料时有了更多的选择,顺应了现代装修中回归自然、崇尚木质感觉的潮流。 吸音板的应用:

《材料结构与性能》习题

《材料结构与性能》习题 第一章 1、一 25cm长的圆杆,直径 2.5mm,承受的轴向拉力4500N。如直径拉细成 2.4mm,问: 1)设拉伸变形后,圆杆的体积维持不变,求拉伸后的长度; 2)在此拉力下的真应力和真应变; 3)在此拉力下的名义应力和名义应变。 比较以上计算结果并讨论之。 2、举一晶系,存在S14。 3、求图 1.27 所示一均一材料试样上的 A 点处的应力场和应变场。 4、一陶瓷含体积百分比为95%的 Al 2O(3 E=380GPa)和 5%的玻璃相( E=84GPa),计算上限及下限弹性模量。如该陶瓷含有5%的气孔,估算其上限及下限弹性模量。 5、画两个曲线图,分别表示出应力弛豫与时间的关系和应变弛豫和时间的 关系。并注出: t=0,t= ∞以及 t= τε(或τσ)时的纵坐标。 6、一 Al 2O3晶体圆柱(图1.28 ),直径 3mm,受轴向拉力 F ,如临界抗剪强度τ c=130MPa,求沿图中所示之一固定滑移系统时,所需之必要的拉力值。同时 计算在滑移面上的法向应力。

第二章 1、求融熔石英的结合强度,设估计的表面能为 1.75J/m 2;Si-O 的平衡原子间距为 1.6 ×10-8 cm;弹性模量值从60 到 75GPa。 2、融熔石英玻璃的性能参数为:E=73GPa;γ =1.56J/m 2;理论强度。如材料中存在最大长度为的内裂,且此内裂垂直于作用力的方向,计算由此而导致的强度折减系数。 3、证明材料断裂韧性的单边切口、三点弯曲梁法的计算公式: 与 是一回事。

4、一陶瓷三点弯曲试件,在受拉面上于跨度中间有一竖向切口如图 2.41所示。如果 E=380GPa,μ =0.24 ,求 KⅠc值,设极限载荷达50 ㎏。计算此材料的断裂表面能。 5、一钢板受有长向拉应力350 MPa,如在材料中有一垂直于拉应力方向的 中心穿透缺陷,长 8mm(=2c)。此钢材的屈服强度为 1400MPa,计算塑性区尺 寸 r 0及其与裂缝半长 c 的比值。讨论用此试件来求 KⅠc值的可能性。 6、一陶瓷零件上有以垂直于拉应力的边裂,如边裂长度为:①2mm;②0.049mm;③ 2μ m,分别求上述三种情况下的临界应力。设此材料的断裂韧性为 2 1.62 MPa〃m。讨论诸结果。 7、画出作用力与预期寿命之间的关系曲线。材料系ZTA陶瓷零件,温度在 2 ,慢裂纹扩展指数-40 ,Y 取π 。设保 900℃, KⅠc为 10MPa〃m N=40,常数 A=10 证实验应力取作用力的两倍。 8、按照本章图 2.28 所示透明氧化铝陶瓷的强度与气孔率的关系图,求出经验公式。 9、弯曲强度数据为: 782,784,866,884,884,890,915,922,922,927,942, 944,1012 以及 1023MPa。求两参数韦伯模量数和求三参数韦伯模量数。 第三章 1、计算室温( 298K)及高温( 1273K)时莫来石瓷的摩尔热容值,并请和安杜龙—伯蒂规律计算的结果比较。 2、请证明固体材料的热膨胀系数不因内含均匀分散的气孔而改变。

《材料结构与性能》课程论文

《材料结构与性能》课程论文 刚玉-尖晶石浇注料微结构参数控制及其强度、热震稳定性和抗渣性能研究 学生姓名:周文英 学生学号:201502703043 撰写日期:2015年11月

摘要 本文通过使用环境对耐火材料的要求,耐火材料与结构参数的分析,耐火材 料结构控制措施进展分析等方面总结了耐火材料的使用现状,并提出了下一步耐 火材料的改进措施。分别是:在基质中加入一定量的硅微粉,改变液相的粘度, 提高抗渣性;控制铝镁浇注料基质的粒径分布,使大颗粒含量一定保证其高温强度;使用球形轻骨料代替原来的致密骨料,提高气孔率,降低体积密度,提高能 源利用率,降低能耗。 关键词:铝镁浇注料;高温强度;抗渣性;热震稳定性 Abstract Requirements of the apply for fire resistance, analysis of refractory materials and structure parameters, current application and the promotion about the refractory are introduced in this paper. It included that: add some sillicon power into matrix in order to improve the viscosity of the liquid for abtaining better slag resistance; control the distribution of the particle in the matrix to ensure the high temperature strength; use spherical light aggregate instead of the original density aggregate to improve porosity and the rate of energy. Keywords:Alumina-Magnesia castable; high temperature strength; slag resistance; themal shock resistance.

复合材料建筑结构及其应用

纺硕1101 钟翠学号:2110040 读书报告 ——关于《纤维复合材料在建筑工业中的应用与特点》的读书报告建筑业在国民经济中占有很重要的地位,不论是哪个国家建筑工业都是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,已成为推动建筑工业改革发展的动力。 建筑工业中,传统的建筑材料是砖石结构、钢结构、木结构、钢筋混凝土结构。从环境保护角度来看,砖石结构、木结构的使用会越来越少,钢结构和钢筋混凝土结构虽然在现代建筑中发挥着主导作用,但由于其质量大,建筑面积利用率较低等缺点仍难以满足各个方面的要求。因此,必须改善现有的建筑材料和发展新型的建筑材料。随着军工生产与航空航天而发展越来的纤维复合材料,由于具有良好而独特的性能,适应了现代工程结构向大跨度、高耸、重载、高强和轻质方向的发展,在土木建筑工程中的应用日益扩大。 纤维增强复合材料(fiber reinforced polumer/plastic,简称FRP)是由纤维增强材料和基体材料按一定比例混合并经过一系列工艺流程复合形成的高性能新型材料。它不仅具有单一组分材料的基本特性,而且能产生比任一组分材料更加优越的性能。目前工程上应用的FRP主要为碳纤维(CFRP)、玻璃纤维(GFRP)和芳纶纤维(AFRP)增强的树脂基体。用于建筑工程结构的FRP主要采用长纤维增强为主,主要产品形式有:片材、筋材和索材、网格材和格栅、拉挤型材、模压型材靠等。纤维布是目前应用最广的形式,主要应用于结构工程加固,使用前不润树脂,加固时用树脂浸润后粘贴于结构表面。 复合材料在建筑工业中用途十分广泛,从基础到屋面、从内外墙板到卫生洁具、从门窗到建筑装饰、从承重结构到全复合材料房屋,均可用复合材料来制造。根据国内外复合材料建筑结构的应用情况,用于建筑方面的复合材料制品可以归纳为如下几类。 ⑴复合材料承重结构用于承重结构的复合材料建筑制品有:桁架、柱、梁、承重折板、屋面板、楼板、梯子、加强筋等。这些复合材料构件主要用于化工厂房、码头等需要防腐的建筑,高层结构及全复合材料房屋等要求质量轻的建

复合材料结构

复合材料结构设计的特点 (1) 复合材料既是一种材料又是一种结构 (2) 复合材料具有可设计性 (3) 复合材料结构设计包含材料设计 复合材料区别于传统材料的根本特点之一可设计性好(设计人员可根据所需制品对力学及其它性能的要求,对结构设计的同时对材料本身进行设计) 具体体现在两个方面1力学设计——给制品一定的强度和刚度、2功能设计——给制品除力学性能外的其他性能 复合材料力学性能的特点 (1) 各向异性性能材料弹性主方向:模量较大的一个主方向称为纵向,用字母L表示,与其垂直的另一主方向称为横向,用字母T表示。通常的各向同性材料中,表达材料弹 )和ν(泊松比)或剪切弹性模量G。 对于复合材料中的每个单层,纵向弹性模量E L、横向弹性模量E T、纵向泊松比νL (或横向泊松比νT)、面内剪切弹性模量G LT。 耦合现象:拉剪耦合与剪拉耦合、弯扭耦合与扭弯耦合 (2) 非均质性 耦合变形:层合结构复合材料在一种外力作用下,除了引起本身的基本变形外,还可能引起其他基本变形。 (3)层间强度低 在结构设计时,应尽量减小层间应力,或采取某些构造措施,以避免层间分层破坏。 研究复合材料的刚度和强度时,基本假设: (1) 假设层合板是连续的。由于连续性假设,使数学分析中的一些连续性概念、极限概念以及微积分等数学工具都能应用于力学分析中。 (2)假设单向层合板是均匀的,多向层合板是分段均匀的。 (3) 假设限于单向层合板是正交各向异性的:即认为单向层合板具有两个相互垂直的弹性对称面。 (4) 假设限于层合板是线弹性的:即认为层合板在外力作用下产生的变形与外力成正比关系,且当外力移去后,层合板能够完全恢复其原来形状。 (5) 假设层合板的变形是很小的。 上述五个基本假设,只有多向层合板的分段均匀性假设和单向层合板的正交各向异性假设,与材料力学中的均匀性假设和各向同性假设有区别。 平面应力状态与平面应变状态 平面应力状态:单元体有一对平面上的应力等于0。(σz=0,τzx=0,τzy =0) 平面应变状态(平面位移):εz=0(即ω=0),τzx=0(γ31=0),τzy =0(γ32=0 ), σz一般不等于0。 复合材料连接方式 复合材料连接方式主要分为两大类:胶接连接与机械连接。胶接连接:受力不大的薄壁结构,尤其是复合材料结构;机械连接:连接构件较厚、受力大的结构。

产品结构设计资料--金属材料

产品结构设计资料--金属材料 SPCC 一般用钢板,表面需电镀或涂装处理 SECC 镀锌钢板,表面已做烙酸盐处理及防指纹处理 SUS 301 弹性不锈钢 SUS304 不锈钢 镀锌钢板表面的化学组成------基材(钢铁),镀锌层或镀镍锌合金层,烙酸盐层和有机化学薄膜层。 有机化学薄膜层能表面抗指纹和白锈,抗腐蚀及有较佳的烤漆性。SECC的镀锌方法 热浸镀锌法: 连续镀锌法,成卷的钢板连续浸在溶解有锌的镀槽中; 板片镀锌法,剪切好的钢板浸在镀槽中,镀好后会有锌花。 电镀法: 电化学电镀,镀槽中有硫酸锌溶液,以锌为阳极,原材质钢板为阴极。 1-1产品种类介绍 1.品名介绍 材料规格后处

理镀层厚度 S A B C * D * E S for Steel A: EG (Electro Galvanized Steel)电气镀锌钢板---电镀锌一般通称JIS 镀纯锌 EG SECC (1)铅和镍合金合金EG SECC (2) GI (Galvanized Steel) 溶融镀锌钢板------热浸镀锌 非合金化 GI, LG SGCC (3) 铅和镍合金 GA, ALLOY SGCC (4) 裸露处耐蚀性2>3>4>1 熔接性2>4>1>3 涂漆性4>2>1>3 加工性1>2>3>4 B:所使用的底材

C (Cold rolled) : 冷轧 H (Hot rolled): 热轧 C:底材的种类 C:一般用 D:抽模用 E:深抽用 H:一般硬质用 D:后处理 M:无处理 C:普通烙酸处理---耐蚀性良好,颜色白色化 D:厚烙酸处理---耐蚀性更好,颜色黄色化 P:磷酸处理---涂装性良好 U:有机耐指纹树脂处理(普通烙酸处理)--- ---耐蚀性良好,颜色白色化,耐指纹性很好 A:有机耐指纹树脂处理(厚烙酸处理)---颜色黄色化,耐蚀性更好FX:无机耐指纹树脂处理---导电性 FS:润滑性树脂处理---免用冲床油

材料结构与性能(珍藏版)

材料结构与性能(珍藏版) 一、何为金属键?金属的性能与金属键有何关系? 二、试说明金属结晶时,为什么会产生过冷? 三、结合相关工艺或技术说明快速凝固的组织结构特点。 四、画出铁碳合金相图,并指出有几个基本的相和组织?说明它们的结构和 性能特点。 五、说明珠光体和马氏体的形成条件、组织形态特征和性能特点。 六、试分析材料导热机理。金属、陶瓷和玻璃导热机制有何区别?将铬、 银、Ni-Cr合金、石英、铁等物质按热导率大小排序,并说明理由。 七、从结构上解释,为什么含碱土金属的玻璃适用于介电绝缘? 八、列举一些典型的非线性光学材料,并说明其优缺点。 九、什么是超疏水、超亲水?超疏水薄膜对结构与表面能有什么要求? 十、导致铁磁性和亚铁磁性物质的离子结构有什么特征? 答案自测 特别重要的名词解释 原子半径:按照量子力学的观点,电子在核外运动没有固定的轨道,只是概率分布不同,因此对原子来说不存在固定的半径。根据原子间作用力的不同,原子半径一般可分为三种:共价半径、金属半径和范德瓦尔斯半径。通常把统和双原子分子中相邻两原子的核间距的一半,即共价键键长的一半,称作该原子的共价半径(r c);金属单质晶体中相邻原子核间距的一半称为金属半径 (r M);范德瓦尔斯半径(r V)是晶体中靠范德瓦尔斯力吸引的两相邻原子核间距的一半,如稀有气体。

电负性:Parr等人精确理论定义电负性为化学势的负值,是体系外势场不变的条件下电子的总能量对总电子数的变化率。 相变增韧:相变增韧是由含ZrO2的陶瓷通过应力诱发四方相(t相)向单斜相(m相)转变而引起的韧性增加。当裂纹受到外力作用而扩展时,裂纹尖端形成的较大应力场将会诱发其周围亚稳t-ZrO2向稳定m-ZrO2转变,这种转变为马氏体转变,将产生近4%的体积膨胀和1%-7%的剪切应变,对裂纹周围的基体产生压应力,阻碍裂纹扩展。而且相变过程中也消耗能量,抑制裂纹扩展,提高材料断裂韧性。 Suzuki气团:晶体中的扩展位错为保持热平衡,其层错区与溶质原子间将产生相互作用,该作用被成为化学交互作用,作用的结果使溶质原子富集于层错区内,造成层错区内的溶质原子浓度与在基体中的浓度存在差别。这种不均匀分布的溶质原子具有阻碍位错运动的作用,也成为Suzuki气团。

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

复合材料总思考题及参考答案

复合材料概论总思考题 一.复合材料总论 1.什么是复合材料?复合材料的主要特点是什么? ①复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。 ②1)组元之间存在着明显的界面;2)优良特殊性能;3)可设计性;4)材料和结构的统一 2.复合材料的基本性能(优点)是什么?——请简答6个要点 (1)比强度,比模量高(2)良好的高温性能(3)良好的尺寸稳定性(4)良好的化学稳定性(5)良好的抗疲劳、蠕变、冲击和断裂韧性(6)良好的功能性能 3.复合材料是如何命名的?如何表述?举例说明。4种命名途径 ①根据增强材料和基体材料的名称来命名,如碳纤维环氧树脂复合材料 ②(1) 强调基体:酚醛树脂基复合材料(2)强调增强体:碳纤维复合材料 (3)基体与增强体并用:碳纤维增强环氧树脂复合材料(4)俗称:玻璃钢 4.常用不同种类的复合材料(PMC,MMC,CMC)各有何主要性能特点? 5.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?3个层次 答:1、一次结构:由集体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何和界面区的性能; 二次结构:由单层材料层复合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何三次结构:指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结构几何。 2、①单层材料设计:包括正确选择增强材料、基体材料及其配比,该层次决定单层板的性能; ②铺层设计:包括对铺层材料的铺层方案作出合理安排,该层次决定层合板的性能; ③结构设计:最后确定产品结构的形状和尺寸。 6.试分析复合材料的应用及发展。 答:①20世纪40年代,玻璃纤维和合成树脂大量商品化生产以后,纤维复合材料发展成为具有工程意义的材料。至60年代,在技术上臻于成熟,在许多领域开始取代金属材料。 ②随着航空航天技术发展,对结构材料要求比强度、比模量、韧性、耐热、抗环境能力和加工性能都好。针对不同需求,出现了高性能树脂基先进复合材料,标志在性能上区别于一般低性能的常用树脂基复合材料。以后又陆续出现金属基和陶瓷基先进复合材料。 ③经过60年代末期使用,树脂基高性能复合材料已用于制造军用飞机的承力结构,今年来又逐步进入其他工业领域。 ④70年代末期发展的用高强度、高模量的耐热纤维与金属复合,特别是与轻金属复合而成金属基复合

材料结构和性能解答(全)

1、离子键及其形成的离子晶体陶瓷材料的特征。 答:当一个原子放出最外层的一个或几个电子成为正离子,而另一个原子接受这些电子而成为负离子,结果正负离子由于库仑力的作用而相互靠近。靠近到一定程度时两闭合壳层的电子云因发生重叠而产生斥力。这种斥力与吸引力达到平衡的时候就形成了离子键。此时原子的电中性得到维持,每一个原子都达到稳定的满壳层的电子结构,其总能量达到最低,系统处于最稳定状态。因此,离子键是由正负离子间的库仑引力构成。由离子键构成的晶体称为离子晶体。离子晶体一般由电离能较小的金属原子和电子亲和力较大的非金属原子构成。离子晶体的结构与特性由离子尺寸、离子间堆积方式、配位数及离子的极化等因素有关。 离子键、离子晶体及由具有离子键结构的陶瓷的特性有: A、离子晶体具有较高的配位数,在离子尺寸因素合适的条件下可形成最密排的结构; B、离子键没有方向性 C、离子键结合强度随电荷的增加而增大,且熔点升高,离子键型陶瓷高强度、高硬度、高熔点; D、离子晶体中很难产生自由运动的电子,低温下的电导率低,绝缘性能优良; E、在熔融状态或液态,阳离子、阴离子在电场的作用下可以运动,故高温下具有良好的离子导电性。 F、吸收红外波、透过可见波长的光,即可制得透明陶瓷。 2、共价键及其形成的陶瓷材料具有的特征。 答:当两个或多个原子共享其公有电子,各自达到稳定的、满壳层的状态时就形成共价键。由于共价电子的共享,原子形成共价键的数目就受到了电子结构的限制,因此共价键具有饱和性。由于共价键的方向性,使共价晶体不密堆排列。这对陶瓷的性能有很大影响,特别是密度和热膨胀性,典型的共价键陶瓷的热膨胀系数相当低,由于个别原子的热膨胀量被结构中的自由空间消化掉了。 共价键及共价晶体具有以下特点: A、共价键具有高的方向性和饱和性; B、共价键为非密排结构; C、典型的共价键晶体具有高强度、高硬度、高熔点的特性。 D、具有较低的热膨胀系数; E、共价键由具有相似电负性的原子所形成。 3、层状结构材料的各向异性。 答:层状结构中范德华力起着重要的作用,陶瓷的层状结构间有较强的若键存在使得层与层之间连接在一起。蒙脱石和石墨的结构层内键合类型不同于层间键合类型,因此材料显示出较高的各向异性。所有的这些层状结构的层与层之间很容易滑移,粘土矿物中的这种层状结构使它在有水的情况下容易发生塑性变形。 4、影响陶瓷材料密度的因素。 答:密度是指单位体积的质量,陶瓷材料的密度有四种表示方式,分别是:结晶学密度、理论密度、体积密度、相对密度。前三种在制作过程中没有形成气孔,在结构内的原子间只有间隙。陶瓷材料的密度主要取决于元素的尺寸,元素的质量和结构堆积的紧密程度。相对原子质量大的元素构成的陶瓷材料显示出较高的密度,如碳化钨、氧化铪等。金属键合和离子键合陶瓷中的原子形成紧密堆积,会使其密度比共价键键合陶瓷(较开放的结构)的密度更奥一些,如锆石英。 5、硬度所反映的材料的能力;静载荷压入法测定硬度的原理。

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

山大复合材料结构与性能复习题参考答案.doc

1、简述构成复合材料的元素及其作用 复合材料由两种以上组分以及他们之间的界面组成。即构成复合材料的元素包括基体相、增强相、界面相。 基体相作用:具有支撑和保护增强相的作用。在复合材料受外加载荷时,基体相一剪切变形的方式起向增强相分配和传递载荷的作用,提高塑性变 形能力。 增强和作用:能够强化基体和的材料称为增强体,增强体在复合材料中是分散相, 在复合材料承受外加载荷时增强相主要起到承载载荷的作用。 界面相作用:界面相是使基体相和增强相彼此相连的过渡层。界面相具有一定厚度,在化学成分和力学性质上与基体相和增强相有明显区别。在复 合材料受外加载荷时能够起到传递载荷的作用。 2、简述复合材料的基本特点 (1)复合材料的性能具有可设计性 材料性能的可设计性是指通过改变材料的组分、结构、工艺方法和工艺参数来调节材料的性能。显然,复合材料中包含了诸多影响最终性能、可调节的因素,赋予了复合材料的性能可设计性以极大的自由度。 ⑵ 材料与构件制造的一致性 制造复合材料与制造构件往往是同步的,即复合材料与复合材料构架同时成型,在采用某种方法把增强体掺入基体成型复合材料的同时?,通常也就形成了复合材料的构件。 (3)叠加效应 叠加效应指的是依靠增强体与基体性能的登加,使复合材料获得一?种新的、独特而又优于个单元组分的性能,以实现预期的性能指标。 (4)复合材料的不足 复合材料的增强体和基体可供选择地范围有限;制备工艺复杂,性能存在波动、离散性;复合材料制品成本较高。

3、说明增强体在结构复合材料中的作用能够强化基体的材料称为增强体。增强体在复合材料中是分散相。复合材料中的增强体,按几何形状可分为颗 粒状、纤维状、薄片状和由纤维编制的三维立体结构。喑属性可分为有机增强体 和无机增强体。复合材料中最主要的增强体是纤维状的。对于结构复合材料,纤 维的主要作用是承载,纤维承受载荷的比例远大于基体;对于多功能复合材料, 纤维的主要作用是吸波、隐身、防热、耐磨、耐腐蚀和抗震等其中一种或多种, 同时为材料提供基本的结构性能;对于结构陶瓷复合材料,纤维的主要作用是增 加韧性。 4、说明纤维增强复合材料为何有最小纤维含量和最大纤维含量 在复合材料中,纤维体积含量是一个很重要的参数。纤维强度高,基体韧性好,若加入少量纤维,不仅起不到强化作用反而弱化,因为纤维在基体内相当于裂纹。所以存在最小纤维含量,即临界纤维含量。若纤维含量小于临界纤维量,则在受外载荷作用时,纤维首先断裂,同时基体会承受载荷,产生较大变形,是否断裂取决于基体强度。纤维量增加,强度下降。当纤维量大于临界纤维量时,纤维主要承受载荷。纤维量增加强度增加。总之,含量过低,不能充分发挥复合材料中增强材料的作用;含量过高,由于纤维和基体间不能形成一定厚度的界面过渡层, 无法承担基体对纤维的力传递,也不利于复合材料抗拉强度的提高。 5、如何设才计复合材料 材料设计是指根据对?材料性能的要求而进行的材料获得方法与工程途径的规划。复合材料设计是通过改变原材料体系、比例、配置和复合工艺类型及参数,来改变复合材料的性能,特别是是器有各向异性,从而适应在不同位置、不同方位和不同环境条件下的使用要求。复合材料的可设计性赋予了结构设计者更大的自由度,从而有可能设计出能够充分发掘与应用材料潜力的优化结构。复合材料制品的设计与研制步骤可以归纳如下: 1)通过论证明确对于材料的使用性能要求,确定设计目标 2)选择材料体系(增强体、基体) 3)确定组分比例、几何形态及增强体的配置 4)确定制备工艺方法及工艺参数

常见材料及其相关特性

1.1钣金材料的选材 钣金材料是通信产品结构设计中最常用的材料,了解材料的综合性能和正确的选材,对产品成本、产品性能、产品质量、加工工艺性都有重要的影响。 1.1.1钣金材料的选材原则 1)选用常见的金属材料,减少材料规格品种,尽可能控制在公司材料手册范围内; 2)在同一产品中,尽可能的减少材料的品种和板材厚度规格; 3)在保证零件的功能的前提下,尽量选用廉价的材料品种,并降低材料的消耗,降低材料成本; 4)对于机柜和一些大的插箱,需要充分考虑降低整机的重量; 5)除保证零件的功能的前提外,还必须考虑材料的冲压性能应满足加工艺要求,以保证制品的加工的合理性和质量。 1.1.2几种常用的板材介绍 1.1. 2.1 钢板 1)冷轧薄钢板 冷轧薄钢板是碳素结构钢冷轧板的简称,它是由碳素结构钢热轧钢带,经过进一步冷轧制成厚度小于4mm的钢板。由于在常温下轧制,不产生氧化铁皮,因此,冷板表面质量好,尺寸精度高,再加之退火处理,其机械性能和工艺性能都优于热轧薄钢板。常用的牌号为低碳钢08F和10#钢,具有良好的落料、折弯性能。 2)连续电镀锌冷轧薄钢板 连续电镀锌冷轧薄钢板,即“电解板”,指电镀锌作业线上在电场作用下,锌从锌盐的水溶液中连续沉积到预先准备好的钢带表现上得到表面镀锌层的过程,因为工艺所限,镀层较薄。 3)连续热镀锌薄钢板 连续热镀锌薄钢板简称镀锌板或白铁皮,是厚度0.25~2.5mm的冷轧连续热镀锌薄钢板和钢带,钢带先通过火焰加热的预热炉,烧掉表面残油,同时在表面生成氧化铁膜,再进入含有H2、N2混合气体的还原退火炉加热到710~920℃,使氧化铁膜还原成海绵铁,表面活化和净化了的带钢冷却到稍高于熔锌的温度后,进入450~460℃的锌锅,利用气刀控制锌层表面厚度。最后经铬酸盐溶液钝化处理,以提高耐白锈性。与电镀锌板表面相比,其镀层较厚,主要用于要求耐腐蚀性较强的钣金件。 4)覆铝锌板 覆铝锌板的铝锌合金镀层是由55%铝、43.4%锌与1.6%硅在600℃高温下固化而组成,形成致密的四元结晶体保护层,具有优良的耐腐蚀性,正常使用寿命可达25年,比镀锌板长3-6倍,与不锈钢相当。覆铝锌板的耐腐蚀性来自铝的障碍层保护功能,和锌的牺牲性保

材料结构与性能答案(DOC)

1.材料的结构层次有哪些,分别在什么尺度,用什么仪器进行分析? 现在,人们通过大量的科学研究和工程实践,已经充分认识到物质结构的尺度和层次是有决定性意义的。 在不同的尺度下,主要的,或者说起决定性的问题现象和机理都有很大的差异,因此需要我们用不同的思路和方法去研究解决这些问题。更值得注意的是空间尺度与时间尺度还紧密相关,不同空间尺度下事件发生及进行的时间尺度也很不相同。一般地讲,空间尺度越大的,则描述事件的时间尺度也应越长。不同的学科关注不同尺度的时空中发生的事件。现代科学则按人眼能否直接观察到,且是否涉及分子、原子、电子等的内部结构或机制,而将世界粗略地划分为宏观(Macro-scopic)世界和微观(Microscopic)世界。之后,又有人将可以用光学显微镜观察到的尺度范围单独分出,特别地称作/显微结构(世界)。随着近年来材料科学的迅速发展,材料科学家中有人将微观世界作了更细致地划分。而研究基本粒子的物理学家可能还会把尺度向更小的方向收缩,并给出另外的命名。对于宏观世界,根据尺度的不同,或许还可以细分为/宇宙尺度/太阳系尺度/地球尺度和/工程及人体尺度等。人类的研究尺度已小至基本粒子,大至全宇宙。但到目前为止,关于/世界的认识还在不断深化,因而对其划分也就还处于变动之中。即使是按以上的层次划分,其各界之间的边界也比较模糊,有许多现象会在几个尺度层次中发生。 在材料科学与工程领域中,对于材料结构层次的划分尚不统一,可以列举出许多种划分方法,例如:有的材料设计科学家按研究对象的空间尺度划分为三个 层次: (1)工程设计层次:尺度对应于宏观材料,涉及大块材料的加工和使用性能的设计研究。 (2)连续模型尺度:典型尺度在1Lm量级,这时材料被看作连续介质,不考虑其中单个原子、分子的行为。 (3)微观设计层次:空间尺度在1nm量级,是原子、分子层次的设计。 国外有的计算材料学家,按空间和时间尺度划分四个层次〔1〕,即 (1)宏观 这是人类日常活动的主要范围,即人通过自身的体力,或借助于器械、机械等所能通达的时空。人的衣食住行,生产、生活无不在此尺度范围内进行。其空间尺度大致在0.1mm(目力能辨力最小尺寸)至数万公里人力跋涉之最远距离),时间尺度则大致在0.01秒(短跑时人所能分辨的速度最小差异)至100年(人的寿命差不多都在百年以内)。现今风行的人体工程学就是以人体尺度1m上下为主要参照的。 (2)介观 介观的由来是说它介于/宏观与/微观之间。其尺度主要在毫米量级。用普通光学显微镜就可以观察。在材料学中其代表物是晶粒,也就是说需要注意微结构了,如织构,成分偏析,晶界效应,孔中的吸附、逾渗、催化等问题都已开始显现。现在,介观尺度范围的研究成果在材料工程领域,如耐火材料工业、冶金工业等行业中有许多直接而成功的应用。 (3)微观 其尺度主要在微米量级,也就是前面所说/显微结构(世界)0。多年以来借助于光学显微镜、电子显微镜、X)衍射分析、电子探针等技术对于晶态、非晶态材料在这一尺度范围的行为表现有较多的研究,许多方法已成为材料学的常规手段。在材料学中,这一尺度的代表物有晶须、雏晶、分相时产生的液滴等。 (4)纳观 其尺度范围在纳米至微米量级,即10-6~10-9m,大致相当于几十个至几百个原子集合体的尺寸。在这一尺度范围已经显现出量子性,已经不再能将研究对象作为/连续体0,不能再简单地

复合材料结构及其成型原理

碳纤维复合材料 (西北工业大学机电学院, 陕西西安710072) 摘要:碳纤维复合材料与金属材料相比,其密度小、比强度、比模量高,具有优越的成型性和其他特性,具有极大的发展潜力。本文介绍了碳纤维复合材料的特点及其应用,总结了碳纤维复合材料的成型工艺及每种成型工艺的特点,并从材料和成型两个方面指出了它的发展方向。 关键词:复合材料;碳纤维;成型工艺;工艺流程 Carbon Fiber Reinforce Plastic (School of Mechatronics, Northwes tern Polytechnical University, Xi’an 710072, China) Abstract: Compared to metals, carbon fiber reinforce plastic has great potential for development with lower density, higher specific strength and modulus, and excellent moldability and other characteristics. This article describes the characteristics and applications of carbon fiber reinforce plastic and sum up the manufacturing process of carbon fiber reinforce plastic and their characteristics. Finally, this article points out the development of carbon fiber reinforce plastic from two aspects: material and manufacturing process. Key words: composites; carbon fiber; manufacturing process; process

复合材料力学沈观林编着清华大学出版社

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒 复合材料、纤维增强复合材料(fiber-reinforced composite)、层禾口 复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶 '瓷O (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高)碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

个人总结:产品结构设计中各类材料的选用参考及具体事例

设计者绘出零件图后,要对零部件列出使用条件和重要选材因素、然后合理地选材。括以下三个步骤: (1)跟据应用目的,列出部件的全部功能要求(并不是材料的性能),并尽可能定量化。例如: ①在额定的连续载荷下允许的最大变形量; ②使用和运输过程中所受的应力种类和大小;是否长期受力,是动态或是静态应力; ③最高工作温度; ④在工作温度下允许的尺寸变化; ⑤零部件允许的尺寸公差; ⑥零部件的使用性能要求; ⑦部件是否要求着色、粘接、电镀等; ⑧要求贮存期多长,是否在户外使用; ⑨有无耐燃性要求,等等。

(2)根据部件的功能要求,考虑使用性能数值(工程性能)和设计数据,提出目标材料(部件材料)的性能数值,并通过这些性能要求来选定材料,即使这些性能估计是粗略的,也会大大方便候选材料的筛选,为最终材料的选定提供有益的依据。选择恰当材料性能是很关键而又复杂的,因为零部件的某一功能常常包含几种性能,例如在尺寸稳定性的要求中除尺寸精度外,还要考虑线胀系数、模塑收缩率、吸水性、蠕变性等等。零件的强度和刚度,除了从材料性能上考虑以外,还要从制品结构设计上(如厚度和加强筋等)加以考虑。材料的成型工艺性、耐久性、经济性等也都是选材时应考虑的因素。有时候,某些使用要求不一定能明确对材料性能的定量要求,如电镀性往往要通过实际试验或已有的经验来筛选。又如塑料炮弹弹带,要求材料经受高速冲击、压缩、扭拧、剪切等复杂的外力作用和高速高温高压气流的影响,很难直接提出材料的定量性能要求,因此,除了通过力学计算外,还可通过模拟试验和探索试验来推算受力情况,提出粗略的性能要求。 (3)最后通过部件工程性能要求与材料性能的比较来确定候选材料。 选择塑料时应注意下面几个问题: ①必须对选用塑料的性能有较全面的了解,然后根据使用条件去考虑配方、工艺和制品设计等。 ②塑料一般导热性低,选用和设计时要充分注意。 ③塑料的线胀系数一般比金属大,有的易吸水,因此尺寸变化较大,选用和设计时要考虑恰当的配合间隙和公差范围。

相关文档