文档库 最新最全的文档下载
当前位置:文档库 › DTA动态交通分配(最新整理)

DTA动态交通分配(最新整理)

DTA动态交通分配(最新整理)
DTA动态交通分配(最新整理)

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。

将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。

将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题:

算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性;

算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。

交通分配:

(2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类:

平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。

非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。

静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。

DTA(Dynamic Traffic Assignment)

所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。

交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

交通需求状况:在每时刻产生的出行需求及其分布。

动态交通分配的意义

建立在动态的交通流模型基础上的动态交通分配模型为解决交通控制与诱导问题提供了思路。

1、动态交通分配模型考虑了交通需求随时间变化的特性,以及路段特性(旅行时间)随时间

变化的特性,动态交通分配能够给出瞬时的交通流分布状态,从而可以分析预测交通阻塞何时何地发生,并采取相应的对策。

2、动态交通分配模型可用于评价缓解交通拥挤的各种对策的有效性,如错时上下班,弹性

工作制,以及对交通事故等紧急情况发生后交通流状态的预测。

3、动态交通分配模型是智能运输系统(ITS)的技术基础之一。先进的旅行者信息系统

(Advanced Traveler Information System, ATIS )的交通信息的提供以及路径诱导等,都基于该模型以正确地描述、预测交通流分布形态。

动态交通分配的目标:

以均衡分配为依据,从而得以及时地采取适当的控制或诱导策略,改善交通流的时空分布,提高路网使用效率,使网络高效流畅地运行。

动态交通分配理论研究:

2005年华中科技大学研究出了《基于计算机模拟的动态交通分配方法》。

它使用模拟技术进行动态交通分配的研究,该模拟模型按照Wardrop 用户平衡原理进行交通流分配,同时考虑了时变需求和车辆排队过程,并且在这几个方面都做了改进。在交通需求部分,把OD 对之间的交通需求视为时间分段常数,反映了高峰和平峰不同时段的交通拥挤程度;在车辆排队过程方面,放弃了传统的把车辆看作是无体积的质点的排队论,提出了基于车流集散波理论和方法确定交叉口前车辆长度的理论,提高了路段阻抗函数的计算精度;在交通流分配部分,采用了改进的多路径交通分配方法,克服了原来算法速度慢、容量小、难以应用于超大网络的弱点。新算法的快速和大容量,对于特大城市或大区域的交通规划、交通控制及交通诱导系统建设有很好的应用性。

动态交通分配分类:

数学模型

仿真模型:数学规划、最优控制、变分不等式

一、数学规划方法

Merchant 和Nemhauser(1978、1978)提出来离散的、非凸的非线性规划模型。Kuhn-Tucker 条件表明该模型符合动态的War drop 系统最优原则。在静态假定下,模型可以转换为静态的系统最优分配模型。

Ho(1980)提出了模型的分段线性化算法。

Carey(1986)解决了证明了在Merchant 和Nemhauser(1978)的文章中,M-N 模型的分析是基于模型满足正则条件的假设上的,并在1987 年将M-N 模型改进成为非线性的凸规划模型, 但模型的最大缺点是局限于多个起点、一个终点的简单网络。

Papageogious(1990)论述了动态交通分配的一些框架性问题,提出了一些新观点,但未提出具体模型。

Janson(1991)在静态交通分配的基础上提出了改进的动态交通模型,但其分配过程也是近似的,而不是均衡分配。

Carey(1992)提出动态交通分配的FIFO(first-in-first-out)规则,文章指出当网络扩展为多个终点时,FIFO 规则的这个性质使得动态交通分配的数学规划方法遇到了极大困难。Janson(1992)提出了一个多目标规划模型,但是该模型的某些假设违反了FIFO 规则。Jayakrishan 和Tsai 等(1995)改进了Janson 的多目标规划模型,使其满足FIFO 规则。该模型

利用改进的Greenshields 速度-密度关系,建立了单调递增的凸的路段费用函数。Liu(1993)分析路段行走函数、路段流出函数和FIFO 规则的关系,提出了满足FIFO 规划的路段流出函数形式,并建立了动态系统最优和用户最优模型。但此类方法也存在着许多不足,如对于一般网络缺乏一种有效的解法。

二、最优化控制方法

Luque和Friesz(1980)提出一个应用最优化控制理论解决动态系统最优模型的新思想,将M-N 模型改进成为一个连续的最优控制问题,最优值条件由Pontryagain 极大值定理获得。

Ran 和Shimazaki(1989)、Ran 和Boyce 等(1993)、Friesz 和Luque(1989)、Wie 和Friesz 等(1990)的文章中建立的模型均采用了此种方法建模。

。Ran 和Boyce等(1993)就是将一个连续形式的用户最优转化为一个离散的非线性规划问题求解,解法采用F-W 凸组合法。Liu(1993)分析路段走行函数、路段流出函数与FIFO 规则的关系,提出了满足FIFO 规则的路段流出函数形式,并建立了动态系统最优和用户最优模型。最优控制理论方法建立的模型具有易于分析的特点,这类模型通常在求解时被转化为离散时间形式的非线性规划、线性规划问题求解。动态交通分配的最优控制模型是最优控制理论在交通领域的成功应用,其完备的理论体系为解决动态交通控制与诱导问题提供了清晰的思路。到目前为止,最优控制模型仍然是应用最为广泛的模型,但最终缺乏一个行之有效的算法。

三、VI 模型

除了数学规划模型和最优控制模型以外,近十年来研究较多的还有VI 模型。

Smith (1993 )采用了VI 理论建立了基于路径的动态路径选择模型,以及基于路径的出行时间和出行路径双重选择模型。

在基于路径的VI 模型基础上,Ran & Boyce(1994)建立了基于路段的用户最优路径选择VI 模型以及基于路段的用户最优出行时间和出行路径双重选择VI 模型。VI (Variational inequality)模型的基本思路是将动态交通分配分解为网络加载和网络分配两个过程。

VI 模型的网络加载过程是基于路径的,因此用户在起点按照最小旅行时间原则选定好路径后,就不允许中途改变路径。这样才能按照预计时间和预选路径将交通量迭加到路网中,进行下一步的均衡分配。但是在动态交通中,随着路段流量的变化,用户的最小旅行时间是随时变化的,车辆在行驶过程中会不断改变路径,所以VI 模型不太适用于真实的交通网络,但它的网络加载和网络分配方法可以应用于计算机模拟技术上。

四、计算机模拟技术

Yagar(1970、1971、1974) 提出了第一个计算机模拟的交通分配模型。该模型满足wardrop 用户最优原则, 考虑了随时间变化的需求以及排队的形成。

Yagar(1970)也提出了一个具有启发性的动态系统最优模型的算法,该算法被vanAerde和Yaga(1988)改进。

Barstow(1973) 提出了另一个动态用户最优问题的计算机模拟模型。在他的模型中, 随时间段为常值的需求函数通过流量-密度关系转换为随距离分段为常值的函数。

Mahmasani和peeta(1993 )J ayakrishnan(1992)的模型也是计算机模拟的模型。

计算机模拟的交通分配模型在每一次迭代分配中对出行者的行为假设进行模拟。这类模型的优点在于相对容易地将交通控制等措施集成进来, 可用来评价I T S 项目中交通信息服务路径诱导的效果。其缺点是模型的分析能力差, 无法从模型本身分析其解的收敛性以及分析精度等。可以说, 此类模型从学术的观点上看不如数学规划模型以及最优控制理论模型对研究者有吸引力

从组织结构上讲,DTA包含两个部分:出行选择规则和交通流传播。出行选择模块是解决出行者如何决定是否出行,如果出行,如何选择出行路线、出发时间、出行方式和目的地。交通流

传播模块主要解决交通流如何在交通网络内部高效地传播。

2008年武汉大学研究出《变分不等式的算法及其在动态交通分配中的应用》变分不等式理论在处理不对称方面的优势以及其清晰的解析特性,使得交通分配的变分不等式模型的研究迅速发展,目前,利用变分不等式理论研究网络均衡分析模型已经成为静态、动态最优化理论并行、交叉的有效途径之一。文章作者受Han与Luo 对He与Zhou改进的启发,对Han与Luo中的步长规则进行改进,得到新的修正交替方向法,并验证了算法的收敛性,并举例说明如何把变分不等式算法应用到动态交通分配的变分不等式模型中去。

2012年西北工业大学研究出《基于改进遗传算法的动态交通分配优化研究》

传统的优化算法大多数由于计算量大或者容易使性能指标落入局部最优值而严重制约了模型的应用与发展,而用遗传算法等新的智能算法求解则会很简洁和方便。文章针对遗传算法在应用中存在的局限性,采用了小生境技术的遗传算法,结合精英保留策略、种群多样性保持方案、新的适应度值标定方式等改进遗传算法。通过对动态交通分配的特点分析,建立了动态交通分配模型,利用改进的遗传算法对模型进行求解。仿真结果体现了动态交通分配模型的有效性和改进遗传算法的优越性,大大提高了动态交通分配模型的实用价值。

2014年青岛城市规划设计院研究了《基于Vissim 仿真的动态交通分配》

该研究针对城市交通的理论算法和模型虽然从形式上体现出了动态交通分配的一些特点,但在完整刻画路网交通状态方面还有不足,引进基于Vissim 仿真动态交通分配的思想,介绍微观仿真软件Vissim理论基础,并利用Vissim 仿真软件对路段进行动态交通流分配仿真,得出仿真软件在动态交通流方面的应用能够实时、准确、有效地仿真出来。

DTA组成部分:出行选择法则和交通流传播。

出行选择法则:指出行者选择出行路径依据的规则。确定出行者选择法则的主要因素包括:出发时间(Departure Time)和路线选择(Route Choice)。交通网络中的路段行程时间是交通分配中出行者进行路径选择的主要依据。出行选择法则确定后,可以得到路段流入率,进而推导出路段流出函数。路段流出函数的显著特征是能很好地反映交通拥挤特性,因而它是动态交通分配理论中的关键和特殊之处。

交通流传播:指动态的交通流沿着路径在时间和空间上的分布特征,它是时间和空间的函数。描述交通流传播的方法有两种:点排队(Point Queue)和物理排队(Physical Queue)。两者之间的区别在于是否考虑车辆的物理长度对交通流的影响。在路网拥挤并且出现排队的条件下,车辆的物理长度对交通流的影响比较显著。

动态交通分配的特性

动态交通分配区别于静态交通分配最显著的特点就是在交通分配模型中加入了时间变量,从而把静态交通分配中的路阻和流量的二维问题转化为路阻、流量和时间的三维问题。

动态交通分配的典型特征包括:因果性、先进先出原则、路段状态方程、路段流出函数、路段特性函数和路段阻抗函数。

1. 因果性(Causality)

DTA:假设在时变的条件下,当前出行者的行为只受到其他出行者过去行为的影响,而不受其将来行为的影响(出行者行为始终受下游车流的影响而不受上游车流的影响)。这一假设是路段特性函数体现出依赖下游车流的特殊条件

STA:假设为当前出行者选择行为与过去和未来出行者选择行为均无关。

2. 先进先出规则(First-In-First-Out)

DTA:假设先进入路段的车辆必须先离开路段,即假设同时进入同一路段的车辆均以相同速度行驶,并花费相同的时间,不存在后车超越前车的现象。假设明确了输入流、输出流与路径行程时间三者之间的关系。

STA:假设沿着某一路径的所有出行者都在同一时刻同时上路。在动态交通网络中,当交通网络是多个终点时,FIFO规则会导致模型解的可行域为非凸集合,当该规则得不到满足时,模型的解就不合理。

3. 路段状态方程(Link StateFunction)

DTA:采用的状态变量不是静态交通分配中的交通量,而是交通负荷(Traffic Load)。交通负荷则是指某一个时刻一个路段上存在的车辆数,是一个时空观测量。交通量适合于静态描述,而交通负荷适合于动态描述。在动态交通网络条件下,路段上的交通负荷能表现出波动的交通流分布特征。

4. 路段流出函数(Link ExitFunction)

DTA:路段流出函数是反映交通拥挤、抓住网络动态本质的关键。一旦出行者路径选择法则确立,路段流出率便可以确定,从而得出路段流出函数。

STA:没有路段流出函数的概念。

5. 路段特性函数(Link PerformanceFunction)

DTA:路段特性函数以拥挤的车流为研究对象,它是交通负荷与走行费用的关系函数。交通负荷是一个与时间有关的变量,便使得整个函数预测精度高。

STA:路段特性函数则是交通量与走行费用的关系函数。它以交通规划为服务对象,不用来描述拥挤的网络,也没有时间的概念,因而对于预测的精度要求相对较低。

6. 路径阻抗函数(Path Cost Function)

DTA:路径阻抗包括两种:实际路径阻抗(Realistic Route Travel Cost)和瞬间路径阻抗(Instantaneous RouteTravel Cost)。实际路径阻抗是指出行者走完一条路径的实际花费时间。瞬间路径阻抗则是指一条路径在某一个时刻各路段阻抗的总和。

STA:路段阻抗等于该路径各个路段阻抗之和,它不随时间变化而变化。

动态交通流分配

动态交通流分配浅析 摘要:实现交通分配理论的交通分配模型可分为两大类:静态交通分配模型和动态交通分配模型,它们都有各自的优缺点。静态交通分配模型假设交通需求和路段行程时间为常数或仅依赖于本路段上的交通流量,这对于交通量比较平稳、路段行驶时间受交通负荷影响较小的城市间长距离非拥挤的城市交通特性分析和路网规划是比较可行的。而对于存在拥挤现象的城市交通网络,交通需求在一天之中变化甚大。使得网络交通流的时空分布规律具有时变特性,从而导致路段行驶时间大大依赖于交通负荷的变化。因此,在城市交通控制与管理中更需要考察路网中,交通流状态随空间与时间的演化过程,针对可能出现的拥挤和阻塞及时采取有效措施.确保城市交通系统平稳、高效地运行。动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 关键词:动态交通流分配定义现状意义存在问题 The shallow analysis of Dynamic Traffic Assignment Abstract: the traffic assignment model of Traffic assignment theory can be divided into two categories: static and dynamic traffic assignment model for traffic assignment models, both of which have their own advantages and disadvantages. Static traffic assignment models assuming that traffic demand and link travel time is constant or only dependent on the traffic flow on this road, which is relatively stable for the traffic, roads and the traffic load less affected by the time the inter-city long distance non-urban traffic congestion characterization and network planning is more feasible. However, for there is congestion in the urban transport network., changes in traffic demand in the day are great, which makes the network traffic flow varies with time-varying spatial and temporal distribution of properties, resulting in roads and the time relied heavily on the traffic load changes. Thus, in urban traffic control and management of road, it is more significant to examine how traffic flow varies with space and tempo while studying the road network, and thus timely and effective measures can be taking for the congestion and obstruction., and that ensure that urban transport system operate smoothly and effectively. Dynamic traffic assignment included traffic demand changes over time and travel costs with the changing nature of traffic load, moreover, it can give an instant flow of traffic distribution. Key words: dynamic traffic assignment, definition, status quo, meaning, problems ·0引言 动态交通分配的这种功能使其在城市交通流诱导系统及智能运输系统的研究中具有举足轻重的作用。因而,研究动态交通分配理论.并将其应用于交通控制与管理是十分必要的。同时,动态交通分配为交通流管理与控制动态路径诱导等提供了依据,也是智能交通系统的重要理论基础。

TransCAD四阶段法交通流分配

建小区,填属性,画小区,填小区属性数据, 建路网,填属性,画路网,填路网属性数据, 进入小区层建立联系:在小区层tools-map editing-connect点OK。(作用:将路的节点与形心联系起来) 补全路网数据。 建立距离矩阵:在小区层tools-geographic analysis-distance matrix点OK起名保存 期望线:在小区层tools-geographic analysis-desire lines起名后点OK 建立网络将所的联系起来:networks/paths-create将other link fields和other node fields中的全部选中。起名后保存。 用重力模型生成OD分布矩阵:在小区层planning-tripdistribution-grarity application在datdview栏选小区层,productions选生成量attractions 选吸引量,constraint type选doubly双重力模型点OK保存。 选点层数据加属性:dataview-modify table点addfield加属性起名后点OK。将小区号填到对应的点好后面。然后点tools下的selection将填上小区号的行选中。 将OD矩阵的小区行列号ID转换成为小区质心节点行列号ID 在交通分布matrix中右键Indices→Add indices 出现对话框:

点击Add Index,完成以下设置 point点层index点层数据中新增的属性点击OK,再次回到索引对话框,选择新索引即可。 将rowids改为new行列号转换完成。

基于Vissim的驾驶模拟系统交通流仿真

基于V issi m 的驾驶模拟系统交通流仿真3 高 晶 熊 坚 秦雅琴 万华森 (昆明理工大学 昆明650224) 摘 要 在道路交通驾驶模拟系统开发平台的基础上,加载动态车流,以实现交通流的真实性,利用V issi m 的交通流仿真功能,通过编程语言V C 对驾驶模拟系统与V issi m 的接口进行了研究,实现了道路交通驾驶模拟系统的交通流仿真,并通过实例验证了这一方法的有效性和实用性。 关键词 微观交通流;仿真;V issi m ;接口中图法分类号:U 491.1 文献标识码:A 收稿日期:2006211217;修改稿收到日期:2007204203 3云南省交通建设科技项目资助(批准号:[T ST (2003) 811203C ]) 0 引 言 驾驶模拟系统研究的一个关键技术是虚拟视 景的生成,而视景又可分为静态和动态视景。静态视景包括山体、房屋、树木等;动态视景包括交通流、行人等。对驾驶模拟系统加载动态交通流可以采用加载固定路径的车流,即事先确定各车的行驶轨迹。这种方法具有一定的方便性和可操作性,但缺乏动态交通流的真实性。本文利用现有的微观交通流仿真软件V issi m 的交通流仿真模型,通过接口研究,将该软件的交通流数据输入到驾驶模拟系统上,实现了驾驶模拟系统的交通流仿真。 1 驾驶模拟器的视景系统 笔者研制的驾驶模拟系统主要由驾驶舱、主计算机控制系统、驾驶员视景模拟系统和多媒体声响模拟系统组成,可对真实路段的交通状况进行实时模拟,还可以对设计中的道路交通环境进行模拟。研究内容包括:道路交通安全性评价、交通流动态模拟控制、驾驶员行为特性、交通事故再现、汽车性能的改善等交通问题。驾驶员视景是驾驶模拟系统的重要组成部分,因为人们对事物的感知有80%来自于视觉。所以驾驶模拟系统的关键技术之一是道路交通视景的生成。驾驶模拟系统的视景系统通过建模、纹理和光照等图像技术处理,给驾驶员提供了1个包括道路、交通设施、建筑、车辆、自然景观等的虚拟驾驶场景,使操纵者产生“沉浸”感和“交互”感,有 一种“身临其境”的实车驾驶的体验。为了满足这种真实感,动态视景的生成显得格外重要,特别在研究交通流动态特征、驾驶员行为特性和道路交通安全性评价等方面更具客观性。而动态视景的主体是交通流。在系统开放的环境下,如果将动态视景的数据从外部接口输入,就实现驾驶模拟系统交通流的仿真。 2 驾驶模拟系统交通流仿真接口研究 2.1 V issi m 的交通流仿真模型 V issi m 是由德国PTV 公司开发的微观交通 流仿真系统。交通流仿真一般应包括3个方面,即:仿真车辆的选择、仿真交通流模型及仿真评价结果。V issi m 的交通流仿真主要从以下3个方面来实现。 首先,V issi m 中有丰富的车辆类型,除了默认的车辆类型(car ,H GV ,bu s ,tram ,b ike ,p edestrian ),还可以创建新的或修改已有的车辆 类型,可以和驾驶模拟系统中的车辆模型相对应。对应关系见表1。 表1 V issi m 车辆类型和驾驶模拟系统 车辆模型号m odelI D 对应关系表 车辆类型 modelI D Car 501,502,503,505,510,511 H GV 560Bu s 520Pedestrian 216B ike 580 其次,V issi m 描述交通行为的模型采用威德曼的基于驾驶员生理2心理过程的行为阈值模型。迄今为止,在众多交通行为模型中,它是最贴近实 际也是应用最成功的。德国卡尔斯鲁厄技术大学

动态交通系统

请问,建立一个动态系统,首先是采集全城路网的交通流数据,这个交通流应该是平衡的,如果,新建一条路,那么平衡就打破了,其他受影响的道路的交通流就变化了,这样一个动态系统能够反映这种变化。我就想问问,国内是否有这种类似的系统,关键是要比较直观的。 如果是有这样的系统,请问是用什么软件或者模型构建的。 这类系统有的是是城市交通管理系统的一部分,也有某些城市的交研部门自己建立的,算法是关键,软件仅仅是一个评估和人机接口,例如某些交管平台是有交通在线或离线仿真需求的,新增道路对现有路网状况的影响也是其建设目的之一,但仅仅只是之一而已。 就个人所知,一般都是用商业软件进行二次开发,但效果并不理想。 我先说下这个事情的来龙去脉吧,希望论坛里的各路大侠能够给些建议。 我所在单位是一个以市政道路设计为主的设计院,希望能建立这样一个交通流预测系统,就是说,主要就是为了给具体道路,桥梁建设工程的可行性提供依据。比如说,所在城市的一条主干道已经非常饱和了,到底是增加一条道路分流好,还是拓宽好,两种方案分别会对其他道路上的交通流产生怎样的影响,是否会引起其他路段的堵塞。目前,道路工程项目的前期研究非常薄弱,就算是用了交通流预测分析,但是,这条路对其他道路的交通影响并没有包含在工程可研中,所以,我们想建立这样一个系统,解决以上问题。 很好的想法!这样做市政道路设计算是跟国际接轨了。个人观点,以后的道路设计肯定会和动态的路网交通分析结合起来做,这种趋势在美国已越来越明显;国内慢一些,但也会很快跟进,先掌握这种分析技巧的单位将会更有竞争实力。 2007年,Minneapolis的一座桥塌了,每天路过这座桥的大约10万辆车需要改道。联邦公路局(FHWA)的官员很快打电话给亚利桑那大学的Yi-Chang Chiu教授,请他用软件工具DynusT(基于仿真的动态交通分配软件) 定量分析塌桥对交通出行选择模式和路网交通流的影响,以便在塌桥修复之前,更有效地疏导交通。因为从塌桥之前的均衡的路网交通状态过渡到塌桥后的另外一种均衡状态需要数天甚至几个星期的调整,驾驶员才能将自己的出行时间和出行路线大致固定下来。分析这种行为其实很复杂的,计算量也很巨大。对于大路网的仿真分析,为了接近路网均衡状态,仿真迭代24小时的路网交通,计算时间甚至需要几天。

交通问题基于vissim仿真研究现状

1.3.1国外交通仿真技术的研究现状 交通系统仿真技术是随着电子计算机和系统仿真技术的发展而发展起来的。在国外大体上经历了三个发展阶段tl3〕。 第一阶段,20世纪40年代末至60年代初,为诞生期。该时期的工作大多讨论的是如何进行交通流仿真,直到大约1%O年,用仿真技术研究交通流状态的可能性和可行性才得到普遍承认,并且开始开发一些交通系统仿真软件。 第二阶段,20世纪60年代初至80年代初,为发展期。该时期,发表了大量的论文和专著,主要都是关于交通流仿真方法及其模型建立的内容。与此同时,大量的交通系统仿真应用软件被开发出来,这些软件可以分为两种类型,一类以宏观交通仿真模型为基础,另一类则以微观交通仿真模型为基础。 第三阶段,20世纪80年代初至现在,为成熟期。这一时期,交通系统仿真技术在美国已经得到了迅速的发展和广泛的应用。本阶段,交通系统仿真技术的发展呈现如下特征: ①系统建模开始突破微观模型与宏观模型,出现了混合模型。一个典型的例子是由schwerdtfeger于1984年提出的DYNEMO仿真模型,采用交通流的一般关系式来描述车流运动,而将每辆车看作是一个基本单元。另外,、乞nAerde于20世纪80年代中期开发的INTEGRATION,混合使用了微观和宏观交通流模型,被认为是准微观模型。 ②仿真软件开始向大型化、综合性方向发展。例如,由Hubschnelder

从1983年开始研制的MlsSION软件,既可用于高速公路,又可用于城市道路;既可用于一般的交通流仿真,又可用于公共交通系统的仿真试验。再如,由英国M琳公司开发的T班PS和美国caliper公司推出的肠anscAD软件包,都是以四阶段模型为基础,用于区域交通规划。值得一提的还有,由英国Quadstone公司从1992年开发奴它ARAMIcs,能够持100万个结点,,_400万个路段,32000个区域的路网。除此之外,这一时期还研制出用于信号交叉口的CALSIG(1988年)、CAPSSI(1986年)、POSIT(1985年)、SIDRA2.2(1986年)、sIGNA 乓55(1986年)、soAP一84(1984年),用于高速公路的CoRQ以及用于乡村道路的TWOPAS等。 ③研究重点从软件开发逐渐转向了系统模型的改进,包括模型的精炼,如加入优化子模型和加入有效性测定、仿真模型集成、向个人计算机移植等等。于是,己开发出的软件不断推出新的版本,比如,到1983年,sIGOP己上升为SIGOP一111;到1987年,TRANSYT已经上升为TRANSYT7F;到1985年,FREQ已上升为FREQSPE,TRARR 己提出了第三版等等。 中国智能交通网https://www.wendangku.net/doc/9a12674782.html, 国内外交通仿真技术的研究现状https://www.wendangku.net/doc/9a12674782.html,/tech/show-8818.html ④新的计算机技术开始用于交通系统仿真,主要表现为仿真界面更加友好,人机交流更加方便。另外,计算机图形技术的应用使得仿真过

基于有限理性的方式划分和交通分配组合模型

基于有限理性的方式划分和交通分配组合模型出行者作为城市交通系统的主体,其出行行为影响整个网络的运行效果。传统的出行行为研究通常假定出行者是绝对理性的,其决策行为遵循效用理论,以 出行阻抗最小或者效用最大作为决策依据,很少考虑出行者的有限理性特点。 本文以出行者的出行行为为研究对象,结合问卷调查标定前景理论的参数体系,在有限理性的框架下讨论方式选择和路径选择行为,并建立方式划分和交通 分配组合模型,最后通过算例分析组合模型的特点、出行者参考点依赖效应以及模型参数的敏感性。本文首先明确了有限理性的概念,详细介绍了前景理论和TODIM方法的基本观点以及相关研究和应用。 随后对比了前景理论中不同函数形式的差异,分析了前景理论各个参数的内涵,将出行者或者出行情景按照风险水平高低划分为3类,并通过问卷调查得到 了前景理论在出行路径选择问题中的参数体系,同时验证了该参数体系的有效性。紧接着结合离散选择模型和TODIM方法提出了有限理性条件下的方式划分模型,结合离散选择模型和前景理论提出了有限理性条件下的随机交通分配模型,最终在有限理性的基础之上提出了改进的方式划分和交通分配组合模型。 最后,利用Nguyen & Dupuis网络作为算例,验证组合模型的有效性研究结果表明,组合模型能够体现总出行需求对私家车出行选择概率的影响,两者呈负相 关的关系;私家车的实际出行需求、出行者对不同路径的感知具有明显的参考点依赖效应,而出行者路径选择行为的参考点依赖效应不显著;私家车的实际出行需求随着参数θ的增大而减小,各条路径之间的差异随着参数κ的增大而增大, 参数θ可在(0,6)中取值,参数K可在(0,1)之间取值。

(完整版)DTA动态交通分配

(2005) 西安交通大学对具有排队的多模式动态交通分配问题及其相关应用进行研究。本文对动态交通分配模型发展进行了介绍和总结,并详细讨论了模型中的路段动态函数、流量传播约束、FIFO等相关特性。 将单一交通模式的点排队路段动态模型扩展到多模式动态路段模型,并且证明了各种模式的路段行程时间函数合乎模式内的FIFO特性,以及在拥挤情况下各模式车辆的速度收敛特性。 将多模式随机动态同时的路径与出发时间选择平衡条件描述为变分不等式问题,提出了两个不同的算法用于求解变分不等式问题: 算法一是基于路段的算法,这个算法给出了基于logit的同时的路径与出发时间选择的随机动态网络配载方法,并证明了这个方法的正确性; 算法二是基于路径的启发式算法。仿真试验验证了模型以及两个算法的有效性。提出了多模式多用户动态交通分配模型,用于评估ATIS对不同模式出行者和交通系统的影响。将每一模式的出行者分为两类:一类是装配ATIS的出行者,另一类是未装配ATIS的出行者。由于所能获得的交通信息质量的差异,他们将遵循不同的动态用户平衡条件。同时,每一种模式出行者在选择路径和出发时间时,不但考虑出行费用和进度延误费用的影响,而且还考虑油耗费用的影响。将多模式多用户动态用户平衡条件描述为统一的变分不等式问题,利用对角化算法计算相应的平衡流量状态,并通过仿真试验验证了模型与算法的有效性。使用nested-logit模型模拟ATIS的市场渗透率与服从率,模型的上层模拟了驾驶小汽车出行者的购买行为(市场渗透率),底层主要描述了装配ATIS设备的小汽车出行者的服从行为(服从率)。设计了固定点算法计算ATIS的平衡市场渗透率与服从率。并在简单的路网上进行了仿真研究,结果证明算法与模型是正确和有效的。提出了组合模式动态交通分配模型,模型中假设有两类出行者:一类是纯模式出行者,他们自己驾驶小汽车完成一次出行。另一类是组合模式出行者,在其一次出行的第一部分是自己驾驶小汽车完成的,剩余部分是乘公交车完成的。使用nested-logit模型模拟出行者的复杂出行选择行为。将各种不同的选择行为描述为一个变分不等式问题。并给出了启发式算法求解相应的变分不等式问题。最后,利用仿真研究验证了模型与算法的有效性。 交通分配: (2005)所谓交通分配是指按照一定的原则,将各OD (Origin-Destination)对间的出行量分配到具体的交通网络上去,从而得到各路段的交通量,以判断各路段的负荷水平。近半个世纪以来,国内外学者对交通分配问题进行了大量的研究,提出了不少交通流分配模型与软件。总体来看,这些模型可以分为两大类: 平衡分配模型:遵循War drop用户最优(UO, User Optimum)准则或系统最优(SO, System Optimum)准则。它们或者使得个别交通参与者的出行费用最低,或者使得交通网络上所有出行者的总出行费用最低。 非平衡分配模型:运用启发式解法或其他近似解法的分配模型则统称为非平衡分配模型,如全有全无分配模型、容量受限分配模型、多路径概率分配模型、随机分配模型和嫡分配模型等。 静态模型不能反映交通流的时变特性,相反,动态交通分配考虑了交通需求随时间变化和出行费用随交通负荷变化的特性,能够给出瞬间的交通流分布状态。 DTA(Dynamic Traffic Assignment) 所谓动态交通分配, 就是将时变的交通出行合理分配到不同的路径上, 以降低个人的出行费用或系统总费用。动态交通分配是在交通供给状况以及交通需求状况均为已知的条件下, 分析其最优的交通流量分布模式, 从而为交通流管理、动态路径诱导等提供依据。 交通供给状况:网络拓扑结构、网段特性、既定控制策略等。

交通分配及其算法

V 为网络节点集,即:道路交叉点;A 为路段集,即:道路 交通量—人的个数—OD 矩阵 ,a C a A ∈:路段a 的通行能力 ()a a t x :路段a 的阻抗,a x 为流量,通常以时间记,假设仅与路段a 有关 系统最优是系统规划者所期望得到的一种平衡状态,其前提是所有网络用户必须互相协作,遵从网络管理者的统一调度,所以是计划指向型分配准则。 出行者的出行决策过程是相互独立的,路网上的交通流的状态是出行者独立选择的结果。出行者必然转向费用较小的路径.其结果,路网上的交通量分布最终必然趋于用户平衡状态。所以,用户平衡状态最接近实际的交通状态。 Wardrop 准则的提出标志着网络流平衡分配概念从描述转为严格刻画,不但假设司机都力图选择阻抗最小的路径,而且还假设司机随时掌握整个网络的状态,精确计算每条路径的阻抗,还假设了司机的计算能力与水平是相同的。 在这些假设条件下进行的配流被称为确定性配流,得到的用户平衡条件被称为确定性平衡条件,简称UE 条件。User Equilibrium System Optimal rs k rs a f q ∑=且0rs k f ≥(rs k f —O-D 对r-s 之间路径k 上的流量)rs q 等于连接rs 之间 各路径上的路段的交通量的总和。 ,rs rs a k a k r s k x f σ=∑∑∑(,rs a k σ—如果弧a 在连接O-D 对r-s 的路径k 上,其值为1,否则为0)路段a 上的流量等于通过a 的路径上分配到a 上的交通量的总和。 1. 目标函数本身并没有什么直观的经济含义或行为含义。 2. 没必要直接求解用户平衡条件方程组,平衡状态可以由求解等价都极小值问题得到。 3. 模型的解关于路段流量唯一,关于路径流不唯一 4. 等价性与唯一性证明略

交通仿真A-答案

1.交通仿真的定义 答:交通仿真是数字仿真在交通工程领域的应用,它以相似的原理、信息技术、系统工程和交通工程领域的基本理论和专用知识为基础,以计算机为工具,利用系统仿真模型模拟道路交通系统的运行状态,采用数字图形方式来描述动态交通系统,以便更好地把握和控制道路交通系统的实用科学技术。 2.交通仿真的优点 答:经济性;安全性;可重复性;易用性;可控制性;可拓展性。 3.交通仿真的功能(或应用领域) 答:在交通工程理论研究中的应用; 在道路几何设计方案评价分析中的应用; 在交通管理系统设计方案评价分析中的应用; 在道路交通安全分析中的应用; 在交通新技术和新设想测试中的应用; 在智能交通系统中的应用。 4.交通仿真的发展趋势 答:应用领域不断扩大;

健全系统后台开发技术,不断完善丰富交通仿真系统功能; 前台表现手法更加丰富; 交通仿真模型进一步完善; 快速引入新技术。 5.交通仿真的分类体系 答:交通仿真按照不同的分类标准可以得到不同的分类内容,一般来说,根据不同的仿真目的及仿真对象,交通仿真有以下几种分类方式和分类结果: ⑴从交通流理论的角度分为:微观交通仿真和宏观交通仿真; ⑵从仿真技术角度分为:连续时间仿真和离散时间仿真; ⑶从仿真实现的方式分为:理论仿真、多媒体技术仿真和人机交互方式仿真; ⑷从解决问题的对象分为:交叉口交通仿真、路段交通仿真和综合路网交通仿真; ⑸从仿真应用的研究范围分为:交通安全仿真、交通拥堵仿真、交通污染仿真、交通规划仿真、交通控制仿真、驾驶员行为仿真等。 6.

7.交通仿真技术与其他交通分析技术相比,具有的优点为? 8.宏观交通仿真的常用模型有哪些? 答:土地利用模型;车辆拥有模型;家庭收入模型;出行成本模型;出行生成模型;出行分布模型;方式划分模型;高峰时段模型;载客率模型;道路网分配模型;公共交通模型;方案评价模型。 9.宏观交通仿真的基本步骤为?

2交通仿真软件及其应用

第十二章交通仿真软件及其应用 前言 交通仿真(Traffic Simulation)是系统仿真技术的一个分支,就是用系统模型来复现交通流随时间、空间变化从而表征其行为特征的技术。交通仿真模型可用于交通系统规划及控制方案的详细评估,更好地理解并掌握交通系统局部和细节,对于较复杂的交通系统尤为适用。交通仿真技术所具备的功能,使其在以下交通领域得以广泛应用:1)交通规划方案的详细评估;2)交通控制策略的评估;3)道路几何设计方案的评价分析;4)交通管理系统的评价分析;5)交通新技术和新设想的测试;6)智能交通系统的评价;7)道路交通安全分析;8)交通工程技术人员培训。当前使用较多的微观交通仿真软件有PARAMICS、VISSIM、TransModeler、AIMSUN、CORSIM、CUBE DYNASIM、TRAFFICWARE等。 本章将介绍系统仿真和交通仿真的原理、方法和常用的交通仿真软件及其应用。 第一节交通系统仿真 一、系统仿真 仿真是当今许多学科广泛应用的先进、安全和经济的技术,军事工业、航空航天、核能等一直是仿真技术应用的主要领域,在军工领域,仿真技术已成为新武器系统研制与试验中的先导技术、校验技术和分析技术。世界各国几乎所有大型研发项目,如“阿波罗”登月计划、战略防御系统、航天航空器研制、核武器研制等,因其投资和风险巨大,在研制过程中均成功地运用了仿真技术,以较小的代价大幅度降低了风险。系统仿真技术可应用于系统评价、系统优化、节约经费、降低试验的风险和危险、人员培训、决策支持等。下面阐述系统仿真的几个基本概念。 (一)基本概念 1)系统

仿真技术应用的对象是系统。系统的定义很多,通常定义为具有一定功能,按某种规律相互联系又相互作用着的对象之间的有机组合。社会、经济、交通都是系统,仿真所关注的系统是广义的,泛指人类社会和自然界的一切存在、现象与过程。任何系统的研究都需要关注三个方面的内容,即实体、属性和活动。实体是组成系统的具体对象,属性是实体所具有的每一项有效特性(状态和参数),活动是系统内对象随时间推移而发生的状态变化。由于组成系统的实体之间相互作用而引起的实体属性变化,通常用“状态”的概念来描述。研究系统,主要就是研究系统状态的改变,即系统的进展或演化。研究系统除了需要研究系统的实体、属性和活动外,还需要研究系统的环境。环境是指对系统的活动结果产生影响的外界因素,自然界的一切事物都存在相互联系和相互影响,而系统是在外界因素不断变化的环境中产生活动的,因此,环境因素是必须予以考虑的。系统与环境的边界是不确定的,随研究的目的不同而异。 2)模型 要进行仿真,首先要抓住问题的本质或主要矛盾,按研究的重点或实际需要对原系统进行简化提炼,也就是建立模型。模型是对系统某些本质方面的描述,可采用各种可用的形式提供被研究系统的信息,在所研究系统的某一侧面具有与系统相似的数学描述或物理描述,可以在不同的抽象层次上来描述一个系统,是对真实世界中的物体或过程的抽象化和形式化。模型方法是通过研究模型来揭示原型的形态、特征和本质的方法。 计算机仿真中采用的模型是数学模型。数学模型是根据物理概念、变化规律、测试结果和经验总结,用数学表达式、逻辑表达式、特性曲线、试验数据等来描述某一系统的表现形式。数学模型的本质,是关于现实世界一小部分和几个方面抽象的数学“映像”。这种系统观允许对现实世界中的过程在不同的详尽程度上进行数学描述(编码),从而将各种不同的模型彼此联系起来,并将相互间的关系隐含于数学模型之中。 3)计算机仿真 计算机仿真是建立需研究系统的模型,进而在计算机上对模型进行实验研究的过程。计算机仿真方法是以计算机仿真为手段,通过在计算机上运行模型来模拟系统的运动过程,从而认识系统规律的一种研究方法。计算机仿真技术是以计算机科学、系统科学、控制理论和应用领域有关的专业技术为基础,以计算机为工具,利用系统模型对实际的或设想的系统进行分析与研究的一门新兴技术。现代计算机仿真技术综合集成了计算机、网络、图形图像、多媒体、软件工程、信息处理、自动控制等多个高新技术领域的知识,是系统分析与研究的重要手段。计算机仿真技术具有良好的可

交通流分配模型综述

华中科技大学研究生课程考试答题本 考生姓名陈菀荣 考生学号M201673159 系、年级交通运输工程系、研一 类别科学硕士 考试科目交通流理论 考试日期2017 年 1 月10日

交通流分配模型综述 摘要:近些年,交通流分配模型已经广泛应用到了交通运输工程的各个领域,并且在交通规划中起到了很重要的作用。本文对交通流分配模型研究现状进行了综述,并分别对静态交通流分配模型、动态分配模型以及公交网络进行了阐述和讨论。同时对相关的交通仿真还有网络优化问题研究现状进行了探讨。最后结合自身学习经验做出了一些评价和总结。 关键词:交通流分配;模型;公交网络 0引言 随着经济和科技的发展,城市化进程日益加快,城市也因此被赋予更多的工程,慢慢聚集大量的人口。而人口数量的增加而直接带来的城市出行量增加,不管是机动车出行还是非机动车出行量都相较以前增加了很多,从而引发了一系列的交通问题。因为在城市整体规划中,交通规划已经成为了十分突出的问题。在整个交通规划过程中,交通分配在其中占有很重要的地位,为相关公交路线,具体道路宽度规划等都有很大作用。 1交通流分配及研究进程 1.1交通流分配简介 由于连接OD之间的道路有很多条,如何将OD交通量正确合理的分配到O 和D之间的各条路线上,是交通流分配模型要解决的首要问题。交通流分配是城市交通规划的一个重要组成部分也是OD量推算的基础。交通流分配模型分为均衡模型和非均衡模型。 1.2交通流模型研究进程 以往关于交通流分配模型的研究多是基于出行者路径偏好的,主要有以Wardrop第一和第二原则为分配依据建立的交通分配模型,Wardrop第一原则假定所有出行者独立做出令自己出行时间最小的决策,最终达到纳什均衡的状态,此时的流量为用户最优解,在这种状态下,同一个起始点时间所有有流路径的通行时间相等,并且大于无流路径的通行时间;Wardrop第二原则假定存在一个中央组织者协调所有出行者的路径选择行为,使得所有出行者的总出行时间最小,对应的状态称为系统最优,此时分布的流量称为系统最优流。 交通流分配模型最早要追述到Beckmann等[1]于1956年首先提出了满足

交通仿真学习心得

交通仿真学习心得

交通系统仿真技 术 实 验 报 告 班级:交通10-03 学号:311002030318

姓名:王文博

交通系统仿真技术学习 学习交通系统仿真技术首先要了解几个词的概念。“仿真”是对真实事物的模仿,仿真一词另外一个常见的提法是“模拟”。根据“国际标准化组织(ISO)标准”中《数据处理词汇》部分名次解释,“模拟(Simulation)”与“仿真(Emulation)”两词的含义分别为:“模拟”即选取一个物理的或抽象的系统的某些行为特征,用另一系统来表示他们的过程;“仿真”即用另一数据处理系统,主要是用硬件来全部或部分地模仿某一数据处理系统,以至于模仿的系统能像被模仿的系统一样接受同样的数据,执行同样的程序,获得同样的结果。“系统仿真”则是模仿现有系统或未来系统运行状态的一种技术手段。“系统”是指相互联系又相互作用着的对象之间的有机结合。这种比较概括的含义包含所有工程的及非工程的系统。机电、电气、水力、声学系统等都属于工程系统;社会、经济、交通、管理系统等都属于非工程系统。系统的分类方法有很多,其中最重要的一种分类方法就是按其状态变化是否连续分为连续系统和离散系统两种。 系统仿真研究的目的在于对现有系统或未来系统的行为进行再现或预先把握。其实系统仿真并不是什么新概念,而是人们早已广泛应用的研究方法,通过在计算机上进行的仿真实验,可以得到被仿真的系统动态特征,估计和评价现有的系统或未来系统的优劣和所采用策略或方案的真确性,从而将系统仿真的概念赋予了新的内容,使之成为辅助决策的重要手段之一。 因此,系统仿真的概念可以表述为:所谓系统仿真,示意控制论、相似原理和计算机技术为基础,借助系统模型对现有系统或未来系统进行试验研究的一门综合性新兴技术。利用系统仿真技术,研究系统的运行状态及其随时间变化的过程,并通过对仿真运行过程的观察和统计,得到被仿真系统的仿真输出参数和基本特征,以此来估计和推断现有系统或未来系统的真实参数和真是性能,这个过程称为系统仿真过程。 系统仿真是近半个世纪以来发展起来的一门新兴技术学科,他与各门技术学科、管理学科、经济学科以致社会学科都有着紧密的联系,这正是系统仿真得到日益广泛应用的原因。它在航天、航空、军事、科研、工业生产、环境保护、生态平衡、医学、交通工程、经济规划、商业经营、金融流通等各个方面都获得了成功的应用,取得了显著地经济效益。 而我们所学的交通系统仿真是指用系统仿真技术来研究交通行为,它是一门对交通运动随时间和空间的变化进行跟踪描述的技术。从交通技术仿真所采用的技术手段以及所具有的本质特征来看,交通系统仿真是一门在数字计算机上进行交通实验的技术,它含有随即特性,可以是围观的,也可以是宏观的,并且涉及到描述交通运输系统在一定时期实时运动的数学模型。通过对交通系统的仿真研究,可以得到交通流状态变量随时间与空间的变化、分布规律及其与交通控制变量时间的关系。因此,交通系统仿真在道路运输系统及其各组成部分地分析和评价中发挥着重要作用。 交通仿真模型与其他交通分析技术,如需求分析、通行能力分析、交通流模型、排队理论等结合在一起,可以对多种因素相互作用的交通设施或交通系统进行分析和评估。这些交通设施和交通系统可以是单个的信号灯控制或无信号控制的交叉口,也可以是居民区或城市中心区的密集道路网、线控或面控的交通信号系统、某条高速公路或高速公路网、、双车道或多车道县(乡)公路系

交通分配之用户均衡分配模型之三(matlab源码)

例 总流量为100,走行函数为: ??? ??+=40)(6.04)(111t x x c ?? ? ??+=40)(9.06)(222t x x c ?? ? ??+=60)(3.02)(333t x x c ??? ??+=40)(75.05)(444t x x c ?? ? ??+=40)(45.03)(555t x x c 模型求解的Matlab 源码: syms lambda ; numf = 3; %路径总数 numx = 5;%路段总数 Q=100;%总流量 fid=fopen('D:\Program Files\MATLAB\R2011b\bin\我的matlab\traffic\UECOM.txt','w'); %设置运行结果输出文件 T = [4 6 2 5 3 ]; %路段走行时间函数参数 cap = [(0.6/40) (0.9/40) (0.3/60) (0.75/40) (0.45/40) ]; %路段走行时间函数参数 Mxf = [1 0 0 1 0; 0 1 0 0 1 ; 1 0 1 0 1]; % 路段转路径矩阵 % Mfx = Mxf'; % 路径转路段矩阵 %========================================================== %以上为程序需要输入的变量 xx= zeros(1,numx); t = zeros(1,numx); t = T + cap .* xx ;%路段走行时间函数 ft = (Mxf * t')'; %三条路径的走行时间初值。 路径1为路段1,4 ,路径2为路段2,5 ,路径3为路段1,3,5 N= 15; %最大迭代次数,也可使用其他收敛条件 [Min,index] = min(ft) ;

城市交通流仿真浅谈

城市交通流仿真浅谈 (朱江20106943) 摘要:阐述了系统仿真、计算机仿真和交通仿真的基本概念, 介绍了国外道路交通仿真研 究的发展历程和趋势以及国内的研究现状, 分析了道路交通仿真研究的意义, 并提出了研 究思路。 关键词: 系统仿真; 计算机仿真; 交通仿真 A Comprehensive Review of Road Traffic Simulation Research Abstract : The concept s of system si mu lat i on, computer simulation and traffic simulation are p resented, and the development process and t rend of road traffic simulation research in other count ries are also in roduced, as well as the existing research status in China . Furthermore, the signif icance of the road traffic si mu lat i on research is analyzed and the conceived research plan is put forward . Key words: system simulation; computer simulation; traffic simulation 交通仿真分析技术具有直观、准确、灵活的特点, 是描述复杂道路交通现象的一个有效手段。目前, 道路交通仿真研究已成为国际上交通工程界的研究热点之一。 1 系统仿真、计算机仿真及交通仿真 1.1 系统仿真 系统仿真, 顾名思义就是模仿真实系统。仿真界专家和学者对仿真下过不少定义, 其中一个比较通俗的描述性定义是: 仿真是通过对系统模型的实验去研究一个存在的或设计中的系统。长期以来, 人们已经充分认识到利用数学模型去描述所研究系统的优越性, 并且逐渐地发展了系统研究和系统分析理论。但是, 由于数学手段的限制, 人们对复杂事物和复杂系统建立数学模型并进行求解的能力是有限的。在19 世纪末20 世纪初工业技术的迅速发展过程, 由于常规数学模型的缺陷对技术的进步的制约作用日益明显, 系统仿真作为一门技术科学也就应运而生。 1.2 计算机仿真 仿真技术发展之初, 由于相关技术条件的限制,人们多采用实物仿真的手段, 例如通过对不同形状飞机模型的风洞实验分析来改进飞机设计。近年来,随着相关技术的发展, 尤其是计算机软、硬件技术的突破, 仿真技术已经由实物仿真发展到数字仿真。由于数字化主要通过计算机来实现, 因而也称计算机仿真。计算机仿真就是采用计算机对数学模型进行仿真实验。计算机仿真摆脱了实物模型的传统概念, 借助计算机可以对物理性质截然不同的各种系统进行准确、灵活、可靠的研究, 这就使现代科学实验技术提高到一个新的水平。 仿真技术作为分析和研究系统运动行为、揭示系统动态过程和运行规律的一种重要手段和方法,在发展到现代的计算机仿真阶段以后, 其应用领域已从军用转向民用, 从最初的航

(仅供参考)第六篇--vissim动态交通分配

第六篇 动态交通分配 6.1 动态交通分配介绍 在前面的章节里,仿真车辆在路网中行驶的路径都是人为设置的,仿真中的“驾驶员”并没有机会自己选择从起点到终点的道路。在非实时仿真、简单路网中这种模拟道路交通的方法是合适的。但是,如果仿真的路网较大,路网中的车辆从起点到终点有多种不同的路径选择,同时要将车辆分布在这些路径上的话,前面使用的方法将不可能完成这种网络上的路径设置。对一个给定了起迄点的出行需求矩阵,计算该矩阵在路网上的交通量分布的问题称之为交通分配,它是交通规划过程的一个基本步骤。 交通分配是所有驾驶员或交通使用者根据道路网情况,对出行路径进行选择的一种计算模型。该模型必须帮助出行者首先找出一组可供选择的路径,然后根据计算方法对可选择的路径进行评价,最后描述出驾驶员如何根据这些评价进行路径选择。 交通规划中的交通量分配往往是静态分配。“静态”是指出行需求(有多少车辆需要在路网中出行)和道路网络本身不随时间变化。然而实际上的出行需求在一天中变化很大,并且道路网络的交通状况也随时间而变化,例如信号控制在一天不同时段发生变化。考虑到这些随时间而变化的因素,VISSIM给出了动态交通分配的方法。 在VISSIM仿真模型中提出动态路径选择主要考虑以下两个方面: z即便在不考虑可替代路径的情况下,越来越大的路网也使得人工设置或建立所有起迄点间的路径变得不可能; z在评估各种交通控制方法和路网变化对出行路径选择的影响时,模拟真实的路径选择行为非常有意义。 6.2 动态交通分配的原则 在VISSIM中动态交通分配是基于迭代仿真的思想。即一个模拟路网不只是仿真一次,而是不断地重复仿真。驾驶员根据前面仿真获得的出行时间(或出行费用)来进行本次仿真中的路径选择。模拟这种“用户自学习过程”,必须完成下列任务: z必须找到起迄点间的路径。VISSIM假定并非所有人都使用最佳路径,而是有一小部分人会使用那些次优路径; z驾驶员必须有某种对路径进行评价的方法,以便于进行路径选择。VISSIM中是根据计算得出的总出行费用进行评价的。总出行费用由路径长度、行程时间和其它 成本(例如道路或桥梁的通行费等)加权求和得到; z从一系列路径中选择某条路径的概率是用修正的LOGIT模型计算后得到。 6.3 动态分配前期准备工作 6.3.1需要注意的几个问题 (1)对象:不是只有几个节点,而是整个大的路网;

交通流仿真

《最优控制与智能控制基础》文献总结报告 城市干线交通流仿真及智能控制的研究 学生姓名:冯健 学生班级:50603 学生学号:5060318 任课教师:段洪君 提交日期:2009年6月19日

1. 课题背景及意义 1.1研究背景 城市交通系统是由人、车、路、环境等要素构成,具有结构复杂、影响因素多、开放性强、随机性及不稳定因素多等特点,是一个复杂的动态系统。长期以来,城市迅速增长的交通运输需求不能够得到有效的满足,供需不平衡的矛盾日趋突出,导致城市交通拥堵严重,事故率攀升,环境污染加剧,能源利用率低下。城市交通所带来的负面影响日益严峻,己成为制约城市经济发展的一个瓶颈。发展智能运输系统,利用现代信息技术、控制技术、优化理论及人工智能等,使现有的道路交通基础设施发挥最大效用,是一个重要的对策,同时也已成为世界各国交通学者们研究的热点。交通管理与控制是智能交通系统中一项重要研究内容,其重点在于运用各种交通设施控制、掌握并及时指挥城市交通,预先把握在现有道路网上实施交通管制的可能效果。鉴于交通运输系统本身的特性,难于采用现场实验的方法,利用计算机技术和系统仿真方法,为复杂的城市交通系统创造一种计算机实验平台,来研究城市交通成为理想选择,于是便形成了交通仿真技术。 1.2研究意义 城市主干道网络是城市道路交通的动脉,在城市交通中的作用举足轻重。干道网络上交通流畅通与否,直接决定了城市道路交通效率的高低。因此,只有当干道网络上的交通问题得到有效解决之后,城市交通问题才可迎刃而解。所以,应用交通仿真方法对城市干道交通流进行微观仿真研究具有现实意义。对城市主 干道交通流的微观仿真研究,可以实现干道交通运行状态的动态虚拟再现,为交通管理人员和交通规划人员提供一个有效的实验平台;利用交通流仿真模型进行仿真实验,通过仿真输出结果的分析、对比和评估来获取交通流的各项参数,为交通管理与控制、交通规划方案的比较及效果评价提供决策依据及技术支持。 目前大多数微观仿真软件都能动态显示交通信息,并提供交通性能指标统计列表,为交通方案的可行性分析与效果评价提供依据,但是,在混合交通流情况

相关文档
相关文档 最新文档