文档库 最新最全的文档下载
当前位置:文档库 › 初中数学竞赛第十四讲 圆内接四边形与四点共圆

初中数学竞赛第十四讲 圆内接四边形与四点共圆

初中数学竞赛第十四讲 圆内接四边形与四点共圆
初中数学竞赛第十四讲 圆内接四边形与四点共圆

第十四讲 圆内接四边形与四点共圆

【趣题引路】

著名的“九点圆”是由欧拉于1765年了解到的.后来又由年仅22岁的费尔巴赫(1800-1834)于1822年重新发现,并称之为九点圆,这九个点是(如图)?:? 三角形ABC 的三条边的中点A ′、B ′、

C ′,E 、C ′、A ′、B ′与F 、C ′、A ′、B ′.??

故A ′、B ′、C ′、D 、E 、F 六点共圆.

在△HBC,△HCA 和△HAB 中,同理可证

L 、M 、N 也同圆于上面六个点所共的圆.?因

此,A ′、B ′、C ′、D 、E 、F 、L 、M 、N 九点

共圆.

我们知道,任何三角形都有内切圆、外

接圆、旁切圆等,?

还有鲜为人知的五点圆、第二莱莫恩六点圆、泰劳(Taylor)

六点圆,七点圆、富曼八点圆等等。

【知识延伸】

圆内接四边形和四点共圆之间有着非常密切的联系,?这是因为顺次连结共圆四点就成为圆内接四边形.实际上,在许多题目的已知条件中,并没有给出圆,有时需要通过证明四点共圆,把实际存在的圆找出来,然后再借助圆的性质得到要证明的结论.确定四点共圆的办法主要有:

1.诸点到某定点的距离相等,则诸点在同一圆周上.

2.若四边形对角互补或有一个外角等于它的内对角,则这四点共圆.

3.同底同侧的等角的三角形的各顶点共圆;同斜边的直角三角形的各顶点共圆.

4.若直线AB 与CD 相交于P,而且PA ·PB=PC ·PD,则A 、B 、C 、D 共圆. 要证多点共圆,一般根据题目条件先证四点共圆,再证其他点也在这个圆上. 例1 已知,四边形ABCD 内接于圆,连对角线AC 、BD.

求证:AC ·BD=AB ·CD+AD ·BC.

证明 作ABK=∠CBD,BK 交AC 于点K,(如图).

由于∠BAK=∠BDC,∴△BAK ∽△BDC,

∴AB DB AK CD

即AB ·CD=AK ·BD ①

∵∠BCK=∠BDA,

∠CBK=∠CBD+∠DBK=∠KBA+∠DBK=∠DBA

∴△CBK∽△DBA.

∴BC DB CK AD

=

即BC·AD=BD·CK. ②

①+②,得

AB·CD+BC·AD=BD(CK+AK)=BD·AC.

点评

此题就是著名的托勒密(Ptole-my)定理,?即“圆内接四边形两条对角线的乘积等于两组对边乘积的和”.它综合运用圆和相似形的知识,证明线段的积、差,?也揭示了圆内接四边形的一个独特的性质.

更推广一些,便可得到:对于任何凸四边形ABCD,都有AB·CD+BC·AD≥AC·BD,其中等号当且仅当四边形内接于圆时成立.

托勒密定理的逆命题也成立,?即“在凸四边形两对角线的乘积等于它的两组对边乘积之和时,此四边形内接于圆.”你能证明吗?

例2 已知:如图,设四边形ABCD满足条件AB·CD+AD·BC=AC·BD.

求证:A、B、C、D四点共圆.

证明作∠ECD=∠ACB,∠EBC=∠CAD,于是△BEC∽△ADC,

∴BE BC

AD AC

=,即BE.AC=AD.BC,?①

BC EC

AC DC

=. ②∵∠1=∠2,

∴△ACB∽△DCE,

∴∠3=∠4, AB AC

DE DC

=,即DE·AC=AB·DC,③

①+③,得(BE+DE)AC=AD·BC+AB·DC.

∵AC·BD=AB·CD+AD·BC(已知条件)

∴BE+DE=BD,

∴E在BD上,∠3与∠BDC重合.

∴∠BDC=∠BAC,∴A、B、C、D四点共圆.

点评

这个逆定理也是证明四点共圆的重要依据.

例3已知,如图,P是△ABC的外接圆上一点,由P 向各边BC、CA、AB?引垂线PD、PE、PF.

求证:三个垂足D、E、F共线.

证明连结DE、DF、PB、PC.

∵PD⊥BC,PE⊥AC,

∴∠PDC=∠PEC=90°

,

∴P 、D 、C 、E 四点共圆,

∴∠PDE=∠PCE,

∵∠PDB=∠PFB=90°,

∴P 、D 、F 、B 四点共圆.

∴∠PDF+∠PBF=180°.

∵A 、B 、P 、C 四点共圆,

∴∠PBF=∠PCE,

∴∠PDF+∠PDE=∠PDF+∠PCE=∠PDF+∠PBF=180°.

∴DE ·DF 成一条直线,即D 、E 、F 三点共线.

点评

此题就是“西摩松线”,即从△ABC 外接圆上任一点P?到三边所作垂线的垂足在同一条直线上,简称“西摩松定理”.它的逆命题也成立.即:从一点P 向△ABC 的三边(或它们的延长线)作垂线,若三个垂足L 、M 、N 在同一条直线上,则点P 在△ABC?的外接圆上,证明如下:如图

∵∠BNP 和∠PLB 都是直角,

∴N 、B 、L 、P 四点共圆.

∴∠NBP=∠NLP,①

∵∠PLC 和∠PMC 都是直角,

∴P 、L 、M 、C 四点共圆,

∴∠NLP=∠MCP, ②

由①、②,得∠NBP=∠MCP,

故A 、B 、P 、C 四点共圆,即P 在△ABC 的外接

圆上. 例4 已知:四边形ABCD 内接于⊙O,对角线AC

与BD 相交于M,如图,

求证: AB AD AM CB CD CM =。 证明 ∴ABM ADM CBM CDM

S S AM MC S S ????== ∴ABM ADM ABD CBM CDM CBD

S S S AM MC S S S ??????+==+ ∵∠BAD+∠BCD=180°,

∴1sin 21sin 2

ABD CBD AB AD BAD S AM AB AD MC S CB CD BC DC BCD ??∠===∠

即AB AD AM CB CD CM .

点评

本题利用两个三角形面积之比的性质来证明,对拓展证题思路,灵活运用所学的基础知识解决问题,大有益处,本题的结论可作定理运用.

【好题妙解】

佳题新题品味

例1 如图,过正方形ABCD 的顶点A 作

45°的角与CB 、DC?的延长线分

别交于E 、F 两点,即∠

EAF=45°;DB 、AE 的延长线交于

点O 1;DB 、AF 交于点O 2;EO 2?的

延长线交DF 于点P,连结AO 、FE

的延长线交AO 于点H,又DO 1,EF

交于点O 3,连结O 1H,O 2H,AP.由

以上条件,你能推出哪些结

论?(不再标注任何字母,不再添

加任何辅助线).

解析 首先,如图,∠1=∠EAF=45°,

即有A 、E 、B 、O 2四点共圆;同样,?∠2=∠EAF=45°,

则A 、O 1、F 、D 四点共圆;

由上述四点共圆知∠AO 2E=∠ABE=90°,?∠AO 1F=∠ADF=90°,

所以E 、O 1、F 、O 2四点共圆.

又在△AOF 中,∵OO 2⊥AF,AO 1⊥OF,

∴E 为△AOF 的垂心,?这样六个四点共圆继续出现,

即(A 、H 、E 、O 2),(E 、H 、O 、O 1),(E 、O 1、F 、O 2),

(A 、O 、O 1、O 2),(O 、F 、O 2、H),(F 、A 、H 、O 1)四点共圆.

由于FH ⊥AO,

∴(A 、H 、E 、B),(A 、H 、F 、D)均四点共圆;

仔细观察,显然(A 、?O 2、P 、D),(O 2,Q 、C 、P)亦四点共圆;

还有(E 、O 1、F 、D)也是四点共圆.

由上述四点共圆有∠3=∠4,∠3=∠5,

则∠4=∠5.

∵FH ⊥AH,FD ⊥AD,

∴AH=AD,就是说点A 到EF 的距离恰好等于正方形的边长.

∴又有FH=FD,EF=PF,EO 2=PO 2,HO 2=DO 2

,AE=AP.

∵Rt △AHE ≌Rt △ABE,Rt △AHE ≌△ADP,

∴Rt △ABE ≌Rt △ADP,∴S △ABE = S △ADP ,

∴EF=DF -BE,即S △AEF = S △ADF - S △ABE .

同时有2AO AE =cos45o

=2, 1AO AF =sin45o

=2

, ∴△A O 1O 2∽△AFE.

∴12

121sin 4521212sin 452

AO O AFE AO AO S S AF AE ???===? ∵∠O 2OF=∠O 1AO 2=45°,∴O 2O=O 2F.

由诸多四点共圆即有∠6=∠4,∠3=∠5,∠4=∠5,

∴∠3=∠6.

∵∠7=∠8=45°,∠9=∠EAO2=45°,

∴∠7=∠9,故E 为△HO 1O 2的内心.

显然点O 为△AEF 的垂心,由于O 2A=O 2E=O 2P,

∴O 2为△AEP 的外心.

∵∠4=∠5,∠AEH=∠AEB,

∴点A 为△ECF 的旁心(?旁心指三角形一内角平分线与另两个角的外角平分线的交点) ∵∠O 1HO 2=∠7+∠9=45°+45°=90°,

∴HO 12+HO 22=O 1O 22.

而HO 1=BO 1,HO 2=DO 2,

∴BO 12+DO 22=O 1O 22.

点评

这种类型称为几何探索题,是指问题的结论没有明确给出,需要自己探索,?解这类问题的思路是:从给定的条件出发,进行探索,归纳,猜想出结论,?然后对猜想出的结论进行证明,此题是用构造法解题的范例,是用发现法研究问题的典型,?认真回味,其乐无穷. 例 2 如图,由△ABC 的各边向外侧作正三角形

BCD 、CAE 、ABF,

求证:三直线AD 、BE 、CF 相交于一点.

证明 设BE 、CF 相交于点O,连AO 、OD,△AEC 是

正三角形,

∴AE=AC,∠CAE=60°,

同理AB=AF,∠

BAF=60°, ∵∠CAF=∠BAF+∠BAC,

∠BAE=∠CAE+∠BAC, ∴∠BAE=∠CAF,

∴△BAE ≌△FAC.

∴∠1=∠2,可知A、O、C、E四点共圆,

∠3=∠4,可知A、O、B、F四点共圆.

∵∠AEC=∠AFB=60°,∴∠AOC=∠AOB=120°.

∵∠AOB+∠AOC+∠BOC=360°,

∴∠BOC=120°,∵∠BDC=60°,

∴∠BOC+∠BDC=180°,

∴O、B、D、C四点共圆,

∴∠COD=∠CBD=60°,

∵∠AOC=120°,∴∠AOC+∠COD=180°,

即得A、O、D三点在一直线上,最后得证BE、CF、AD交于点O.

点评

这是三线共点问题,可先设BE与CF相交于一点O,然后再证明AD也经过点O即可.?即证A、D、O三点在一条直线上,这就把三线共点问题转化为三点共线问题来证明.

中考真题欣赏

例1 (2003年辽宁省中考题)(1)如图1,已知直线AB为圆心O,交⊙O于点A、?B,直线AF交⊙O于F(不与B重合),直线L交⊙O于点C、D,交AB于E,且与AF垂直,垂足为G,连结AC、AD.

求证:①∠BAD=∠CAG;

②AC·AD=AE·AF.

(2)在问题(1)中,当直线L向上平行移动,与⊙O相切时,其他条件不变.

(1) (2)

①请你在图2中画出变化后的图形,并对照图1,标记字母;

②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,?请说明理由.

(1)证明①连结BD,∵AB是⊙O的直径,

∴∠ADB=90°,∵CD⊥AF,

∴∠AGC=∠ADB=90°,

∵四边形ACDB是⊙O内接四边形,

∴∠ACG=∠B.

∴∠BAD=∠CAG.

②连结CF,∵∠BAD=∠CAG,∠EAG=∠FAB,

∴∠DAE=∠FAC,∵∠ADC=∠F,

∴△ADE ∽△AFC,∴AD AE AF AC

=, ∴AC ·AD=AE ·AF;

(2)①变化后的图形如图所示.

②两个结论都成立,证明如下:如图.

①连结BC,∵AB 是直径,∴∠ACB=90°.

∴∠ACB=∠AGC=90°.

∵GC 切⊙O 于C,∴∠GCA=∠ABC,

∴∠BAC=∠CAG(即∠BAD=∠CAG).

②连结CF,∵∠CAG=∠BAC,∠GCF=∠GAC,

∴∠GCF=∠CAE,∠ACF=∠ACG-∠GFC,?∠E=∠ACG-∠

CAE, ∴∠ACF=∠

E, ∴△ACF ∽△AEC,∴AC AF AE AC

=, ∴AC 2=AE ·AF(即AC ·AD=AE ·AF).

点评

充分利用圆内接四边形外角等于它的内对角和Rt △两锐角互余及弦切角等性质解决此题.

例2 (2003年江西省中考题)如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD,

(1)P 是CAD 上一点(不与C 、D 重合),求证:∠CPD=∠COB.

(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB

有什么数量关系?请证明你的结论.

(1)证明 连结OD,∵AB 是直径,∴AB ⊥CD,

∴BC=BD,∴∠COB=∠DOB=

12∠COD. 又∵∠CPD=12

∠COD,∴∠CPD=∠COB. (2)解析 ∠CP ′D 与∠COB 的数量关系是: ∠CP ′D+∠COB=180°,证明如下:

∵∠CPD=∠CP ′D=180°,∠COB=∠CPD.

∴∠CP ′D+∠COB=180°.

点评

此题证明∠COB=∠P 是判定∠CP ′D+∠COB=180°的关键.

竞赛样题展示

例1 (2002年“我爱数学”初中生夏令营数学竞赛)设AB 、CD 为⊙O 的两直径,?过B 作PB 垂直AB,并与CD 延长线相交于点P.过P 作直线PE,与圆分别交于E 、F 两点,?连AE 、AF 分别与CD 交于G,H 两点如图.

求证:OG=OH.

证明 作FK ∥GH 与AB,AE 分别交于点M 、K.

过点O 作ON ⊥EF 交EF 于点N,

∵∠PBO=?∠ONP=90°.

∴O 、P 、B 、N 四点共圆.

又∵∠MFN=∠OPN,故∠MFN=∠OBN,

因此M 、F 、B 、N 四点共圆,∠MNF=∠MBF=∠AEF,

从而MN ∥KE,

∴KM=MF,OH=OG.

点评

在处理平面几何中的许多问题时,常常要借助于圆的性质,问题才能得以解决,?有时题中条件就根本没有涉及圆,有时题中有圆,但此圆并不是我们直接要用的圆,?这就需要我们利用已知条件,借助图形,证四点共圆,?把需要用到的实际存在的圆找出来.

例2 (2002年四川省初中数学竞赛)如图,P 是⊙P 外一点,PA 与⊙O?切于点A,PBC 是

⊙O 的割线,AD ⊥PO 于D.

求证:PB:BD=PC:CD.

证明 连结OA 、OB 、OC,则PA 2=PD ·PO=PB ·PC,于是B 、C 、O

、D 四点共圆,∴有△PCD ∽△POB,则

PC PO PO CD OB OC

==, ∵△POC ∽△PBD, ∴

PO PB OC BD

=. 由①、①,有PB PC BD CD =.

点评

本题利用切割线定理的逆定理证明B 、C 、O 、D 共圆,?从而得到同弧所对的圆周角相等,将已知的角与未知的角联系起来了.

初中数学竞赛——圆4.四点共圆

第1讲 四点共圆 典型例题 一. 基础练习 【例1】 如图,P 为ABC △内一点,D 、E 、F 分别在BC 、CA 、AB 上.已知P 、D 、C 、E 四 点共圆,P 、E 、A 、F 四点共圆,求证:B 、D 、P 、F 四点共圆. 【例2】 如图7-55,在梯形ABCD 中,AD ∥BC ,过B 、C 两点作一圆,AB 、CD 的延长线交该圆于点 E 、 F .求证:A 、D 、E 、F 四点共圆. 【例3】 如图,⊙1O 、⊙2O 相交于A 、B 两点,P 是BA 延长线上一点,割线PCD 交⊙1O 于C 、D , 割线PEF 交⊙2O 于E 、F ,求证:C 、D 、E 、F 四点共圆. P E C B A D F P F D C B A E

【例4】 如图7-56,在△ABC 中,AD =AE ,BE 与CD 交于点P ,DP =EP ,求证:B 、C 、E 、D 四点共 圆. 【例5】 如图,已知ABC △是⊙O 的内接三角形,⊙O 的直径BD 交AC 于E ,AF BD ⊥于F ,延长 AF 交BC 于G ,求证:2AB BG BC =?. 【例6】 如图7-63,在ABCD □的对角线上,任取一点P ,过点P 作AB 、CD 的公垂线EG ,又作AD 、 BC 的公垂线FM .求证:EF //GM . 【例7】 如图7-66,四边形ABCD 是⊙O 的内接四边形,DE ⊥AC ,AF ⊥BD ,点E 、F 是垂足.求证: EF //BC . O G F E C D B A

【例8】 如图7-60,已知△ABC ,AB 、AC 的垂直平分线交AC 、AB 的延长线于点F 、E .求证:E 、F 、 C 、B 四点共圆. 【例9】 如图,已知:60ABD ACD ∠=∠=o , 1 902 ADB BDC ∠=∠-∠o .求证:ABC △是等腰三角形. 二. 综合提高 【例10】 如图7-61,在⊙O 中,AB ∥CD ,点P 是AB 的中点,CP 的延长线交⊙O 于点F ,又点E 为弧 BD 上任一点,连EF 交AB 于点G .求证:P 、G 、E 、D 四点共圆. 【例11】 如图7-62,在△ABC 中,∠BAC 为直角,AB =AC ,BM =MC ,过M 、C 任作一圆,与AC 交于 点E ,BE 与圆交于F 点,求证:AF ⊥BE . C D B A

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

(完整版)初中数学圆--经典练习题(含答案)

圆的相关练习题 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm ,AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD ,的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 () (A )ο15 (B )ο30 (C )ο45 (D )ο60 2.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1 寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为 10厘米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C =ο 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

初中数学竞赛:共圆点问题

初中数学竞赛:共圆点问题 同在一个圆上的许多点称为共圆点,或者说这些点共圆.证明这些点共圆常常利用以下一些方法思考: (1)要证明若干点共圆,先设法发现其中以某两点为端点的线段恰为一直径,然后证明其他点对这条线段的视角均为直角. (2)要证明四点共圆,可证明以这点为顶点的四边形的对角互补,或证某两点视另两点所连线段的视角相等. (3)如果两线段AB,CD相交于E点,且AE·EB=CE·ED,则A,B,C,D四点共圆. (4)若相交直线PA,PB上各有一点C,D,且PA·PC=PB·PD,则A,B,C,D四点共圆. (5)若四边形一个外角等于其内对角,则四边形的四顶点共圆. (6)要证明若干点共圆,先证其中四点共圆,然后再证其余点都在此圆上. 共圆点问题不但是几何中的重要问题,而且也是直线形和圆之间度量关系或位置关系相互转化的媒介. 例1 设⊙O1,⊙O2,⊙O3两两外切,Y是⊙O1,⊙O2的切点,R,S分别是⊙O1,⊙O2与⊙O3的切点,连心线O1O2交⊙O1于P,交⊙O2于Q.求证:P,Q,R,S四点共圆.分析如图3-54,连YR,则∠PRY=90°,所以∠PRS为钝角,设法证明∠Q与∠PRS互补,则P,R,S,Q共圆. 证连RY,PR,RS,SQ,并作切线RX,则在四边形PRSQ中, 所以 所以P,Q,R,S四点共圆.

例2 设△ADE内接于圆O,弦BC分别交AD,AE边于F,G, 分析欲证F,D,E,G四点共圆,由于已知条件中交弦较多,因此,用圆幂定理的逆定理,若能证出AF·AD=AG·AE成立,则F,D,E,G必共圆. 径,所以∠FDN=∠FMN=90°, 所以F,D,N,M四点共圆,所以 AD·AF=AN·AM. 同理,AG·AE=AN·AM,所以 AD·AF=AG·AE, 所以F,D,E,G四点共圆. 例3 在锐角△ABC中,BD,CE是它的两条高线,分别过B,C引直线DE的垂线,BF⊥DE于F,CG⊥DE于G,求证:EF=DG(图3-56). 分析由已知,四边形BCGF为直角梯形,FG为一腰,要证EF=DG,易想,若OH为梯形中位线,则OH⊥FG于H,如果证得EH=HD,则FE=DG便是显然的了. 证过BC中点O,作OH⊥DE于H.因为BD⊥AC于D,CE⊥AB于E,所以

人教版初中数学第二十四章圆知识点

第二十四章圆 24.1 圆的有关性质 24.1.1 圆 1.平面内到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为圆心,定长称为半径,以点O为圆心的圆记作“☉O”,读作“圆O”. 2.确定圆的基本条件:(1)、圆心:定位置,具有唯一性,(2)、半径:定大小. 3.半径相等的两个圆叫做等圆,两个等圆能够完全重合. 4.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径. 5.圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“?”表示,圆的任意一条直径的两个端点分圆成为两条等弧,每一条弧都叫做半圆,大于半圆的弧称为优弧,小于半圆的弧称为劣弧. 6.在同圆或等圆中,能过重合的两条弧叫做等弧. 24.1.2 垂直于弦的直径 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧. 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD ⊥③CE DE =④弧BC=弧BD⑤弧AC=弧AD 中任意2个条件推出其他3个结论. 推论2:圆的两条平行弦所夹的弧相等. 即:在⊙O中,∵AB∥CD AC=弧BD B D

24.1.3 弧、弦、圆心角 1.顶点在圆心的角叫做圆心角.圆心角的度数与他所对的弧的度数相等. 2.圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等.此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =; ③OC OF =;④弧BA =弧BD 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等. 在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,那他们所对的优弧劣弧分别相等. 24.1.4 圆周角 1.顶点在圆上,并且两边都和圆相交的角叫做圆周角. 2.圆周角定理:同弧所对的圆周角等于它所对的圆心角(或弧的度数)的一半. 即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 3.圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角

最新整理初三数学数学竞赛平面几何讲座:四点共圆问题.docx

最新整理初三数学教案数学竞赛平面几何讲座:四点 共圆问题 第四讲四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1“四点共圆”作为证题目的 例1.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q四点共圆. 分析:设PQ,MN交于K点,连接AP,AM. 欲证M,N,P,Q四点共圆,须证 MK KN=PK KQ, 即证(MC′-KC′)(MC′+KC′) =(PB′-KB′) (PB′+KB′) 或MC′2-KC′2=PB′2-KB′2.① 不难证明AP=AM,从而有 AB′2+PB′2=AC′2+MC′2. 故MC′2-PB′2=AB′2-AC′2 =(AK2-KB′2)-(AK2-KC′2) =KC′2-KB′2.② 由②即得①,命题得证. 例2.A、B、C三点共线,O点在直线外,

O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. 分析:作出图中各辅助线.易证O1O2垂直平分OB,O1O3垂直平分OA.观察△OBC及其外接圆,立得∠OO2O1=∠OO2B=∠OCB.观察△OCA及其外接圆,立得∠OO3O1=∠OO3A=∠OCA. 由∠OO2O1=∠OO3O1O,O1,O2,O3共圆. 利用对角互补,也可证明O,O1,O2,O3四点共圆,请同学自证. 2以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD中,AB∥DC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK. 求证:∠DMA=∠CKB. 分析:易知A,B,M,K四点共圆.连接KM, 有∠DAB=∠CMK.∵∠DAB+∠ADC =180°, ∴∠CMK+∠KDC=180°. 故C,D,K,M四点共圆∠CMD=∠DKC. 但已证∠AMB=∠BKA, ∴∠DMA=∠CKB. (2)证线垂直 例4.⊙O过△ABC顶点A,C,且与AB,

人教版初三数学圆练习题汇总

圆练习题 1.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是⊙O 上的一个动点,那么∠OAP 的最大值是( ) A. 30° B. 45° C. 60° D. 90° 2.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,点C 是EB ︵ 的中点,则下列结论不成立的是( ) A. OC ∥AE B. EC =BC C. ∠DAE =∠ABE D. AC ⊥OE 3. 如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( ) A. 1 B. 1或5 C. 3 D. 5 4.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( ) A. 6,3 2 B. 32,3 C. 6,3 D. 62,32 5.已知⊙O 1和⊙O 2的半径分别为2 cm 和3 cm ,若O 1O 2=7 cm ,则⊙O 1和⊙O 2的位置关系是( ) A. 外离 B. 外切 C. 内切 D. 相交 6在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2), E(0,-3). (1)画出△ABC 的外接圆⊙P ,并指出点D 与⊙P 的位置关系. (2)若直线l 经过点D(-2,-2),E(0,-3),判断直线l 与⊙P 的位置关系. 7如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为D ,CD 与AB 的延长线交于点C ,∠A =30°,给出下面3个结论:①AD =CD ;②BD =BC ;③AB =2BC ,其中正确结论的个数是( ) A. 3 B. 2 C. 1 D. 0

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

初中数学圆 经典练习题(含答案)

圆的相关练习题(含答案) 1、已知:弦AB 把圆周分成1:5的两部分,这弦AB 所对应的圆心角的度数为 。 2、如图:在⊙O 中,∠AOB 的度数为1200,则 的长是圆周的 。 3、已知:⊙O 中的半径为4cm ,弦AB 所对的劣弧为圆的3 1,则弦AB 的长为 cm , AB 的弦心距为 cm 。 4、如图,在⊙O 中,AB ∥CD , 的度数为450,则∠COD 的度数为 。 5、如图,在三角形ABC 中,∠A=700,⊙O 截△ABC 的三边所得的弦长相等,则 ∠BOC=( )。 A .140° B .135° C .130° D .125° (第2题图) (第4题图) (第5题图) 6、下列语句中,正确的有( ) (1)相等的圆心角所对的弧相等; (2)平分弦的直径垂直于弦; (3)长度相等的两条弧是等弧; (4) 圆是轴对称图形,任何一条直径都是对称轴 A .0个 B .1个 C .2个 D .3个 7、已知:在直径是10的⊙O 中, 的度数是60°,求弦AB 的弦心距。 8、已知:如图,⊙O 中,AB 是直径,CO ⊥AB ,D 是CO 的中点,DE ∥AB , 求证:

600 9. 已知:AB 交圆O 于C 、D ,且AC =BD.你认为OA =OB 吗?为什么? 10. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。 11. 如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。你认为图中有哪些相等的线段?为什么? 答案:1.60度 2. 3 2 3. 1 3 4 4.90度 5.D 6.A 7.2.5 8.提示:连接OE ,求出角COE 的度数为60度即可 9.略 10.100毫米 11.AC=OC , OA=OB , AE=ED B

高二数学讲义四点共圆

高二数学竞赛班二试平面几何讲义 第五讲 四点共圆(一) 班级 姓名 一、知识要点: 1. 判定“四点共圆”的方法: (1)若对角互补,则四点共圆; (2)若线段同一侧的两点对线段的张角相等,则四点共圆; (3)圆的割线定理成立,则四点共圆; (4)圆的相交弦定理成立,则四点共圆; 2. “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 二、例题精析: 例1. 在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK. 求证:∠DMA =∠CKB. (第二届袓冲之杯初中竞赛) A B C D K M ··

例2.给出锐角△ABC,以AB为直径的圆与AB边的高CC′及其延长线交于M,N.以AC为直径的圆与AC边的高BB′及其延长线将于P,Q.求证:M,N,P,Q 四点共圆. (第19届美国数学奥林匹克) 例3.A、B、C三点共线,O点在直线外,O1,O2,O3分别为△OAB,△OBC, △OCA的外心.求证:O,O1,O2, O3四点共圆. (第27届莫斯科数学奥林匹克) A B C K M N P Q B′ C′ A B C O O O O 1 2 3 ? ?

三、精选习题: 1.⊙O1交⊙O2于A,B两点,射线O1A交⊙O2于C点,射线O2A 交⊙O1于D点.求证:点A是△BCD的内心. 2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.

人教版初中数学圆的技巧及练习题

人教版初中数学圆的技巧及练习题 一、选择题 1.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( ) A .60π B .65π C .85π D .90π 【答案】D 【解析】 【分析】 根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案. 【详解】 ∵圆锥的底面半径是5,高为12, ∴侧面母线长为2251213+=, ∵圆锥的侧面积=51365ππ??=, 圆锥的底面积=2525ππ?=, ∴圆锥的全面积=652590πππ+=, 故选:D. 【点睛】 此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .123 B .1536π-π C .30312π- D .48336π-π 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可. 【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =33,S 扇形= 60361 6,633933602 OEB S ππ?==?=V

∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.已知,如图,点C ,D 在⊙O 上,直径AB=6cm ,弦AC ,BD 相交于点E ,若CE=BC ,则阴影部分面积为( ) A .934 π- B . 9942 π- C . 39 324 π- D . 39 22 π- 【答案】B 【解析】 【分析】 连接OD 、OC ,根据CE=BC ,得出∠DBC=∠CEB=45°,进而得出∠DOC=90°,根据S 阴影=S 扇形-S △ODC 即可求得. 【详解】 连接OD 、OC , ∵AB 是直径, ∴∠ACB=90°, ∵CE=BC , ∴∠CBD=∠CEB=45°, ∴∠COD =2∠DBC=90°, ∴S 阴影=S 扇形?S △ODC = 2903360 π?? ?1 2×3×3=94π ?92.

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆: 锐角三角形的外心在,直角三角形的外心在 ,钝角三角形的外心在。 考点5 点和圆的位置关系设圆的半径为r,点到圆心的距离为d,

则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. 例6.已知:⊙O 的半径0A=1,弦AB 、AC 的长分别为3,2,求BAC ∠的度数. A B D C O · E

中考复习:四点共圆问题

第四讲 四点共圆问题 “四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路. 1 “四点共圆”作为证题目的 例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M , N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆. 分析:设PQ ,MN 交于K 点,连接AP ,AM . 欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ , 即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2 . ① 不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2 =(AK 2-KB ′2)-(AK 2-KC ′2) =KC ′2-KB ′2. ② 由②即得①,命题得证. 例2.A 、B 、C 三点共线,O 点在直线外, O 1,O 2,O 3分别为△OAB ,△OBC , △OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆. 分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=2 1∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=2 1∠OO 3A =∠OCA . 由∠OO 2O 1=∠OO 3O 1?O ,O 1,O 2,O 3共圆. 利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证. 2 以“四点共圆”作为解题手段 这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等 例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK . 求证:∠DMA =∠CKB . 分析:易知A ,B ,M ,K 四点共圆.连接KM , 有∠DAB =∠CMK .∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°. 故C ,D ,K ,M 四点共圆?∠CMD =∠DKC . A B C K M N P Q B ′C ′A B C O O O O 123??A B C D K M ··

最新人教版九年级数学《圆》综合检测试题及答案

九年级数学 《圆》单元测试 一、选择 1。下列命题中正确的有( )个 (1) 平分弦的直径垂直于弦 (2)经过半径一端且与这条半径垂直的直线是圆的切线 (3)在同圆或等圆中,圆周角等于圆心角的一半 (4)平面内三点确定一个圆 (5)三角形的外心到各个顶点的距离相等 (A) 1个 (B) 2个 (C) 3个 (D) 4个 2。如图,直线PA PB ,是O 的两条切线, A B ,分别为切点,120APB =?∠,10OP = 厘米,则弦AB 的长为( ) A . B .5厘米 C . D .2 厘米 3。小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是( ) 4。已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .5 12 C .2 D .3 5。若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,则该铅 球的直径约为( ) A. 10 cm B. 14.5 cm C. 19.5 cm D. 20 cm 二、选择 6。如图9,在10×6的网格图中(每个小正方形的边长均为1个单位长),⊙A 的半径为1, ⊙B 的半径为2,要使⊙A 与静止的⊙B 内切,那么⊙A 由图示位置需向右平移 _______个单位长. 7。一扇形的圆心角为150°,半径为4,用它作为一个圆锥的侧面,那么这个圆锥的表面积 是_____________ 8。已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为 。 9。直角三角形的两条直角边分别为5cm 和12cm ,则其外接圆半径长为 10。点A 是半径为3的圆外一点,它到圆的最近点的距离为5,则过点 A 的切线长为 __________ 11、如图,直线AB 、CD 相交于点O ,∠AOC =300,半径为1cm 的⊙P 的圆心在射线OA 上, 开始时,PO =6cm .如果⊙P 以1cm/秒的速度沿由A 向B 的方向移动,那么当⊙P 的运

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学圆形经典习题

第二十四章圆经典训练题 24.1 圆 一、选择题. 1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,?错误的是( ). A .CE=DE B . BC BD = C .∠BAC=∠BAD D .AC>AD C (1) (2) (3) 2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A .4 B .6 C .7 D .8 3.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,?则下列结论中不正确的是( ) A .A B ⊥CD B .∠AOB=4∠ACD C . A D BD = D .PO=PD 二、填空题 1.如图4,AB 为⊙O 直径,E 是 BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____. B A 2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;?最长弦长为_______. 3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______________(只需写一个正确的结论) 三、综合提高题 1.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.

24.1 圆(第2课时) 一、选择题. 1.如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等; B .这两个圆心角所对的弧相等 C .这两个圆心角所对的弦的弦心距相等; D .以上说法都不对 2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A . A B =2 CD B . AB > CD C . AB <2 CD D .不能确定 3.如图5,⊙O 中,如果 AB =2 AC ,那么( ) . A .AB=AC B .AB=AC C .AB<2AC D .AB>2AC A B A 二、填空题 1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的__________________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的__________________. 3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题 1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N ?在⊙O 上. (1)求证: AM = BN ;(2)若C 、D 分别为OA 、OB 中点,则 AM MN NB ==成立吗? B A

四点共圆问题-(数学竞赛)

P 四点共圆问题 四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识 (1) 若干个点与某定点的距离相等,则这些点在一个圆上; (2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆; (4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =g g ,则A B C D 、、、四点共圆; (6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =g g ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。 例1、已知PQRS 是圆内接四边形,0 90PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS 例2、给定锐角ABC V ,以AB 为直径的圆与边AB 上的高线' CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线' BB 及其延长线交于点P Q 、。证明:M P N Q 、、、四点共圆。 例3、在等腰ABC V 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点 Q R 、,又点'P 是点P 关于直线QR 的对称点。求证:点'P 在ABC V 分析:

相关文档
相关文档 最新文档