文档库 最新最全的文档下载
当前位置:文档库 › strogen Receptor-Distribution in Male Rodents Is Associated with Social …

strogen Receptor-Distribution in Male Rodents Is Associated with Social …

Estrogen Receptor-?Distribution in Male Rodents Is Associated with Social

Organization

BRUCE S.CUSHING1*AND KATHERINE E.WYNNE-EDWARDS2 1The Brain-Body Center,Department of Psychiatry,University of Illinois at Chicago,

Chicago,Illinois60612

2Department of Biology,Queen’s University,Kingston,Ontario K7L3N6,Canada

ABSTRACT

It has been hypothesized that site-speci?c reduction of estrogen receptor-?(ER?)is associ-ated with the expression of male prosocial behaviors.Speci?cally,highly social males are pre-dicted to express signi?cantly lower levels of ER?than females and less social males in brain regions associated with prosocial behavior including the bed nucleus of the stria terminalis(BST) and the medial amygdala(MeA).This hypothesis was tested by comparing ER?immunoreac-tivity(IR)in three species of microtines,the polygynous montane(Microtus montanus)and meadow(M.pennsylvanicus)voles and the monogamous pine vole(M.pinetorum),and two species of cricetines that differ in the extent of social pair-bond formation,Siberian(Phodopus sungorus)and Djungarian(P.campbelli)hamsters.As predicted,ER?-IR was sexually dimorphic in the BST and MeA of the highly social species,with females expressing more ER?-IR cells than males.Male and female montane voles did not differ.Male and female meadow voles differed in the ventromedial hypothalamus,with females expressing more ER?-IR cells.Male pine voles expressed lower levels of ER?-IR in the MeA than male montane and meadow voles and in the BST relative to montane males.Male Djungarian hamsters,which show higher levels of parental care,had fewer ER?-IR cells in the BST than male Siberian hamsters.Results indicate that the distribution of ER?differs relative to the continuum of species-typical af?liative behavior and supports the hypothesis that ER?has a signi?cant role in regulating species-speci?c social https://www.wendangku.net/doc/9b10651507.html,p.Neurol.494:595–605,2006.?2005Wiley-Liss,Inc.

Indexing terms:ER?;medial amygdala;bed nucleus of the stria terminalis;social monogamy;

Microtus;Phodopus

In contrast to most male mammals,socially monoga-mous males display high levels of prosocial behavior and low levels of aggression(Kleiman,1977).Prosocial behav-ior consists of“positive”social interactions,such as af?li-ative behavior,including the formation of long-term bonds and parental care.It has been hypothesized that a reduc-tion in expression of ER?in males plays a role in the increased expression of male prosocial behaviors(Cushing et al.,2004).During development,estrogen stimulates the initial masculinization of male neural structures and be-haviors(Kendrick and Drewett,1980;Hutchison,1997; Hans and De Vries,2003).Studies with estrogen receptor-?(ER?)knockout mice indicate that estrogen regulates a number of social behaviors,including explora-tion of novel individuals(Roselli and Chambers,1999; Wersinger and Rissman,2000),partner preference(Bak-ker et al.,2002),aggression(Ogawa et al.,1997),scent marking(Vagell and McGinnis,1998),and copulatory be-havior(Rissman et al.,1999),and that ER?typically masculinizes male behavior(Scordalakes et al.,2002; Scordalakes and Rissman,2004;Kudwa et al.,2005).In polygynous species,male typical social behavior is associ-ated with increased aggression and lower levels of proso-cial behavior.If estrogen masculinizes male behavior, then reducing the expression of ER?in regions of the brain that regulate prosocial behavior may enhance male prosocial behavior(Cushing et al.,2004).

Grant sponsor:National Institutes of Health/National Institute of Child Health and Human Development;Grant number:MH01992;Grant num-ber:HD38490.

*Correspondence to:Bruce S.Cushing,The Brain-Body Center,Depart-ment of Psychiatry,University of Illinois at Chicago,Chicago,IL60612. E-mail:bcushing@https://www.wendangku.net/doc/9b10651507.html,

Received6April2005;Revised1July2005;Accepted29August2005 DOI10.1002/cne.20826

Published online in Wiley InterScience(https://www.wendangku.net/doc/9b10651507.html,).

THE JOURNAL OF COMPARATIVE NEUROLOGY494:595–605(2006)?2005WILEY-LISS,INC.

This hypothesis was initially tested by comparing the expression of ER?between two behaviorally distinct pop-ulations of prairie voles(Microtus ochrogaster;Cushing et al.,2004).Although they are classi?ed as socially monog-amous(Getz et al.,1981),there are signi?cant interpopu-lational differences in the degree of sociality,with prairie voles from Kansas being much less social than Illinois prairie voles and displaying a number of characteristics typically associated with polygyny(for review see Cushing and Kramer,2005).The?ndings indicated two major dif-ferences.First,Illinois prairie voles displayed a greater degree of sexual dimorphism in ER?-IR,females more than males.Second,Illinois males expressed signi?cantly lower levels of ER?-IR in the bed nucleus of the stria terminalis(BST)and medial amygdala(MeA)than Kan-sas males(Cushing et al.,2004).Other studies with prai-rie voles also suggest that ER?distribution is associated with male prosocial behavior.Neonatal castration signif-icantly increased the expression of ER?in the BST and MeA(Cushing and Kramer,2005).In both of these stud-ies,changes in the expression of ER?were observed in the BST and the MeA.These two brain regions regulated the expression of a number of sociosexual behavior,including af?liation and aggression behavior(Wang and De Vries, 1993;De Vries and Villalba,1997;Wang et al.,1997; Newman,1999).Therefore,changes in these regions could directly affect the expression of prosocial behavior,and neonatal castration inhibited the expression of alloparen-tal parental behavior(Lonstein et al.,2002)and inhibited the formation of partner preferences(Cushing et al., 2003).Finally,a comparison of ER?between female meadow and prairie voles indicated that less social meadow vole expressed higher levels of ER?(Fowler et al., 2005).

Therefore,the purpose of this study was to determine whether the relationship between ER?and degree of so-ciality,especially in males,could be extended to other species and whether the same regions of the brain were involved.This was accomplished by comparing the expres-sion of ER?within two distinct groups of rodents.First, ER?was compared in three microtine species:two polyg-ynous species,montane(M.montanus;Jannet,1980)and meadow(M.pennsylvanicus;Madison,1980)voles,and the monogamous pine vole(M.pinetorum;Dewsbury, 1981).Although the behavior of male meadow voles is usually typical of polygynous males(an absence of pair bonds,high levels of aggression,and no parental care), there are conditions under which male meadow voles dis-play signi?cant prosocial behavior,including parental care(Storey et al.,1994;Parker and Lee,2001).Based on the varying degrees of prosocial behaviors typical of these species-speci?c predictions about the expression of ER?were:1)montane voles would display the least female-biased sexual dimorphism and pine voles the most;2)pine voles would express this sexual dimorphism in the BST and MeA;3)montane males would have signi?cantly higher numbers of ER?-immunoreactive(-IR)cells in the BST and MeA than pine voles;and4)ER?-IR in meadow voles would be intermediate,but,based on their classi?-cation as polygynous,ER?-IR would be more similar to that in montane than in pine voles.

The second test of the hypothesis was conducted by using two species of dwarf hamsters,Siberian(Phodopus sungorus)and Djungarian(P.campbelli)hamsters.Male Djungarian hamsters provide extensive paternal care that includes midwife behavior,whereas Siberian hamster males have only seasonal opportunities to interact with pups and provide little direct paternal care(Wynne-Edwards,1995,1998;Jones and Wynne-Edwards,2000; Schum and Wynne-Edwards,2003).In contrast to the voles,na?¨ve adult males of both species of dwarf hamster have circulating levels of estradiol as high as those of females(Schum and Wynne-Edwards,2003).High male estradiol might in?uence ER?expression and therefore provides a robust second test of the generality of the hypotheses.Thus,we predicted that expression of ER?-IR would be sexually dimorphic in both species in the BST and MeA;females were expected to express signi?cantly more ER?than males.Furthermore,we predicted that male Siberian hamsters would express higher levels of ER?than Djungarian males in these regions.

MATERIALS AND METHODS

We conducted two experiments to determine whether the relationship between ER?and the degree of sociality observed between populations of prairie voles could be generalized to other species.In experiment1,ER?-IR was compared in three species of voles,polygynous montane, polygynous/conditionally social meadow,and monoga-mous pine voles.Meadow voles were obtained from a stock that originated in Tennessee,pine voles from a stock that originated in North Carolina,and montane voles from Idaho.Animals were housed in the same colony for at least 2months on a14/10-hour light dark cycle prior to collec-tion of tissue.Brains were collected from sexually na?¨ve adults during the summer.All males were scrotal.Female voles do not experience a spontaneous estrous cycle,in-stead requiring exposure to a novel male to stimulate the onset of estrus.Therefore,all females were in the same reproductive state at the time of collection.However,a vaginal lavage was performed on all females at the time brains were collect to con?rm their reproductive state. Animals were housed in accordance with the USDA and NIH guidelines,and prior to any research all procedures were approved by the University Animal Care and Use Committee.

In experiment2,ER?-IR was compared within and be-tween Siberian and Djungarian hamsters.Dwarf ham-sters were obtained from an established colony at Queens University,Kingston,Ontario,Canada(Wynne-Edwards, 1998,2003).All subjects were sexually na?¨ve adults. Males were scrotal.In females,a vaginal lavage was per-formed prior to collection,and tissue was collected only when diestrus cytology was evident.During perfusion, conditions of oviduct and uterus were examined to con?rm the results of the vaginal lavage.

Localization of ER?-IR

To compare and contrast the distribution of neurons expressing ER?-IR within and between species,brains were collected and the expression of ER?-IR compared in males and females(n?4–7per species and sex).The following is a brief description of tissue?xation and im-munocytochemistry(for complete details see Cushing et al.,2004).Brains were?xed via transcardial perfusion with4%buffered paraformaldehyde and2.5%acrolein. Fixed brains were stored in25%sucrose at4°C until they were sectioned at30?m on a freezing sliding microtome. Sections were stored at–20°C in cryoprotectant(Watson

596 B.S.CUSHING AND K.E.WYNNE-EDWARDS

et al.,1986)until they were processed by ABC immuno-

cytochemistry(ICC)staining for ER?.Prior to incubation

in the primary antibody,tissue was rinsed in0.05M

KPBS and then10%sodium borohydride.Next,sections

were incubated with rabbit ER?polyclonal antibody

C1355,which is directed against the last14amino acids of

the rat ER?(Upstate Biotechnology,Whaltham,MA;anti-

ER?C1355)at a dilution of1:100,000in0.05M KPBS-

0.4%Triton X-100for48hours.The antibody was gener-

ated against the last15C-terminal amino acids of the rat

ER?protein,a region that shares no homology with ER?,

and it binds to both free and bound receptors,reducing

variation in staining resulting from potential differences

in circulating hormone levels(Murphy et al.,1995).The

speci?city of C1355was originally tested/veri?ed by using

preadsorption with the synthetic peptide used to produce

the C1355ER?antibody(Moffatt et al.,1998)and immu-

noblot with rat ER?transfected Cos-1cells(Schreihofer et

al.,1999).We con?rmed speci?city in voles and dwarf

hamsters by performing ICC after preadsorption with the

synthetic peptide(ten times the concentration of antibody)

against which the antibody was raised and also by omit-

ting the primary antibody from the ICC procedure.No

staining was observed in either case.

After incubation in C1355,tissue was rinsed in KPBS

and then incubated for1hour at room temperature in

biotinylated goat anti-rabbit IgG(1:600dilution in0.4%

Triton X-100).Sections were then incubated in an avidin-

biotin peroxidase complex(Vectastain ABC Kit-Elite pk-

6100standard;Vector,Burlingame,CA;4.5?l A and4.5?l B per1ml solution)for1hour.Sections were then rinsed in KPBS,followed by0.175M sodium acetate.

Finally,ER?was visualized by using a nickel sulfate-

diaminobenzine chromogen solution(250mg nickel II sul-

fate2mg DAB,8.3?l3%H

2O

2

in10ml sodium acetate).

Sections were mounted onto subbed glass slides and air dried overnight.To aid in identifying speci?c brain re-gions,slides were counterstained with neutral red prior to dehydration in ascending ethanol solutions,cleared in Histoclear,and coverslipped with Histomount.Image analysis was used to determine the number of cells ex-pressing ER?-IR in the medial preoptic area(MPOA),bed nucleus of the stria terminalis(BST),arcuate nucleus (ARC),ventromedial nucleus of the hypothalamus(VMH), and medial amygdala(MeA).These areas were chosen because they are involved in a variety of aspects of repro-duction and social behavior.

Image analysis

The number of cells expressing ER?-IR was determined in IPLab(Scanalytics,Inc.,Fairfax,VA)image analysis software at?40.Slides were coded and scored and cells counted bilaterally and then averaged,by an experimen-tally blind scorer.Cells with levels of nickel-DAB staining that were greater than background were classi?ed as ex-pressing ER?.Background levels were established by us-ing adjacent areas that do not contain ER?,and IPLab was then adjusted to count only cells with levels above background staining.Photomicrographs(see Figs.2,4) were captured in IPLab and then converted to gray scale, sized/cropped,and labeled in Abode Photoshop7.0.

Statistical analysis

Between-population differences were determined in voles by using a one-way ANOVA for each sex and region.Sexes were analyzed separately because a priori we ex-pected there to be signi?cant differences between males and females and did not want to confound treatment ef-fects with this difference.When the overall ANOVA was signi?cant,a Fisher’s PLSD was used to make post-hoc pairwise comparisons.A t-test was used to test for differ-ences in ER?-IR between sexes within species and to test for differences between hamster species.Statistical tests were conducted separately for each brain region.Results were considered signi?cant at P?0.05.

RESULTS

Experiment1:ER?-IR in voles Expression of ER?-IR was species and site speci?c. Across vole species,males differed in the number of cells expressing ER?-IR in the BST[F(2,17)?9.8,P?0.01] and the MeA[F(2,16)?7.7,P?0.01;Figs.1,2].In the BST,male montane and meadow voles had more cells expressing ER?-IR than male pine voles(Fisher’s PLSD mean diff?447,P?0.001;mean diff?307,P?0.05, respectively),whereas,in the MeA,montane males had more ER?-IR cells than pine voles(Fisher’s PLSD mean diff?247,P?0.005).Among females,there were no signi?cant species differences in any brain region(Figs.1, 2).Within species,the degree of sexual dimorphism in the expression of ER?-IR differed between species(Figs.1,2). There were no signi?cant differences between male and female montane voles.In meadow voles,females ex-pressed signi?cantly more ER?-IR in the VMH than males (t

10?3.5,P?0.001),whereas,in pine voles,females expressed more ER?-IR than males in the BST(t

7?12.1, P?0.0001),VMH(t

7?2.52,P?0.05),and MeA(t7?8.7, P?0.0001).

Experiment2:ER?-IR in dwarf hamsters Male Djungarian hamsters had signi?cantly fewer

ER?-IR cells in the BST(t

10?2.57,P?0.05)and the MeA(t

9?2.72,P?0.05)than females,whereas male Siberian hamsters had fewer ER?-IR cells in the BST

(t

10?2.67,P?0.05),MeA(t10?4.02,P?0.05),ARC (t

10?2.74,P?0.05),and VMH(t10?4.54,P?0.05)than females(Figs.3,4).In regions where there were signi?-

cant intrasexual differences between Djungarian and Si-berian,Djungarian expressed less ER?-IR than Siberian. Male Djungarian expressed lower levels of ER?in the BST (t

10?3.05,P?0.05),whereas female Djungarian had lower levels in the ARC(t

10?3.56,P?0.05)than their Siberian counterparts.

DISCUSSION

The results from this study supported the two main predictions.First,males of highly social rodents display lower site-speci?c levels of ER?-IR than polygynous males,and,second,ER?-IR is sexually dimorphic in highly social species.The socially monogamous male pine voles displayed signi?cantly lower levels of ER?-IR in the BST and MeA than the polygynous montane vole and in the MeA compared with male meadow voles.Additionally ER?-IR was sexually dimorphic in the three social species, pine voles and Djungarian and Siberian hamsters,with males expressing signi?cantly fewer ER?-IR cells in the BST and MeA than females.

597

ER?AND SOCIAL ORGANIZATION

ER ?patterns and the expression of male

prosocial behavior

Until recently,the main focus of study of the regulation of monogamous social behavior has been on the neuropep-tides oxytocin and vasopressin.Neuropeptides play a role in regulating a variety of social behaviors (Insel et al.,1998;Young and Wang,2004);there are signi?cant differ-ences in the distribution of oxytocin and vasopressin re-ceptors between monogamous and polygynous rodent

spe-

Fig.1.a–e:Expression of ER ?in the brains of montane,meadow,and pine voles.Data are presented from the least social species to the most social.There were no signi?cant differences in ER ?-IR between males and females in montane voles,whereas ER ?-IR is sexually dimorphic in the ventromedial nucleus of the hypothalamus (VMH)of meadow voles and the bed nucleus of the stria terminalis (BST)and medial amygdala (MeA)in pine voles.Male pine voles express signif-icantly lower levels than montane and meadow vole males in the BST and male montane voles in the MeA.ARC,arcuate nucelus,MPOA,medial preoptic area.Different letters indicate signi?cant same-sex differences.*Signi?cant within-population difference between males and females.

598 B.S.CUSHING AND K.E.WYNNE-EDWARDS

cies (Insel et al.,1991;Insel and Shapiro,1992);and viral vector enhancement of vasopressin receptors (V1a)can alter behavioral af?liation (Lim et al.,2004).Although there is no doubt that the oxytocinergic and vasopressin-ergic systems play an important role in regulating social behavior,changes in these systems may not be suf?cient to explain the evolution of social monogamy.

First,the effects of both oxytocin and vasopressin are steroid dependent (De Vries et al.,1984,1985;Arletti and Bertolini,1985;Caldwell et al.,1986),with estrogen

hav-

Fig.2.a–l:Representative photomicrographs of ER ?-IR in bed nucleus of the stria terminalis (BST)and medial amygdala (MeA)of male and female montane (female a and g,male d and j),meadow (female b and h,male e and k),and pine voles (female c and i,male f and l).Scale bars ?100?m in d (applies to a–f),j (applies to g–l).

599

ER ?AND SOCIAL ORGANIZATION

ing a direct effect on the expression of oxytocin receptors (Coirini et al.,1989;Johnson,1992)and the V1a vasopres-sin receptor (Funabashi et al.,2000).Estrogen also can directly in?uence the production of oxytocin and vasopres-sin (Plumari et al.,2002),in that there is an estrogen response element in the promoter region of both oxytocin and vasopressin genes (Bale and Dorsa,1997;Shapiro et al.,2000).This suggests the possibility that estrogen could play a role in the establishment of the response to neu-ropeptides.Second,studies using ER ?knockout mice or aromatase inhibitors indicate that estrogen plays a direct role in regulating many of the same social behaviors as-sociated with the oxytocin and vasopressin,including partner preference (Bakker et al.,2002),

aggression

Fig. 3.a–e:Expression of ER ?in the brains of Siberian and Djungarian hamsters.The expression of ER ?-IR was sexually dimor-phic in both hamsters.Females expressed more ER ?-IR than males in the bed nucleus of the stria terminalis (BST)and medial amygdala (MeA),whereas in Siberian hamsters females also expressed more than males in the ventromedial nucleus of the hypothalamus (VMH)and arcuate nucleus (ARC).Male Djungarian hamsters expressed

signi?cantly lower levels of ER ?-IR than male Siberian hamsters in the BST,whereas female Djungarian expressed signi?cantly lower levels in the ARC than female Siberian hamsters.MPOA,medial preoptic area.Horizontal lines indicate signi?cant within-sex differ-ences.*Signi?cant within population difference between males and females.

600 B.S.CUSHING AND K.E.WYNNE-EDWARDS

Fig.4.a–h:Representative photomicrographs of ER?-IR in female and male Siberian(female a and e,male c and g)and Djungarian(female b and f,male d and h)hamsters in the bed nucleus of the stria terminalis(BST;a–d)and the medial amygdala(MeA;e–h).Scale bars?100?m in c(applies to a–d), g(applies to e–h).601

ER?AND SOCIAL ORGANIZATION

(Ogawa et al.,1997),and parental behavior(Ogawa et al., 1998;Trainor and Marler,2002).Third,although there are signi?cant species differences,the expression of OT and the V1a vasopressin receptor is not sexually dimor-phic(Insel and Shapiro,1992;Insel et al.,1994).The similarity in the distribution of receptors fails to explain why it has been repeatedly demonstrated that oxytocin plays a greater role in the regulation of female behavior, whereas vasopressin is more important in males(Winslow et al.,1993;Williams et al.,1994;Insel and Hulihan,1995; Insel et al.,1998;Cushing and Carter,2000;Cushing et al.,2001).The similar pattern,but differential response, suggests that other factors are involved in regulating the overall response to these neuropeptides.Finally,many male-typical behaviors associated with polygyny are reg-ulated by estrogen rather than neuropeptides.Taken to-gether,these facts suggest that altering the response to estrogen could play a critical role in regulating both the decrease in male-typical behaviors and the increased prosocial behavior associated with social monogamy. Reduction in ER?-IR and the expression of

male prosocial behavior

Early studies that manipulated circulating levels of tes-tosterone in males demonstrated that testosterone was suf?cient and necessary for the expression of male“typi-cal”behavior and reproductive physiology.However,more recent studies have demonstrated that many of the effects initially attributed to testosterone do not result from an-drogens,but instead are mediated by estrogen formed by intracellular aromatization of testosterone(Ogawa et al., 1997;Vagell and McGinnis,1998;Rissman and Wers-inger,1999;Roselli and Chambers,1999;Wersinger and Rissman,2000;Bakker et al.,2002).Intracellularly,es-trogen acts via one of two ER subtypes,?or?.Studies using ER?and ER?knockout mice indicate that the two subtypes may play different roles in the expression of male-typical behavior,with ER?acting to masculinize male behavior(Scordalakes et al.,2002;Scordalakes and Rissman,2004),whereas ER?may be involved in defem-inizing male behavior(Kudwa et al.,2005).These studies further support the hypothesis that changes in the expres-sion of ER?would alter the expression of masculine be-havior,permitting a greater expression of prosocial behav-ior.

Sexually dimorphic ER?and social behavior The results from this study and comparison of ER?between two behaviorally distinct populations of prairie voles(Cushing et al.,2004)indicate that a reduction in the occurrence of ER?is associated with increased expression of prosocial behavior.However,species differences in the level of ER?occur primarily in males.This suggests two things:?rst,that monogamy involves a greater change in male behavior than in female behavior and,second,that these changes resulted in increased sexual dimorphism in receptor expression.In rats and the polygynous voles ex-amined here,the expression and distribution of ER?in the brains of males and females are similar(Simmerly et al.,1990;Lauber et al.,1991;Kuhnemann et al.,1995; Yokosuka et al.,1997;Kawata et al.,1998;La?amme et al.,1998),especially in the BST and MeA.Taken together, these?ndings support a recent hypothesis that sexually dimorphic expression of receptor patterns may produce similar behavioral patterns,whereas similar patterns of receptors may produce sexually dimorphic behavior(De Vries and Villalba,1997).The basis of this hypothesis is that masculine behavioral patterns are established during development,perinatally and/or neonatally(Han and De Vries,2003).During development,males have higher lev-els of circulating steroids and aromatase activity.There-fore,during development,males have effectively higher levels of estrogen than females.This means that males with the same pattern of ER as females would be more affected by estrogen than females.If males have a reduc-tion in ER,then the masculinizing effects would be re-duced or eliminated,producing more female-like behav-iors.If this hypothesis is correct,then sexual differences in ER should exist during the developmental period.Re-sults from prairie voles support this prediction,in that ER?expression in the BST and MeA is sexually dimorphic prior to weaning(Yamamoto et al.,in press).Also,neona-tal castration of prairie voles signi?cantly increases ER?in adulthood,producing a pattern that is very similar to that observed in females(Cushing and Kramer,2005),and reduces male prosocial behavior(Cushing et al.,2003). Site-speci?c ER?-IR and the expression of

male social behavior

Given that estrogen is involved in the regulation of a variety of behavioral and physiological responses,it seems unlikely that the evolution of monogamy would be associ-ated with an overall reduction in ER?,insofar as this would alter behaviors and physiological responses not as-sociated with monogamous behavior.Instead,monogamy should be achieved through site-speci?c changes in re-gions of the brain that regulate af?liation and aggression. One of the primary neural circuits playing a critical role in regulating social/sociosexual interactions consists of the MeA,BST,MPOA,LS,and VMH(Newman,1999).Re-sults form the current study are consistent with previous ?ndings in prairie voles and suggest a role of the BST and MeA in regulating species differences in the expression of male prosocial behavior.In polygynous species,such as rats,mice,and hamsters,the BST and MeA regulate the expression of social preference,af?liation,and aggression (Newman,1999;Rasia-Filho et al.,2000;Ferguson et al., 2001).Therefore,a reduction in ER?in these regions would be predicted to alter the expression of these behav-iors.Male prairie voles,which are monogamous,express low levels of ER?in the BST and MeA(Hnatczuk et al., 1994;Cushing et al.,2004),and the BST and MeA have been shown to play a critical role in regulating parental behavior and aggression in prairie voles(Wang and De Vries,1993;De Vries and Villalba,1997;Wang et al., 1997).

Changes in the expression of ER?may be limited to the BST and MeA for several reasons.First,as stated above, these regions play a critical role in the expression of af?l-iation and aggression.Second,they receive direct input form the vomeronasal organ and the olfactory bulb,so that the response of these regions to initial olfactory stimulus could in turn regulate the overall response by directly or indirectly affecting the response of other portions of the neural circuit.Third,changes in the expression of other regions,such as the MPOA,might adversely impact other aspects of sociosexual behavior.For example,the MPOA plays a major role in reproduction and sexual behavior.A reduction in the sensitivity to estrogen in the MPOA might interfere with the expression of male reproductive

602 B.S.CUSHING AND K.E.WYNNE-EDWARDS

behavior,such as mounting or intromission.However,the MPOA,LS,and VMH do regulate sociosexual behavior, and it is possible that,in other species,differences in ER?in the MPOA or other portions of the sociosexual neural circuit may be correlated with differential expression of male social behavior.Finally,although everything was done to minimize the potential effects associated with species-speci?c responses to housing,acclimation of ani-mals,and similar reproductive status,there is still a pos-sibility that the expression of ER?was associated with differential response to the effects of the stress of housing.

ER?:microtines and dwarf hamsters

A comparison of the pattern of distribution of ER?-IR among the three species of voles reveals a signi?cant pattern and provides further support for a role of ER?in establishing male prosocial behavior associated with mo-nogamy.Species differences were observed only in males. Differences were limited to the BST and MeA,meaning that differences between highly social males and less so-cial males were observed only in regions that are associ-ated with the expression of af?liation and aggression(see above).Pine voles,which are socially monogamous,dis-played signi?cantly lower levels of ER?-IR than polygy-nous montane voles.The comparison of the expression of ER?in meadow voles with these two species is particu-larly relevant.Meadow voles have been classi?ed as po-lygynous,but there is evidence that the expression of male prosocial behavior is variable and that they can display parental behavior and reduced pup-directed aggression (McGuire,1988;Storey et al.,1994;Parker and Lee,2001), which are typically associated with monogamy.The pat-tern of the distribution of ER??ts with the intermediate pattern of social behavior of male meadow voles;ER?-IR expression in the BST and MeA is intermediate to that of montane and pine voles.This suggests that intermediate patterns may be involved in the expression of behavioral plasticity.This also may explain why meadow vole males treated with vasopressin display parental behavior, whereas central vasopressin does not affect af?liation in montane males(Young et al.,1999),despite the fact that both display the polygynous vasopressin receptor pattern (Insel and Shapiro,1992;Insel et al.,1994;Young et al., 1997).

Comparison of ER?in the two hamster species,paral-leling the social differences between meadow and pine voles,also supported the hypotheses.The sexually dimor-phic expression,low levels of ER?-IR in males in the BST and MeA,suggests the potential for high levels of af?lia-tive behavior in males of both species.Djungarian ham-sters are considered to display obligate social monogamy (Wynne-Edwards,1995),with the male playing an active role in care of the offspring,because his presence signi?-cantly increases the survival of his offspring(Walton and Wynne-Edwards;1998;Reburn and Wynne-Edwards, 1999;Jones and Wynne-Edwards,2000;McInroy et al., 2000).In contrast,male participation in Siberian ham-sters appears to be seasonal,with males found in the nest along with newborn pups late in the breeding season (Wynne-Edwards,1995).The expression of ER?in male Siberian hamsters may therefore re?ect the potential to express the prosocial behavior associated with facultative social monogamy.

Unlike most male rodents,Siberian and Djungarian males have high circulating levels of estrogen(Schum and Wynne-Edwards,2005).This suggests that the expression of prosocial behavior could be regulated through the in-teraction of ER?and estrogen levels,with circulating lev-els of estrogen potentially modulating the behavioral re-sponses of males.Because Djungarian males express very low levels of ER?in the MeA and BST,estrogen,even at high levels,may have a minimal effect on af?liation and aggression.In contrast,the higher expression of ER?in Siberian males could facilitate the expression of“male-typical”behavior rather than the more“feminized”paren-tal behaviors seen in Djungarian hamsters in response to high levels of estrogen.Differences in the BST may ex-plain differences in parental behavior,insofar as the BST has been shown to in?uence the expression of male paren-tal behavior(Wang and De Vries,1993;Bamshad et al., 1994).Thus,in the Siberian hamster,environmental or social conditions that reduced circulating levels of estro-gen could stimulate the facultative expression of prosocial behaviors,including paternal behaviors.

Differences in ER?expression in hamsters were not restricted to males.Female Siberian hamsters had higher expression of ER?-IR in the ARC than female Djungarian hamsters.Although the current study did not reveal between-species differences in female voles,there were signi?cant differences in ER?in the MPOA of females from two behaviorally distinct populations of prairie voles, with the less social females displaying higher levels of ER?-IR(Cushing et al.,2004).Differences in expression of ER?between females suggest the intriguing possibility that ER?could play a role in female regulation of paternal involvement.In meadow voles,the female is actively in-volved in determining whether males are allowed to enter the nest(Storey et al.,1994),and female Siberian ham-sters may be doing the same thing(Wynne-Edwards, 1995,2003).If females are determining whether the male is allowed to participate in caring for the young,then it is possible that females with higher levels of ER?would be less likely to allow males to enter the nest.This may also explain why Siberian hamsters displayed sexually dimor-phism in the ARC and VMH,in that the differences in these areas appear to be associated with higher levels of ER?-IR in females compared with Djungarian hamsters, rather than a decrease in males.The current results, showing hamster species differences,even among females, are likely to be related to differences between obligate and facultative social af?liation.

In conclusion,the results from this study provide fur-ther support for the hypothesis that ER?expression and thus estrogen play an important role in determining the expression of male behavior in microtines,with a reduc-tion in the expression of ER?in the MeA and/or the BST being associated with males of species that can dsiplay high levels of prosocial behavior.The fact that a similar pattern occurs in dwarf hamsters suggests that reduction of ER?in males may be associated with the evolution of social monogamy in rodents.Although we believe that changes in responses to estrogen are necessary for the expression of social monogamy,we are not proposing that changes in ER?alone are suf?cient to create social mo-nogamy.We believe that social monogamy is the result of the interaction of steroidal responses and neuropeptide regulation,speci?cally oxytocin and vasopressin.This view supports the recent proposal that social recognition is the product of a four-gene interaction involving ER, oxytocin,and oxytocin receptors(Choleris et al.,2003).

603

ER?AND SOCIAL ORGANIZATION

ACKNOWLEDGMENTS

We thank Dr.Kristin Kramer and Nancy Cushing for their critical review of this article and Dr.Michael Ferkin (University of Memphis)and Dr.Nancy Solomon(Miami University of Ohio)for supplying voles for this study.

LITERATURE CITED

Arletti R,Bertolini A.1985.Oxytocin stimulates lordosis behavior in female rats.Neuropeptides6:247–253.

Bakker J,Honda SI,Harada N,Balthazart J.2002.Sexual partner pref-erence requires aromatase(Cyp19)gene in male mice.Horm Behav 42:158–171.

Bale TL,Dorsa DM.1997.Cloning,novel promoter sequence,and estrogen regulation of a rat oxytocin receptor gene.Endocrinology138:1151–1158.

Bamshad M,Novak MA,DeVries GJ.1994.Cohabitation alters vasopres-sin innervation and paternal behavior in prairie voles(Microtus ochro-gaster).Physiol Behav56:751–758.

Caldwell JD,Prange AJ Jr,Pedersen CA.1986.Oxytocin facilitates the sexual receptivity of estrogen-treated female rats.Neuropeptides 7:175–189.

Choleris E,Gustafsson J,Korach KS,Muglia LJ,Pfaff DW,Ogawa S.2003.

An estrogen-dependent four-gene micronet regulating social recogni-tion:a study with oxytocin and estrogen receptor-?and-?knockout mice.Proc Natl Acad Sci U S A100:6192–6197.

Coirini H,Johnson AE,McEwen BS.1989.Estradiol modulation of oxyto-cin binding in the ventromedial hypothalamic nucleus of male and female rats.Neuroendocrinology50:193–198.

Cushing BS,Carter CS.2000.Peripheral pulses of oxytocin increase part-ner preferences in female,but not male,prairie voles.Horm Behav 37:49–56.

Cushing BS,Kramer KM.2005.Microtines:a model system for studying the evolution and regulation of social monogamy.Acta Theriol Sin 25:182–199.

Cushing BS,Martin JO,Young LJ,Carter CS.2001.The effects of peptides on partner preference formation are predicted by habitat in prairie voles.Horm Behav39:48–58.

Cushing BS,Okorie U,Young LJ.2003.Neonatal castration inhibits adult male response to centrally-administered vasopressin but does not alter expression of V1a receptors.J Neuroendocrinol15:1021–1026. Cushing BS,Razzoli M,Murphy AZ,Epperson PD,Le WW,Hoffman GE.

2004.Intraspeci?c variation in estrogen receptor alpha and the expres-sion of male sociosexual behavior in two population of prairie voles.

Brain Res1016:247–254.

De Vries GJ,Villalba C.1997.Brain sexual dimorphism and sex differ-ences in parental and other social behaviors.Ann N Y Acad Sci807: 273–286.

De Vries GJ,Buijs RM,Sluitter AA.1984.Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain.

Brain Res298:141–145.

De Vries GJ,Buijs RM,Van Leeuwen FW,Caffe AR,Swaab DF.1985.The vasopressinergic innervation of the brain in normal and castrated rats.

J Comp Neurol233:236–254.

Dewsbury DA.1981.An exercise in the prediction of monogamy in the?eld from laboratory data on42species of muriod rodents.Biologist63:138–162.

Ferguson JN,Aldag JM,Insel TR,Young LJ.2001.Oxytocin in the medial amygdala is essential for social recognition in the mouse.J Neurosci 21:8278–8285.

Fowler CD,Johnson F,Wang Z.2005.Estrogen regulation of cell prolifer-ation and distribution of estrogen receptor alpha in the brains of adult female prairie and meadow voles.J Comp Neurol489:166–179. Funabashi T,Shinohara K,Mitsushima D,Kimura F.2000.Estrogen increases arginine-vasopressin V1a receptor mRNA in the preoptic area of young but not of middle-aged female rats.Neurosci Lett285: 205–208.

Getz LL,Carter CS,Gavish L.1981.The mating system of the prairie vole, Microtus ochrogaster:?eld and laboratory evidence for pair-bonding.

Behav Ecol Sociobiol8:189–194.

Han TM,De Vries https://www.wendangku.net/doc/9b10651507.html,anizational effects of testosterone,estra-diol,and dihydrotestostereone on vasopressin mRNA expression in the bed nucleus of the stria terminalis.J Neurobiol54:502–510.Hnatczuk OC,Lisciotto CA,DonCarlos LL,Carter CS,Morrell JI.1994.

Estrogen receptor immunoreactivity in speci?c brain areas of the prai-rie vole(Microtus ochrogaster)is altered by sexual receptivity and genetic sex.J Neuroendocrinol6:81–100.

Hutchison JB.1997.Gender-speci?c steroid metabolism in neural differ-entiation.Cell Mol Neurobiol17:603–626.

Insel TR,Hulihan TJ.1995.A gender-speci?c mechanism for pair bonding: oxytocin and partner preference formation in monogamous voles.Be-hav Neurosci109:782–789.

Insel TR,Shapiro LE.1992.Oxytocin receptor distribution re?ects social organization in monogamous and polygamous voles.Proc Natl Acad Sci U S A.89:5981–5985.

Insel TR,Gelhard R,Shapiro LE.1991.The comparative distribution of forebrain receptors for neurohypophyseal peptides in monogamous and polygamous mice.Neuroscience43:623–630.

Insel TR,Wang Z,Ferris CF.1994.Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents.

J Neurosci14:5381–5392.

Insel TR,Winslow JT,Wang ZX,Young LJ.1998.Oxytocin,vasopressin, and the neuroendocrine basis of pair bond formation.Adv Exp Med Biol 449:215–224.

Jannett FJ.1980.Social dynamics of the montane vole,Microtus monta-nus,as a paradigm.Biologist62:3–19.

Johnson AE.1992.The regulation of oxytocin receptor binding in the ventromedial hypothalamic nucleus by gonadal steroids.Ann N Y Acad Sci652:357–373.

Jones JS,Wynne-Edwards KE.2000.Paternal hamsters mechanically assist the delivery,consume amniotic?uid and placenta,remove fetal membranes,and provide parental care during the birth process.Horm Behav37:116–125.

Kawata M,Yuri K,Ozawa H,Nishi M,Ito T,Hu ZT,Lu HP,Yoshida M.

1998.Steroid hormones and their receptors in the brain.J Steroid Biochem Mol Biol65:273–280.

Kendrick KM,Drewett RF.1980.Testosterone-sensitive neurons respond to estradiol but not to dihydrotestosterone.Nature286:67–68. Kleiman D.1977.Monogamy in mammals.Q Rev Biol52:39–69.

Kudwa AE,Bodo C,Gustafsson JA,Rissman EF.2005.A previously uncharacterized role for estrogen receptor?:defeminization of male brain and behavior.Proc Natl Acad Sci U S A102:4608–4612. Kuhnemann S,Brown TJ,Hochberg RB,MacLusky NJ.1995.Sexual differentiation of estrogen receptor concentrations in the rat brain: effects of neonatal testosterone exposure.Brain Res691:229–234.

La?amme N,Nappi RE,Drolet G,Labrie C,Rivest S.1998.Expression and neuropetidergic characterization of estrogen receptors(ER?and ER?) throughout the rat brain:anatomical evidence of distinct roles of each subtype.J Neurobiol36:357–378.

Lauber AH,Mobbs CV,Muramatsu M,Pfaff DW.1991.Estrogen-receptor messenger-RNA expression in rat hypothalamus as a function of ge-netic sex and estrogen dose.Endocrinology1293:180–186.

Lim MM,Wang ZX,Olazabal DE,Ren XH,Terwilliger EF,Young LJ.2004.

Enhanced partner preference in a promiscuous species by manipulat-ing the expression of a single gene.Nature429:754–757.

Lonstein JS,Rood BD,De Vries GJ.2002.Parental responsiveness is feminized after neonatal castration in virgin male prairie voles,but not masculinized by perinatal testosterone in virgin females.Horm Behav 41:80–87.

Madison DM.1980.Space use and social structure in meadow voles, Microtus pennsylvanicus.Behav Ecol Sociobiol7:65–71.

McGuire B.1988.Effects of cross-fostering on parental behavior of meadow voles(Microtus pennsylvanicus).J Mammal69:332–341.

McInroy JKE,Brousmiche DG,Wynne-Edwards KE.2000.Fathers,fat and maternal energetics in a biparental hamster:paternal presence determines the outcome of a current reproductive effort and adipose tissue limits subsequent reproductive effort.Horm Behav37:399–409. Moffatt CA,Rissman EF,Shupnik MA,Blaustein JD.1998.Induction of progestin receptors by estradiol in the forebrain of estrogen receptor-?gene-disrupted mice.J Neurosci18:9556–9563.

Murphy AZ,Shupnik MA,Hoffman GE.1995.Androgen and estrogen(?) receptor distribution in the periaqueductal gray of the male rat.Horm Behav36:98–108.

Newman SW.1999.The medial extended amygdala in male reproductive behavior—a node in the mammalian social behavior network.Ann N Y Acad Sci877:242–257.

Ogawa S,Lubahn DB,Korach KS,Pfaff DW.1997.Behavioral effects of

604 B.S.CUSHING AND K.E.WYNNE-EDWARDS

estrogen receptor gene disruption in male mice.Proc Natl Acad Sci U S A94:1476–1481.

Ogawa S,Eng V,Taylor J,Lubahn DB,Korach KS,Pfaff DW.1998.Roles of estrogen receptor alpha gene expression in reproduction-related behaviors in female mice.Endocrinology139:5070–5081.

Parker KJ,Lee TM.2001.Social and environmental factors in?uence the suppression of pup-directed aggression and development of paternal behavior in captive meadow voles(Microtus pennsylvanicus).J Comp Psychol115:331–336.

Plumari L,Viglietti-Panzica C,Allieri F,Honda S,Harada N,Absil P, Balthazart J,Panzica GC.2002.Changes in the arginine-vasopressin immunoreactive systems in male mice lacking a functional aromatase gene.J Neuroendocrinol14:971–978.

Rasia-Filho AA,Londero RG,Achaval M.2000.Functional activities of the amygdala:an overview.J Psych Neurosci25:14–23.

Reburn CJ,Wynne-Edwards KE.1999Hormonal changes in males of a naturally biparental and a uniparental mammal.Horm Behav35:163–176.

Rissman EF,Wersinger SR,Fugger HN,Foster TC.1999.Sex with knock-out models:behavioral studies of estrogen receptor alpha.Brain Res 835:80–90.

Roselli CE,Chambers K.1999.Sex differences in male-typical behaviors in response to androgen and estrogen treatments in rats.Neuroendocri-nology69:290–298.

Schreihofer DA,Resnick EM,Soh AY,Shupnik MA.1999.Transcriptional regulation by a naturally occurring truncated rat estrogen receptor (ER),truncated ER product-1(TERP-1).Mol Endocrinol13:320–329. Schum JE,Wynne-Edwards KE.2005.Estradiol and progesterone in pa-ternal and on-paternal hamsters(Phodopus)becoming fathers:con?ict with hypothesized roles.Horm Behav47:410–418.

Scordalakes EM,Rissmand EF.2004.Aggression and arginine vasopressin immunoreactivity regulation by androgens receptor and estrogen re-ceptor alpha.Genes Brain Behav3:20–26.

Scordalakes EM,Imwalle DB,Rissman EF.2002.Estrogen’s masculine side:mediation of mating in male mice.Reproduction124:331–338. Shapiro RA,Xu C,Dorsa DM.2000.Differential transcriptional regulation of rat vasopressin gene expression by estrogen receptor alpha and beta.

Endocrinology141:4056–4064.

Simerly RB,Chang C,Muramatsu M,Swanson LW.1990.Distribution of androgen and estrogen receptors mRNA-containing cells in the rat brain:An in situ hybridization study.J Comp Neurol294:76–95. Storey AE,Bradbury CG,Joyce TL.1994.Nest attendance in male meadow voles:The role of the female in regulating male interactions with pups.

Anim Behav49:1–10.

Trainor BC,Marler CA.2002.Testosterone promotes parental behavior in

a monogamous mammal via conversion to estrogen.Proc R Soc Lond B

Biol Sci269:823–829.

Vagell ME,McGinnis MY.1998.The role of gonadal steroid receptors activation in the restoration of sociosexual behavior in adult male rats.

Horm Behav33:163–179.Walton JM,Wynne-Edwards KE.1998.Paternal care reduces maternal hyperthermia in Djungarian hamsters(Phodopus campbelli).Physiol Behav63:41–47.

Wang ZX,De Vries GJ.1993.Testosterone effects paternal behavior and vasopressin immunoreactive projections in prairie voles(Microtus ochrogaster).Brain Res631:156–160.

Wang Z,Hulihan TJ,Insel TR.1997.Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles.Brain Res767:321–332.

Watson RE,Wiegand SJ,Clough RW,Hoffman https://www.wendangku.net/doc/9b10651507.html,e of cryopro-tectant to maintain long-term peptide immunoreactivity and tissue morphology.Peptides7:155–159.

Wersinger SR,Rissman EF.2000.Estrogen receptor alpha is essential for female-directed chemo-investigatory behavior but not required for the pheromone-induced luteinizing hormone surge in male mice.J Neu-roendocrinol12:103–110.

Wersinger SR,Sannen K,Villalba C,Lubahn DB,Rissman EF,De Vries GJ.1997.Masculine sexual behavior is disrupted in ale and female mice lacking a functional estrogen receptor alpha gene.Horm Behav 32:176–183.

Williams JR,Insel TR,Harbaugh CR,Carter CS.1994.Oxytocin admin-istered centrally facilitates formation of a partner preference in female prairie voles.J Neuroendocrinol6:247–250.

Winslow JT,Hastings N,Carter CS,Harbaugh CR,Insel TR.1993.A role for central vasopressin in pair bonding monogamous prairie voles.

Nature365:545–548.

Wynne-Edwards KE.1995.Biparental care in Djungarian but not Siberian dwarf hamsters(Phodopus).Anim Behav50:1571–1585.

Wynne-Edwards KE.1998.Evolution of parental care in Phodopus:con?ict between adaptations for survival and adaptations for rapid reproduc-tion.Am Zool38:238–250.

Wynne-Edwards KE.2003.From dwarf hamster to daddy:the intersection of ecology,evolution and physiology that produces paternal behavior.

Adv Study Behav32:207–261.

Yamamoto Y,Carter CS,Cushing BS.2005.Neonatal manipulation of oxytocin effects expression of estrogen receptor alpha.Neuroscience(in press).

Yokosuka,M,Okamura H,Hayashi S.1997.Postnatal development and sex differences in neurons containing estrogen receptro-alpha immu-noreactivity in the preoptic brain,the diencephalon,and the amygdala in the rat.J Comp Neurol389:81–93.

Young LJ,Wang Z.2004.The neurobiology of pair bonding.Nat Neurosci 10:1048–1054.

Young LJ,Winslow JT,Nilsen R,Insel TR.1997.Species differences in V1a receptor gene expression in monogmaous and non-monogamous voles: behavioral consequences.Behav Neurosci111:599–605.

Young LJ,Nilsen R,Waymire KG,MacGregor GR,Insel TR.1999.In-creased af?liative response to vasopressin in mice expressing the va-sopressin receptor from a monogamous vole.Nature400:766–768.

605

ER?AND SOCIAL ORGANIZATION

香港中文大学2012-2013汉语语言学与语言习得专业ma笔试题

2012-13 CUHK Recruitment Test MA in Linguistics MA in Chinese Linguistics and Language Acquisition Name __________________________ Email __________________________ Phone __________________________ University __________________________ City __________________________ Province __________________________

Section One Answer all the questions in this section. Question 1 Analyze the following data and decide if [s] and [z] are allophones of the same phoneme or belong to different phonemes.

Look at the following data involving allomorphic variation: i.lokanta ‘a restaurant’lokantada ‘in/at a restaurant’ ii.kap?‘a door’kap?da ‘in/at a door’ iii.randevu ‘an appointment’randevuda ‘in/at an appointment’iv.ba?‘a head’ba?ta ‘in/at a head’ v.kitap ‘a book’kitapta ‘in/at a book’ vi.koltuk ‘an armchair’koltukta ‘in/at an armchair’ vii.taraf ‘a side’tarafta ‘in/at a side’ (note: ? is a high back unrounded vowel) (a) What kind of morphological means does this language employ to express the meaning ‘in/at’? (b) What are the allomorphs of this morpheme? (c) Describe their distribution in the data. (d) What phonological process is involved in such distribution? Question 3 What are the possible meanings of ‘unlearnable’ and ‘undoable’? Draw tree diagrams to explain their possible meanings.

通达信均线粘合选股公式

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 通达信均线选股指标公式 MA10:=MA(C,10); MA30:=MA(C,30); MA60:=MA(C,60); LL:=MIN(MIN(MA10,MA30),MA60); 选股:COUNT(MA30>REF(MA30,1),2)=2 AND MA60>REF(MA60,1) AND MA10=LL AND CROSS(C,MA10); 通达信均线粘合选股公式 MA1:=MA(CLOSE,5); MA2:=MA(CLOSE,10); MA3:=MA(CLOSE,20); MA4:=MA(CLOSE,60); MA5:=MA(CLOSE,120); MA6:=MA(CLOSE,250); A:MAX(MAX(MA1,MA2),MA3),LINETHICK0; B:MIN(MIN(MA1,MA2),MA3),LINETHICK0; 三线粘合:IF(RANGE(100*(A-B)/B,0,5),100*(A-B)/B,DRAWNULL),LINETHICK0; SA:MAX(MAX(MA1,MA2),MAX(MA3,MA4)),LINETHICK0; SB:MIN(MIN(MA1,MA2),MIN(MA3,MA4)),LINETHICK0; 成本价均线 AMOV:=VOL*(OPEN+CLOSE)/2; AMV1:SUM(AMOV,M1)/SUM(VOL,M1);

AMV2:SUM(AMOV,M2)/SUM(VOL,M2); AMV3:SUM(AMOV,M3)/SUM(VOL,M3); AMV4:SUM(AMOV,M4)/SUM(VOL,M4) AMOV:=VOL*(OPEN+CLOSE)/2; AMV1:SUM(AMOV,5)/SUM(VOL,5); AMV2:SUM(AMOV,13)/SUM(VOL,13); AMV3:SUM(AMOV,34)/SUM(VOL,34); AMV4:SUM(AMOV,60)/SUM(VOL,60); A:MAX(MAX(AMV1, AMV2), AMV3); B:MIN(MIN(AMV1, AMV2), AMV3); 三线粘合:IF(RANGE(100*(A-B)/B,0,5),100*(A-B)/B,DRAWNULL); SA:MAX(MAX(AMV1, AMV2),MAX(AMV3, AMV4)); SB:MIN(MIN(AMV1, AMV2)),MIN(AMV3, AMV4)); 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

托拉塞米片说明书

核准日期:2007年4月6日 修改日期:年月日 托拉塞米片说明书 请仔细阅读说明书并在医师指导下使用 【药品名称】 通用名称:托拉塞米片 商品名称:伊迈格 英文名称:Torasemide T ablets 汉语拼音:Tuolasaimi Pian 【成份】本品主要成份为托拉塞米。 【性状】本品为白色片 【适应症】1、因充血性心衰引起的水肿;2、原发性高血压。 【规格】(1) 5mg (2) 20mg 【用法用量】 充血性心衰:口服,起始剂量为每次10mg,每日一次,根据病情需要可将剂量增至每次20mg,每日一次。原发性高血压:通常的起始剂量为每次5mg,每日一次。若在服药4-6周内降压作用不理想,剂量可增至每次10mg,每日一次。若10mg/天仍未取得足够的降压作用,可考虑合用其他降压药。 【不良反应】 托拉塞米的不良反应一般持续时间短,且与年龄、性别、种族或疗程无关。托拉塞米停药的最常见原因依次为头晕、头痛、恶心、虚弱、呕吐、高血糖、排尿过多、高尿酸血症、低钾血症、极度口渴、血容量不足、阳萎、食道出血、消化道不良,因上述不良反应的停药率为0. 1%-0. 5%。 在临床试验中,不能排除与药物有关的严重不良事件有房颤、胸痛、腹泻、洋地黄中毒、胃肠道出血、高血糖、高尿酸血症、低钾血症、低血压、血容量不足、旁路血栓、皮疹、直肠出血、晕厥和室性心动过速【禁忌】 1、已知对托拉塞米或磺酰脲类药物过敏的患者禁用本品。 2、无尿的患者禁用本品。 【注意事项】 1、由于体液和电解质平衡突然改变可能导致肝昏迷,有肝硬化和腹水的肝病患者慎用本品。此类患者最好在医院开始使用本品(或其他任何利尿剂)。为了防止低钾血症和代谢性碱中毒,最好与醛固酮拮抗剂或排钾量小的药物一起合用本品。 2、耳毒性:快速静脉注射其他髓袢类利尿剂或口服本品后曾观察到耳鸣和听力下降(通常可恢复),不能肯定这些不良反应与本品有关。在动物试验中,托拉塞米在极高的血浆浓度下可观察到耳毒性。静脉注射时,应缓慢注射,时间在2分钟以上,单次用药的剂量不能超过200mg。 3、体液量和电解质耗损使用利尿却的患者可观察到电解质失衡、血容量不足或肾前性氮血症,可能会造成以下一种或一种以上的症状:口干、口渴、虚弱、嗜睡、瞌睡、不安、肌肉痛或痉孪、乏力、低血压少尿、心动过速、恶心、呕吐。过度的利尿作用可能引起脱水、体液量减少、形成血栓或栓塞(特别是老年患者)。产生体液和电解质失衡、血容量不足、肾前性氮血症的患者,实验室检查可观察到血钠升高或降低、血氯升高或降低、血钾升高或降低、酸碱水平异常、血尿素氮增加。若发生以上症状,需停用本品直至症状恢复,在低剂下重新使用本品。 4、对美国进行的对照试验中,高血压患者服用本品(5-10mg/天)6周后,血钾平均大约下降0.1mEq/L。在治疗过程中的任何时间,试验组血钾量低于3.5mEq/L的患者百分率(1.5%)基本与安慰组(3%)相近。服药1年后,患者的平均血钾水平未发生进一步的变化。充血性心衰患者、肝硬化患者或肾病患者服用本品的剂量高于在美国降压试验中的剂量时,剂量依赖性的低钾血症的发生率较高。 血管病患者,特别是使用洋地黄毒苷的患者,利尿剂诱发的低钾血症是引起心律失常的一个风险因索。肝

通达信超级主力建仓和仓位副图指标公式

通达信超级主力建仓和仓位副图指标公式 大机构仓位:100*(1-WINNER(CLOSE)),COLORRED,LINETHICK3; VAR211:=1/WINNER(CLOSE); VAR311:=MA(CLOSE,13); VAR4:=100-ABS((CLOSE-VAR311)/VAR311*100); VAR5:=LLV(LOW,120); VAR6:=HHV(HIGH,120); VAR7:=(VAR6-VAR5)/100; VAR8:=SMA((CLOSE-VAR5)/VAR7,20,1); VAR9:=SMA((OPEN-VAR5)/VAR7,20,1); VARA:=3*VAR8-2*SMA(VAR8,10,1); VARB:=3*VAR9-2*SMA(VAR9,10,1); VARC:=100-VARB; 基金私募仓位: (100-VARA),COLORYELLOW,LINETHICK2; VARE1:=REF(LOW,1)*0.9; VARF1:=LOW*0.9; VAR101:=(VARF1*VOL+VARE1*(CAPITAL-VOL))/CAPITAL; VAR111:=EMA(VAR101,30); VAR121:=CLOSE-REF(CLOSE,1); VAR131:=MAX(VAR121,0); VAR141:=ABS(VAR121); VAR151:=SMA(VAR131,7,1)/SMA(VAR141,7,1)*100; VAR161:=SMA(VAR131,13,1)/SMA(VAR141,13,1)*100; VAR171:=BARSCOUNT(CLOSE); VAR181:=SMA(MAX(VAR121,0),6,1)/SMA(ABS(VAR121),6,1)*100; VAR191:=(-200)*(HHV(HIGH,60)-CLOSE)/(HHV(HIGH,60)-LLV(LOW,60))+100; VAR1A1:=(CLOSE-LLV(LOW,15))/(HHV(HIGH,15)-LLV(LOW,15))*100; VAR1B1:=SMA((SMA(VAR1A1,4,1)-50)*2,3,1); VAR1C1:=(INDEXC-LLV(INDEXL,14))/(HHV(INDEXH,14)-LLV(INDEXL,14))*100; VAR1D:=SMA(VAR1C1,4,1); VAR1E:=SMA(VAR1D,3,1); VAR1F:=(HHV(HIGH,30)-CLOSE)/CLOSE*100; VAR20:=VAR181<=25 AND VAR191<-95 AND VAR1F>20 AND VAR1B1<-30 AND VAR1E<30 AND VAR111-CLOSE>=-0.25 AND VAR151<22 AND VAR161<28 AND VAR171>50; VAR21:=(HIGH+LOW+CLOSE)/3; VAR22:=(VAR21-MA(VAR21,14))/(0.015*AVEDEV(VAR21,14)); VAR23:=(VAR21-MA(VAR21,70))/(0.015*AVEDEV(VAR21,70)); VAR24:=IF(VAR22>=150 AND VAR22<200 AND VAR23>=150 AND VAR23<200,10,0); VAR25:=IF(VAR22<=-150 AND VAR22>-200 AND VAR23<=-150 AND VAR23>-200,-10,VAR24); STICKLINE(VAR20,0,80,2,0),LINETHICK2,COLORBLUE; DRAWTEXT(CROSS(VAR20,0.5) AND COUNT(VAR20=1,10)=1,90,'超级主力建仓!') , COLORRED; VARE:=MA(100*(CLOSE-LLV(CLOSE,34))/(HHV(HIGH,34)-LLV(LOW,34)),5)-20; VARF:=100-3*SMA((CLOSE-LLV(LOW,75))/(HHV(HIGH,75)- LLV(LOW,75))*100,20,1)+2*SMA(SMA

香港中文大学汉语语言学与语言习得硕士授课型研究生申请要求

香港中文大学 汉语语言学与语言习得硕士授课型研究生申请要求

香港中文大学简介 学校名称香港中文大学 学校英文名称The Chinese University of Hong Kong 学校位置中国 | 香港 | 新界 2020 QS 世界排名46 香港中文大学概述 香港中文大学(The Chinese University of Hong Kong),简称港中大(CUHK),是一所亚洲顶尖、享誉国际的公立研究型综合大学,在中国研究、生物医学科学、信息科学、经济与金融、地球信息与地球科学等重点研究领域堪称世界级学术重镇,也是香港唯一有诺贝尔奖、菲尔兹奖及图灵奖得主任教的大学。该校以“结合传统与现代,融会中国与西方”为使命,以书院制和中英双语并重为特色,是环太平洋大学联盟、世界大学联盟、亚太国际教育协会、松联盟、中国大学校长联谊会成员,亚洲首家AACSB认证成员,香港互联网交换中心所在地。 香港中文大学由新亚书院、崇基学院及联合书院于1963年合并而成;2014年,香港中文大学(深圳)成立。 香港中文大学的创立打破了大英帝国殖民地只允许有一所大学存在的铁律,同时掀起了香港的中文运动,成功终结英文垄断官方语言地位的局面,既是英国殖民史的分水岭,也是20世纪亚洲地区非殖民化的表征之一,具有一定时代意义。 汉语语言学与语言习得硕士专业简介 为了促进中国语言学及其在其他学科的应用,以及为响应全球对中国作为第二外语教学和学习的日益增长的需求,香港中文大学语言学与现代语言学院提供中文语言学和语言习得硕士课程。该计划旨在为学生提供系统的中文结构和中文学习培训,帮助他们牢牢掌握语言的复杂性,并且了解中国人在单语和多语言社区的教学和学习情况。 汉语语言学与语言习得硕士专业相关信息 专业名称汉语语言学与语言习得硕士

最全通达信公式教程大全(函数-指标-实例)

简介 TDX的公式系统是一套功能强大、使用简单的计算机描述系统。用户可以通过对每日深沪两地交易所和历史上发送的行情数据按照简单的运算法则进行分析、选股、测试,在TDX当中一共提供了四大类公式编辑器: 1 技术指标公式编辑器 技术指标公式即通常所说画线指标,此类公式的主要目的是通过对数据采取一定的运算,将输出结果直观的显现在分析图上,为投资者提供研判行情的基本依据。此类指标至少要有一条输出线,本系统允许最多6条的输出线。 技术指标公式编辑器实现对技术图表分析中各类技术指标和自我定义的技术分析指标的编写,并且通过TDX的分析界面形成图表、曲线,以方便和寻找有意义的技术图形和技术特征。 2 条件选股公式编辑器 也就是通常意义上解释的智能选股。但我们的目的在于建立一个完全开放、自由的选股平台,可以通过对该平台的熟练使用,借助计算机的高速和准确的检索功能寻找满足您的理解的股票形态和技术特征,作到先知先觉,快人一步!并且提供相应的同样开放式的结果检测报告。 3 五彩K线公式编辑器 准确讲,该编辑器的功能是附属于条件选股功能之上的,我们可以通过该功能将满足条件的连续K线形态赋予颜色,区别了其它的K线。 条件选股公式与五彩K线公式的区别: 条件选股公式和五彩K线公式都有且仅有一个输出,其目的都是为投资者提供买入或卖出点的指示,不同之处在于:条件选股公式仅对最近数据提示买入或卖出,而五彩K线公式则对输入的所有历史数据进行提示。另外,五彩K线公式的输出是在K线图上,通过各种颜色对提示数据进行标识,条件选股公式的输出是找出符合最近条件的所有股票。 4 交易系统公式编辑器 交易系统公式是通过设定买入和卖出点(有且仅有这两个输出),由计算机进行模拟操作。以此为依据,系统一方面可以进行五彩K线公式的功能,同时提示买入和卖出;另一方面可以通过模拟操作,对指标买卖的收益、指标的最佳参数及最佳指标等各情形进行测试。 交易系统是在条件选股功能上的一次大的延伸,旨在建立一套完整的交易规则体系,通过该编辑器对各个相关的交易环节,包

香港教育大学学费详情

香港教育大学学费详情

目录 香港教育大学简介 (2) 香港教育大学学费详情 (3) 香港教育大学研究生专业设置及申请条件 (3) 香港大学的面试技巧 (5) 香港各大学毕业生工资数据 (8) 香港教育大学就业率高教育学科位居亚洲第二 (9) 香港教育大学简介 香港教育大学(The Education University of Hong Kong),简称为教大(EdUHK),是香港八所公立高等学府之一,也是香港唯一一所专注师资培训的高等院校, 提供多项本科生及研究生课程。 1992年6月,教育统筹委员会第五号报告书建议,把罗富国教育学院(1939)、葛量洪教育学院(1951)、柏立基教育学院(1960)、香港工商师范学院(1974)及语 文教育学院(1982)合併成为一所独立自主的大专院校,即香港教育学院(教院),致力提昇师资培训教育。1997年10月,迁入大埔校园。1998年9月学校开办首项学士及学位后课程:四年全日制小学教育荣誉学士课程和两年部分时间制 学位教师教育文凭(小学)课程。1999年9月,开办三年混合制幼儿教育荣誉学士课程。2000年9月,开办四年全日制中学教育荣誉学士课程;首次与其他院校合办学位课程: 与科大合办四年全日制荣誉理学士(数学及资讯科技教育) 学位课程。2000年10月,位于大角咀的市区分校正式啟用。2001年2月,位于白石角的运动中心正式啟用。2001年9月,开办四年全日制语文教育荣誉学士课程。2001年11月,教院首次颁授荣誉博士衔。2004年4月,香港教育学院十周年校庆。2005年9月,开办教育硕士课程。2007年9月,推出教育博士课程。

托拉塞米注射剂静脉注射引起严重不良反应4例

托拉塞米注射剂静脉注射引起严重不良反应 4 例 1 病例报告 男,72 岁,因慢性心衰急性发作入急诊治疗,入院后给予 吸氧、扩血管及托拉塞米静脉注射利尿(静推60 mg, 0.9%生理 盐水稀释后5?10 min推完)治疗,静推后10 min左右患者突然出现呼吸急促,意识模糊,四肢厥冷,大汗淋漓。心电监护显示BP80/50 mmHg HR98 次/min,律齐,窦性心律,R26次/min , 听诊双肺呼吸音粗,可闻及少量湿罗音,立即停用扩血管药物, 给予静脉注射多巴胺3 mg,后给予多巴胺200 ug/min,持续静脉泵入。对症治疗后, 数分钟患者症状缓解, 生命体征恢复稳定。 2 病情缓解 女, 72 岁,因慢性肝硬化伴腹水入院治疗,入院后给予托拉塞米临时静脉注射(静脉推注60 mg, 5%葡萄糖稀释后5?10 min 推完)治疗,静推后约15 min 患者突发心悸,恶心并呕吐一次,呕吐物为胃内容物。心电监护显示BP70/50 mmHg, HR120 次/min,室性行动过速,R24次/min,立即急查电解质,并同步直流电复律,终止室速。电解质回报3.0 mmol/L ,给予口服补钾,对症治疗后,BP转为120/70 mmHg, HR90次/min,转为窦性。 男, 42 岁,因扩张性心肌病心功能IV 级入急诊治疗,入院查体 BP92/58 mmHg HR76次/min,律齐,心律为窦性,双下肢高度浮肿,入

院后给予倍他乐克、螺内酯、福辛普利口服,硝酸甘油静脉泵入,并给予呋塞米注射液及托拉塞米注射液(60 mg)隔日一次交替静脉注射,入院第五日缓慢静推托拉塞米过程中患者自感心前区不适,双眼向上凝视,心电监护显示室颤,BP70/50 mmH,g 立即给予胸外心脏持续按压,并予以非同步直流电复律治疗,数分钟患者病情缓解,心律恢复窦性。 男,66?q,因充血性心力衰竭伴双下肢浮肿入院治疗,入院时生命体征平稳,入院后给予并给予托拉塞米注射液(80 mg) 静脉注射,注射后数分钟突发意识丧失,颈动脉搏动消失,心音听不到,血压测不到,立即给予心肺复苏,静脉注射肾上腺素,患者病情无缓解,宣布临床死亡。 2 讨论 托拉塞米是新一代高效髓袢利尿剂,托拉塞米适应症广,利尿作用迅速强大且持久,不良反应发生率低,更符合药物经济学要求。托拉塞米虽有利尿、排Na+和排C1 -作用,但又不显著改变肾小球滤过率、肾血浆流量和酸碱平衡[1] 。其作用于肾小管髓袢升支粗段(髓质部和皮质部)及远曲小管,具有扩血管作用,可抑制前列腺素分解酶活性,生物半衰期较呋塞米长,生物利用度(80%- 90%高于呋塞米(40%- 50%,连续用药无蓄积,通过增加尿量,减少机体水钠潴留,降低心脏前负荷,亦可降低心脏后负荷,对血清Mg2+尿酸、糖和脂质类无明显影响。适用于各种原因所致水肿,急、慢性心力衰竭,原发或继发性高血压,肝硬化腹水,急性毒物或药物中毒,急、慢性肾衰,本品可增加尿

盘中抓涨停

近阶段看到本区的【盘中抓涨停】讨论、选股、预警在不断增多。 本人很理解大家的心理,能每天抓到一只涨停股,那是所有人的向往。 可朋友们是否考虑到操作价值? 说句实话,抓涨停不难,一点都不难。 那什么难? 难度在于第二天我们能不能全身而退? 大凡抓涨停的指标都会与大成交量为前提,那今天盘中放出了巨量,明日量能还能继续跟上吗?如果一旦第二天量能不能跟上,股价就会冲高回落,甚至直接低开回落。我们在前一天追高而抓到的涨停股也许一点儿利润都不给我们而直接把我们套住。 因此、抓涨停的预警、选股,一定要考虑第二天能否顺利出局的问题,否则将很可能在我们欢歌笑语中去为主力站好最后一班岗! 先发几张图大家看看: 为了让大家理解这个思路,我把关键的语句用中文表达,大家可以根据这个思路自己再度优化,直至解决精确抓涨停而且第二天可以全身而退。 希望这个思路能对想抓涨停的朋友起到一定的帮助,最后预祝大家:财源广进!

源码奉上: 源码是通用的,使用周期为:1分钟。 各个故软效果不一样,按效果最佳的依次是:飞狐、分析家、操盘手、大智慧L2、同花顺、通达信。 飞狐、分析家、操盘手可以作盘中预警,其它软件适合作盘中选股。 因为其它软件的分笔、分时数据均是请求时传送(即点播)。点播数据传输是不适合作小周期预警的,因为当预警信号出来时已经晚三春了。 涨幅:=c/DYNAINFO(3); 单笔换手:=v/capital*100;xx:=BARSSINCE(v>0)+1; 均价线:=sum(c*v,xx)/sum(v,xx); 限制:=涨幅>1.01 and 涨幅<1.04; XG:单笔换手>0.08 and cross(c,均价线) and 限制; 这个源码中的魂是‘单笔换手’,大家可以试试调整‘单笔换手’的值来不断优化,直至满足自己的要求。 有什么询问的可以提出来,我会定期来看回帖并尽量尽自己的所能回复大家。 今天看了大家的回复,朋友们真的没有看出我所说的指标“魂”吗? 大家把:单笔换手>0.08 再度限制一下范围。即不要太大、也不要过小,看看会有什么现象和效果? 比如把:单笔换手>0.08 改成: 单笔换手>0.01 and 单笔换手<0.08; 试试? 看看效果如何? 不断调整这个参数你会得到意想不到的效果,慢慢就会精确的抓住它们了。 祝朋友们尽快找到方法!

香港中文大学博士申请2013-2014入学笔试题目

香港中文大学2013-2014语言学专业博士入学笔试 此次笔试共有有五道题目,其中第一道必做,后四道中选做两道。 1.给了乔姆斯基(2001)的一段话,大意是语言虽然会受到环 境的影响,但是却是由基因决定的一种认知能力,是大脑认知体系的一个子系统(subsystem)。然后是O’Grady(2010)的一段话,关于浮现主义(emergenism),大意是语言的习得由“非语言因素”决定,如认知,记忆,输入,交际等等、要求:概况上述两种语言观,说明你的理解,然后对其进行评价(critically) 2.语音题:sectionA---对“juncture”下了个定义,指的是语音 的分界点(?),如great eyes,听起来也可以理解为grey ties。 有人做了一个研究,研究的是英式英语(BE)、新加坡英语(SE)和港式英语(HKE)中的语音分界点,被试分别是上述三种英语的speaker,让他们听辨BE、SE和HKE,记录了正确率和反应时,有三个图表。 要求:观察总结“patterns”,并分析原因。 ----这个没看明白,语音学学得不好 还有一个sectionB,忘记了,也是跟语音有关的 3.Section A--四组句子,一正一误 (1)He asked Mary to leave on her own. *He asked Mary to leave on his own.

(2)Peter ordered Mary to leave on her own. *Peter ordered Mary to leave on one’s own. (3)Peter cancelled the trip to save money for himself. *Peter cancelled the trip to save money for oneself. (4) To behave oneself is very important. *To behave himself is very important. 要求: 1)为每组的正确句子画出树形图 2)运用Case theory 和Binding Theory 解释错句 3)上述理论多大程度上是Universal的?用你自己的语言的例子进行说明。 Section B---(1)上来就是一个什么“deictic theory”(indexism),让给几个代表的表达,这个根本没听说过 (2)有人认为tense时态属于deictic,是否属实? 4.SectionA---选3个进行注解 1)UG 2) Motherese 3)boottrapping in language acquisition 4) overgeneralliztion 5) Complementary Exclusivity Theory ?第六个忘了

均线粘合选股公式

均线粘合选+均线多头排列选股公式 5,10,20日三线粘合 X1:=ABS(MA(C,10)/MA(C,20)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,20)-1)<0.01; AA:=MA(C,5)>REF(MA(C,5),1);BB:=MA(C,10)>REF(MA(C,10),1);CC:=MA(C,5)>MA(C,10);{均线勾头向上} CDJZ:=ABS(MA(C,20)-MA(C,120))/MA(C,120)<0.4;{长短均线距离绝对值越小越好} MA(C,5)>REF(MA(C,5),1) AND X1 AND X2 AND X3 AND CDJZ AND AA AND BB AND CC; 5,10,30日三线粘合 X1:=ABS(MA(C,10)/MA(C,30)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,30)-1)<0.01; AA:=MA(C,5)>REF(MA(C,5),1);BB:=MA(C,10)>REF(MA(C,10),1);CC:=MA(C,5)>MA(C,10);{均线勾头向上} CDJZ:=ABS(MA(C,30)-MA(C,120))/MA(C,120)<0.4;{长短均线距离绝对值越小越好} MA(C,5)>REF(MA(C,5),1) AND X1 AND X2 AND X3 AND CDJZ AND AA AND BB AND CC; 5,10,20,30日四线粘合 X1:=ABS(MA(C,10)/MA(C,20)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,20)-1)<0.01; X4:=ABS(MA(C,5)/MA(C,30)-1)<0.01; AA:=MA(C,5)>REF(MA(C,5),1);BB:=MA(C,10)>REF(MA(C,10),1);CC:=MA(C,5)>MA(C,10);{均线勾头向上} CDJZ:=ABS(MA(C,20)-MA(C,120))/MA(C,120)<0.4;{长短均线距离绝对值越小越好} MA(C,5)>REF(MA(C,5),1) AND X1 AND X2 AND X3 AND X4 AND CDJZ AND AA AND BB AND CC; 5,10,20,60日四线粘合 X1:=ABS(MA(C,10)/MA(C,20)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,20)-1)<0.01;

汉语语言学及语言获得文学硕士

汉语语言学及语言获得文学硕士 简介 汉语作为第二语言或外国语,在全球范围内的需求与日俱增。为了推广汉语语言学及其在相关领域里的应用,为了满足汉语教学和习得上的需求,香港中文大学语言学及现代语言系特开设汉语语言学及语言获得文学硕士专业课程,为学生提供汉语语言结构和汉语获得的系统训练,帮助学生逐步掌握汉语的复杂性,深入理解如何在单语及多语社会中教授和学习汉语。 课程目标 (i)与其它语言和其它汉语方言进行对比,对汉语标准语 进行理论阐释,从而丰富学生对这一语言体系的理解。 (ii)教授语言分析方法,对汉语的语言结构进行分析,对学习汉语的人以及教与学之间的互动关系进行实证研究。 (iii)介绍在多语及多方言社会中学习第二语言及第二方言的过程,加深学生对这一过程复杂性的理解。 学习成果 (i)深刻理解汉语的语言结构,熟悉汉语获得领域的主要 研究成果。 (ii)熟悉用于分析语言形式、语言获得和语言使用的方法和工具,如计算机语料库、自然条件下和实验室条件下的语料收集和语料处理,以及语料分析的理论基础。 (iii)学会如何处理教授和学习汉语过程中遇到的困 难,了解在多语或多方言环境下把汉语作为第 二语言、外国语或第二方言来学习所涉及的复 杂情况。 (iv)运用当代理论语言学、类型语言学和语言获得 领域的知识,学会在实验室条件下进行语言研 究,或参加汉语作为第二语言或外国语的教学 实践,积累汉语研究和汉语教学的实际经验。 课程结构 本专业有全日制及兼读制两种模式。在一般情况 下,全日制学生须于一年内完成全部课程,兼读制 学生须于两年内完成全部课程。所有学生均须完成 27学分,包括修读15学分的必修课和12学分的选 修课。 科目概览 科目名称 授课语言 学分 必修科目(15学分) 语言学及应用语言学基础 普通话/英语 3 汉语语言获得 普通话/英语 3 汉语句法学及语义学 普通话/英语 3 汉语语音学及音系学 普通话/英语 3 语言学及语言教学 普通话/英语 3 选修科目(12学分) 语言学基础 (I)英语 3 语言学基础 (II)英语 3 当代汉语语言学专题 普通话/英语 3 比较语言学专题 普通话/英语 3 语言获得专题 英语 3 手语研究专题 英语 3 社会语言学专题 英语 3 语言变化专题 英语 3 语用学专题 英语 3 语言学专题 英语 3 语言学研究方法专题讲座 英语 3 专题研究 普通话/英语 6 教学实习 普通话 3 中国文化及中文教学粤语 3 中国语文课程及评估粤语 3 课程结构 科目概览

帕米磷酸二钠说明书

帕米磷酸二钠说明书 篇一:高危药物使用护理指引 高危药物使用护理指引 高危药物:包括危害药物,以及血管活性药物及刺激性、高渗性、低渗性药物、阳离子药物肌肉松弛剂等。 1、特殊药物领用、调配时要严格执行查对制度,加药应由经培训的高年资护士负责,实行双人复检。 2、高危药物要单独存放,禁止与其他药品混合存放。高危险药品安全标识:黑底白字。标识清楚明显、醒目。 3、高危药物使用前要严格执行床边双人查对制度。输注前护理人员在注射单及输液单上的药品名称前,用红笔标注高危药物符号。 4、高浓度的电解质溶液,用于临床治疗时,严格按照说明书的要求和医嘱要求使用,密切观察患者用药后的反应,并要查看掌握患者血清电解质的情况。 5、输液前向患者讲述药品的作用与毒性反应,以及用药的注意事项,向患者说明输液速度的重要性,患者不可自行调节输液速度,对不合作病人可签字。 6、外周静脉留置针每次给药前均应抽回血,通过观察血液回流确认静脉通路通畅;中心静脉每次输液前要检查外露刻度,观察中心静脉导管是否在血管内,并进行记录。 7、护理人员应定时巡视患者,根据患者病情调整滴速,

静滴过程中注意观察有无不良反应,发现不良反应按规范要求予以处理。 9、用药中加强巡视观察,正确使用“防药物外渗”警示标识,在输液瓶签上盖有“高危药物”的字样来标识;微量泵输注时,要对注射器及延长管进行使用药物品称的标识,密切观察穿刺部位有否渗漏,有无用药不良反应,确保病人安全用药。 10、尽量单独通路输入,不与输液合用同一通道。注意药物的配伍禁忌。 11、根据医生指示调节输入速度,不得自行调节或停用。如遇病情变化,需立即调速时,请于调速后立即知会医生。 12、保持静脉通道通畅,选择较粗、弹性好血管或中心静脉(避免用钢针),以中心静脉输液为主,用微量电子注射泵匀速注入,尽量避免从外周血管输入,一旦发生外渗,应立即更换注射部位,并作局部封闭注射,防止组织坏死。 13、发现药物不良反应的科室及工作人员,按医院相关的规定,填写不良反应表报临床药学室。 14、高危药物使用科室,定期组织科内相关人员讨论高危药品的不良反应,及时向医院药事管理委员会提出停止、淘汰、更换高危药物的建议。不用的高危药物如肌松药要退回药房。备注:高危险药品是指药理作用显著且迅速、易危害人体的药品。包括高浓度电解质制剂、肌肉松弛剂及细

通达信指标公式源码 分时抓涨停

虎: (EXPMA(CLOSE,500)-REF(EXPMA(CLOSE,500),1))/REF(EXPMA(CLOSE,500),1) *100, COLORSTICK; 主 力:EXPMA( (EXPMA(CLOSE,500)-REF(EXPMA(CLOSE,500),1))/REF(EXPMA(CL OSE,500),1)*100,120)-0.0004,LINETHICK5,COLORMAGENTA; 散 户:EXPMA( (EXPMA(CLOSE,500)-REF(EXPMA(CLOSE,500),1))/REF(EXPMA(CL OSE,500),1)*100,200),LINETHICK5,COLORGREEN; DRAWICON(CROSS(EXPMA(虎,120)-0.0004,EXPMA(虎,200)),EXPMA(虎,200)* 1,13); DRAWICON(CROSS(EXPMA(虎,200),EXPMA(虎,120)-0.0004),EXPMA(虎,200)* 1,6); Q:=BETWEEN(C/(SUM(AMOUNT,BARSCOUNT(C))/SUM(VOL*100,BARSCOUNT (C))),1.05,0.95); Q2:=IF(Q=0,MA(C,BARSCOUNT(C)),(SUM(AMOUNT,BARSCOUNT(C))/SUM(VO L*100,BARSCOUNT(C)))); DRAWICON(CROSS((C/Q2),1.03),0.02,6); STICKLINE(CROSS((C/Q2),1.03),0.02,0,4,0),COLORYELLOW;

香港中文大学MA语言学笔试Jan

2015-16 CUHK Recruitment Test MA in Linguistics MA in Chinese Linguistics and Language Acquisition Name __________________________ Email __________________________ Phone __________________________ University __________________________ City __________________________ Province __________________________

Section One Answer all the questions in this section. Question 1 Aguacatec The following data are from Aguacatec, an indigenous language of Guatemala. Examine the distribution of the voiced and voiceless liquids ([l], [r], [l] and [r]). Determine if they are allophones of separate phonemes or allophones of the same phoneme. What is your evidence? a.[l mun?] ‘lemon’j. [?erk?] ‘scissors’ b.[te?l] ‘sign’k. [ploh] ‘useless’ c.[r meril] ‘hope’l. [selu?] ‘your substitute’ d.[wempl] ‘my ribs’m. [hobil] ‘knife’ e.[bnol] ‘maker’n. [lab] ‘ghost’ f.[jol] ‘word’o. [teru?] ‘now’ g.[tsontr] ‘against’p. [balk] ‘brother-in-law’ h.[?u?pl] ‘firecrackers’q. [qlo?] ‘perhaps’ i.[bibl] ‘Bible’r. [l benu?] ‘you go’

均线粘合选股公式之欧阳光明创编

均线粘合选+均线多头排列选股公式 欧阳光明(2021.03.07) 5,10,20日三线粘合 X1:=ABS(MA(C,10)/MA(C,20)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,20)-1)<0.01; AA:=MA(C,5)>REF(MA(C,5),1);BB:=MA(C,10)>REF(MA(C,10),1); CC:=MA(C,5)>MA(C,10);{均线勾头向上} CDJZ:=ABS(MA(C,20)-MA(C,120))/MA(C,120)<0.4;{长短均线距离绝对值越小越好} MA(C,5)>REF(MA(C,5),1) AND X1 AND X2 AND X3 AND CDJZ AND AA AND BB AND CC; 5,10,30日三线粘合 X1:=ABS(MA(C,10)/MA(C,30)-1)<0.01;{取1%振幅内粘合} X2:=ABS(MA(C,5)/MA(C,10)-1)<0.01; X3:=ABS(MA(C,5)/MA(C,30)-1)<0.01; AA:=MA(C,5)>REF(MA(C,5),1);BB:=MA(C,10)>REF(MA(C,10),1);C C:=MA(C,5)>MA(C,10);{均线勾头向上} CDJZ:=ABS(MA(C,30)-MA(C,120))/MA(C,120)<0.4;{长短均线距离绝对值越小越好} MA(C,5)>REF(MA(C,5),1) AND X1 AND X2 AND X3 AND CDJZ AND AA AND BB AND CC;

静脉用药输注装置安全规范专家共识

静脉用药输注装置安全规范专家共识 (广东省药学会2016年10月25日印发) 静脉输液作为现代临床重症治疗中的重要方法,尤其在国内,已成为临床常用的治疗手段之一。药物与输注装置(输液器)的相容性是药物静脉输液安全的重要影响因素,根据药物的理化特性正确选择输液器是药物有效和安全的重要保障。临床中,以需要用非PVC(聚氯乙烯polyvinyl chloride)而没有用非PVC材质的输液器;需使用避光用输液器而没有使用;以及没有按药物对输液器的过滤孔径要求选择精密输液器等不合理使用情况最为常见。为规范输液器的使用,保证患者用药安全有效,广东省药学会有关专家达成以下静脉用药输注装置安全规范共识。 1.临床药物输注中选择输液器材质(PVC和非PVC)应注意的问题 传统输液器多以PVC为原料制作,PVC是有氯乙烯在引发剂作用下聚合而成的热塑性树脂。普通的PVC树脂粉没有应用价值,必须加入增塑剂、稳定剂、润滑剂等方可使用。临床上使用的PVC输液器具有价格便宜、体积小、重量轻、临床应用方便等优点而得到广泛应用,但在实际应用中也存在诸多严重的问题,主要体现在以下方面。 (1)PVC对某些药物产生吸附[1](或与药物反应); (2)PVC输液器在生产过程中为增加其柔软性和回弹性,需要加入35%-40%的增塑剂邻苯二甲酸二(2-乙基己基)酯(di-2-ethylhexylphosphate,DEHP),而塑化剂DEHP的对人体多个系统具有毒性作用。含有吐温、聚氧乙基蓖麻油、环糊精衍生物、丙二醇、乙醇或苯甲醇作为增溶剂的药物可以加速DEHP溶出,从而诱发毒性反应。国家食品药品监督管理总局《一次性使用输注器具产品注册技术审查指导原则》中明确注明:“聚氯乙烯(PVC)常用的增塑剂DEHP与脂溶性溶液接触后容易浸出;以DEHP增塑的聚氯乙烯(PVC)作为原料的产品不宜贮存和输注脂肪乳等脂溶性液体和药物”。 从药物的输注安全性、有效性出发,本共识结合现有的药物说明书、国内外文献报道以及或药物剂型特征,对建议使用非PVC材质输液器输注的药物进行了总结,具体内容详见表1。 2.临床药物输注中是否需采用避光输液器的相关要求 临床上许多药物如:硝普钠、硝酸甘油、氟罗沙星等等,输注过程中如果受到光照、可加速药物的氧化,引起药物光化降解,不仅降低了药物

相关文档
相关文档 最新文档