文档库 最新最全的文档下载
当前位置:文档库 › 直升飞机原理旋翼的空气动力特点

直升飞机原理旋翼的空气动力特点

直升飞机原理旋翼的空气动力特点
直升飞机原理旋翼的空气动力特点

直升飞机原理旋翼的空气动力特点

(1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。

(2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。

(3)产生其他分力及力矩对直升机; 进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接(如下图所示)。

旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。

先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度 Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为 r的圆柱面把桨叶裁开(参阅图 2,1—3),

并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度 (等于Ωr)和垂直于旋转平面的速度(等于Vo),而合速度是两者的矢量和。显然可以看出(如图2(1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的: 大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加不同。与机翼相比较,这就是桨叶工作条件复杂,对它的分析比较麻烦的原因所在。

旋翼拉力产生的滑流理论

现以直升机处于垂直上升状态为例,应用滑流理论说明旋翼拉力产生的原因。此时,将流过旋翼的空气,或正确地说,受到旋翼作用的气流,整个地看做一根光滑流管加以单独处理。假设:

空气是理想流体,没有粘性,也不可压缩;

旋转着的旋冀是一个均匀作用于空气的无限薄的圆盘(即桨盘),流过桨盘的气流速度在桨盘处各点为一常数;

气流流过旋翼没有扭转(即不考虑旋翼的旋转影响),在正常飞行中,滑流没有周期性的变化。

根据以上假设可以作出描述旋翼在: 垂直上升状态下滑流的物理图像,如下图所示,图中选取三个滑流截面, So、 S1和 S2,在 So面,气流速度就是直升机垂直上升速度 Vo,压强为大气压Po,在 S1的上面,气流速度增加到V1=

Vo+v1,压强为P1上,在S1 的下面,由于流动是连续的,所以速度仍是 V1,但压强有了突跃Pl下,P1上,P1下一P1上即旋翼向上的拉力。在S2面,气流速度继续增加至V2=Vo+v2,压强恢复到大气压强Po。

这里的v1是桨盘处的诱导速度。v2是下游远处的诱导速度,也就是在均匀流场内或静止空气中所引起的速度增量。对于这种现象,可以利用牛顿第三用动定律来解释拉力产生的原因。

旋翼的锥体

在前面的分析中,我们假定桨叶位:桨毂旋转平面内旋转。实际上,目前的直升机都具水平铰。旋翼不旋转时,桨叶受垂直向下的本身重力的作用(如下图左)。旋翼旋转时,每片叶上的作用力除自身重力外,还有空气动力和惯性离心力。空气动力拉力向上的分(T)方向与重力相反,它绕水平铰构成的力矩,使桨叶上挥。惯性离心力(F离心)相对水乎铰所形成的力矩,力求使桨叶在桨毂旋转平面内旋转(如下图右)。在悬停或垂直飞行状态中,这三个力矩综合的结果,使得桨叶保持在与桨毂旋转平面成某一角度的位置上,翼形成一个倒立的锥体。桨叶从桨毂旋转平面扬起的角度叫锥角。桨叶产生的拉力约为桨叶本身重量的10一15倍,但桨叶的惯性和离心力更大(通常约为桨叶拉力的十几倍),所以锥角实际上并不大,仅有3度一5度。

悬停时功率分配

从能量转换的观点分析,直升机在悬停状态时(如下图) 发动机输出的轴功率,其中约90,用于旋翼,分配给尾桨、传动装置等消耗的轴功率加起来约占10,。旋翼所得到的90,的功率当中,旋翼型阻功率又用去20,,旋翼用于转变成气流动能以产生拉力的诱导功率仅占70,。

旋翼拉力产生的涡流理论

根据前面所述的理论,只能宏观地确定不同飞行状态整个旋翼的拉力和需用功率,但无法得知沿旋翼桨叶径向的空气动力载荷,无法进行旋设计。为此,必须进一步了解旋翼周围的流场,即旋冀桨叶作用于周围空气所引起的诱导速度,特别是沿桨叶的诱导速度,从而可计算桨叶各个剖面的受力分布。

在理论空气动力学中,涡流理论就是求解任一物体(不论飞机机翼或旋翼桨叶)作用于周围空气所引起的诱导速度的方法。从涡流理论的观点来看,旋翼桨叶对周围空气的作用,相当于某一涡系在起作用,也就是说,旋翼的每片桨叶可用一条(或几条)附着涡及很多由桨叶后缘逸出的、以螺旋形在旋翼下游顺流至无限远的尾随涡来代替。

按照旋翼经典涡流理论,对于悬停及垂直上升状态(即轴流状态),旋翼涡系模型就像一个半无限长的涡拄,由一射线状的圆形涡盘的附着涡系及多层同心的圆柱涡面(每层涡面由螺旋涡线所组成)的尾迹涡系两部分所构成(如下图所示)。

直升机旋

停、垂直上升状态的涡柱

这套涡系模型完全与推进螺旋桨的情况相同。至于旋冀在前飞状态的涡系模型,可以合理地引伸为一个半无限长的斜向涡柱,由一圆形涡盘的附着涡系及多层斜向螺旋涡线的斜向涡面的尾迹涡系两部分所构成(如下图所示)。

直升机前飞状态的涡柱

直升机不同于固定翼飞机,一般都没有在飞行中供操纵的专用活动舵面。这是由于在小速度飞行或悬停中,其作用也很小,因为只有当气流速度很大时舵面或副

翼才会产生足够的空气动力。单旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵,而双旋翼直升机靠两副旋

翼来操纵。由此可见,旋翼还起着飞机的舱面和副翼的作用。

为了说明直升机操纵特点,先介绍直升机驾驶舱内的操纵机构。直升机驾驶员座舱操纵机构及配置直升机驾驶员座舱主要的操纵机构是:驾驶杆(又称周期变距杆)、脚蹬、油门总距杆。此外还有油门调节环、直升机配平调整片开关及其他手柄(如下图所示)。

驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼的自动倾斜器连接。驾驶杆偏离中立位置表示:

向前——直升机低头并向前运动;

直升机抬头并向后退; 向后——

向左——直升机向左倾斜并向左侧运动;

向右——直升机向右倾斜并向右侧运动。

脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉)力,对直升机实施航向操纵。

油门总距杆通常位于驾驶员座椅的左方,由驾驶员左手操纵,此杆可同时操纵旋翼总距和发动机油门,实现总距和油门联合操纵。

油门调节环位于油门总距杆的端部,在不动总距油门杆的情况下,驾驶员左手拧动油门调节环可以在较小的发动机转速范围内调整发动机功率。

调整片操纵(又称配平操纵)的主要原因是因为直升机在飞行中驾驶杆上的载荷,不同于

飞机的舵面载荷。如果直升机旋翼使用可逆式操纵系统,那么驾驶杆要受周期(每一转)的可变载荷,而且此载荷又随着飞行状态的改变而产生某些变化。为减小驾驶杆的载荷,大多数直升机操纵系统中都安装有液压助力器。操纵液压助力器可进行不可逆式操纵,即除了操纵系统的摩擦之外,旋翼不再向驾驶杆传送任何力。

为了得到飞行状态改变时驾驶杆力变化的规律性,可在操纵系统中安装纵向和横向加载弹簧。因为宜升机平衡发生变化(阻力及其力矩发生变化),驾驶杆的位置便随飞行状态变化而变化,连接驾驶杆的加载弹簧随着驾驶杆位置的变化而变化时,则驾驶杆力随着飞行速度不同也出现带有规律性的变化,这对飞行员来说是十分重要的。

为消除因飞行状态改变而产生的驾驶杆的弹簧载荷,可对弹簧张力进行调整,相当于飞机上的调整片所起的调整作用,因此在直升机上通常把此种调整机构称为调整片,或称作调平机构。弹簧张力是由调整片操纵开关或电动操纵按钮控制的。

自动倾斜器的主要零件包括:旋转环连接桨叶拉杆,旋转环利用滚珠轴承连接在不旋转环上,不旋转环压在套环上;套环带有横向操纵拉杆和纵向操纵拉杆;操纵总桨距的滑筒。直升机的驾驶杆动作时,旋转环和不旋转环随同套环一起向前、后、左、右倾斜或任意方向倾斜。因为旋转环用垂直拉杆同桨叶连接,所以旋转环的旋转面倾斜会引起桨叶绕纵轴做周期性转动,即旋翼每转一周重复一次,换句话说,每一桨叶的桨距将进行周期性变化。为了解桨距的变化,应分别分析直升机的两种飞行状态,即垂直飞行状态和水平飞行状态。

垂直飞行,靠改变总距来实施,换句话说,就是靠同时改变所有桨叶的迎角来实施。此时所有桨叶同时增大或减小相同的迎角,就会相应地增大或减小升力,因而直升机也会相应地进行垂直上升或下降。操纵总距是用座舱内驾驶员座椅左侧的油门总距杆。从下图中看出,若上提油门总距杆,则不旋转环和旋转环向上抬起,各片桨叶的桨距增大,直升机上升。若下放油门总距杆,直升机则垂直下降。

直升机水平飞行要使旋翼旋转平面倾斜,使旋翼总空气动力矢量倾斜得出水平分力。旋转平面倾斜是靠周,期性改变桨距得到的。这说明,旋翼每片桨叶的桨距在每一转动周期中 (每转一周),先增大到某一数值,然后下降到某一最小数值,继而反复循环。各种方位的桨距周期性变化如下图所示。下面考察自动倾斜器未倾斜和向前倾斜时作用于桨叶上的各力。

旋翼旋转时,每片桨叶上的作用力如下图所示:升力 Y叶,重力G叶,挥舞惯性力J

层桨的构造同旋翼相似,不过比旋翼要简单得多。尾桨的每一桨叶和旋翼桨叶一样,其旋转铀转动。由于尾桨转速很高,工作时会产生很大的离心力。和离心力J离心力。

尾桨操纵没有自动倾斜器,也不存在周期变距问题。靠蹬脚蹬改变尾桨的总距来操纵尾桨。当驾驶员蹬脚蹬后,齿轮通过传动链条带动蜗杆螺帽转动,蜗杆螺帽沿旋转轴推动滑动操纵杆滑动(见上图),杆用轴承固定在三爪传动臂上,另一端则用槽与支座相连,以防止滑动操纵杆转动。三爪传动臂随同尾桨叶转动,通过三个拉杆使三片桨叶绕自身纵轴同时转动,此时,根据脚蹬蹬出方向和动作量大小,来增大或减小尾桨桨距。

直升机操纵图解

直升机飞行主要靠旅翼产生的拉力。当旋翼由发动机通过旋转轴带动旋转时,旋翼给空气以作用力矩(或称扭矩),空气必然在同一时间以大小相等、方向相反的反作用力矩作用于旋翼(或称反扭矩),从而再通过

旋翼将这一反作用力矩传递到直升机机体上。如果不采取措施予以平衡,那么这个反作用力矩就会使直升机逆旋翼转动方向旋转。如右图所示。

旋翼的布局形式

旋翼之所以会出不同的布局型式,主要是因平衡旋翼轴带动旋翼转动工作时,空气作用其上的反作用力矩所采取的方式不同而形成的。

为了平衡这个来自空气的反作用力矩,有两种常见的办法,组合形成了现代多种旋翼布局型式,见下图。

1(单旋翼带尾桨布局。空气对旋翼形成的反作用力矩,由尾桨产生的拉力(或推力) 相对于直升机机体重心形成的偏转力矩予以平衡如上图的a。这种方式目前应用较广泛,虽然层桨工作需要消耗一部分功率,但构造上比较简单。

2(双旋翼式布局。由于在直升机上装有两副旋翼,可以是共轴式双旋翼,也可以是纵列式双旋翼或者横列式双旋冀(含交叉双旋翼),通过传动装置使两副旋翼彼此向相反方向转动,那么,空气对其中一副旋冀的反作用力矩,正好为另一副旋翼的反作用力矩所平衡,见图 2(1—20中的b、 c、 d、 e。

直升机尾桨

(作用)尾桨像一个旋转平面垂直于旋翼转速平面的小螺旋桨,工作时产生拉力(或推力)。尾桨的作用可以概括为以下三点:

1(尾桨产生的拉力(或推力)通过力臂形成偏转力矩,用以平衡旋翼的反作用力矩 (即反扭转);

2(相当于一个直升机的垂直安定面,改善直升机的方向稳定性。而且,可以通过加大或减小尾桨的拉力(推力)来实现直升机的航向操纵;

3(某些直升机的尾轴向上斜置一个角度,可以提供部分升力,也可以调整直升机重心范围。尾桨和旋翼的动力均来源于发动机;发动机产生的功率通过传动系统,按需要再传给旋翼和尾桨。

尾桨的旋转速度较高。直升机航向操纵和平衡反作用力矩,只需增加或减小尾桨拉力 (推力),对尾桨总距操纵是通过脚蹬操纵系统来实现的。

(类型)尾桨通常包括常规尾桨、涵道尾桨和无尾桨系统等三种类型。

1(常规尾桨这种尾桨的构造与旋冀类似,由桨叶和桨毂组成。常见的有跷跷板式、万向接头式和铰接式。

2(涵道层桨这种尾桨由两部分组成:一部分是置于尾斜梁中的涵道;另一部分是位于涵道中央的转子。其特点是涵道尾桨直径小、叶片数目多。涵道尾桨的推力有两个来源:一是涵道内空气对叶片的反作用推力;二是涵道唇部气流负压产生的推力。涵道尾桨的构造如下图所示。

3(无尾桨系统无层桨系统主要是用一个空气系统代替常规尾桨,该系统由进气口、喷气口、

压力风扇、带缝尾梁等几部分组成,如下图所示。

压力风扇位于主减速器后面,由尾传动轴带动,风扇叶片的角度可调,与油门总距杆联动。尾梁后部有一可转动的排气罩与脚蹬联动。工作时风扇使空气增压并沿空心的尾梁向后流动。飞行中,一部分压缩空气从尾梁侧面的两道细长缝中排出,加入到旋翼下洗流中,造成不对称流动,使尾梁一例产生吸力,相当于尾部产生了一个侧向推力以平衡旋翼的反作用力矩(见上图);另一部分压缩空气由尾部的喷口喷出,产生侧向报力,以实现航向操纵,喷气口面积由排气罩的转动控制,受驾驶员脚蹬操纵。

(总结)以上各型尾桨都各有其特点: 常规尾桨技术发展比较成熟,应用广泛,缺点是受旋男下洗流影响,流场不稳定,裸露在外的桨叶尖端易发生伤人或撞击地面障碍物的事故;涵道层桨优点是安全性好,转于桨叶位于涵道内,旋翼下洗流干扰、影响较轻,且不易发生伤人接物的事故,缺点是消耗功率比较大;无尾桨系统的优点是安全可靠、振动和噪声水平低,前飞时可以充分利用垂直尾另的作用、减小功率消耗,缺点是悬停时需要很大功率,目前已进入实用阶段。

悬停

悬停是直升机在一定高度上保持航向和对地标位置不变的状态。直升机的这一飞行特性不但能适应多种作业的需要,更能扩大其使用范围。无论是高大建筑物的屋顶平台,还是高山峡谷的狭小平地,它均能起降自如,实施多种作业。因此悬停是直升机区别于一般固定翼飞机的一种特有的飞行状态。虽然某些特种飞机,例如喷口转向飞机,也能作短时悬停,但由于它们产生平衡飞机重力喷口的推力面的载荷大大超过直升机旋翼的桨盘载荷,这样不便使这类飞机在相同飞行重量的悬停需用功率比直升机的高得多,而且过大的诱导速度引起悬停状态作业的环境条件大大恶化。此外垂直起落飞机的喷口对地面严重烧蚀等方面的问题限制了这类飞机的使用范围。

直升机悬停时的力及需用功率

悬停时,单旋翼式直升机力的平衡如下图所示。旋翼拉力在铅垂面的升力分量T1与全拉的飞行重力G

平衡;用于平衡反扭矩的尾桨推力T尾则等于旋翼在水平侧向分力T3。即

铅垂方向:T1=G

水平侧向:T尾=T3

悬停时,直升机的需用功率由尾桨和传动等功率外加上旋冀所需功率组成,旋翼需用功率则主要由两部分组成:(1)旋翼产生拉力所付出的代价——诱导功率P

诱;(2)电于空气的粘性旋翼旋转时克服桨叶型阻需要耗费的功率——型阻功率P 型。即

P悬停=P诱+P型

必须指出,旋翼的悬停需用功率,比大多数前飞状态需用功率都大一些。这是因为悬停时,流过桨盘的空气质量流量较小;根据动量定理,要产生同样拉力,旋翼在悬停时的诱导速度需更大一些,而诱导功率正比于旋翼拉力和诱导速度。所以悬停诱导功率就比平飞时的诱导功率更大些,而型阻功率损失主要取决于旋翼转速和桨叶构型。由于旋翼转速和桨叶构型很少随飞行状态的变化而变化,因此型阻功率随直升机的飞行状态变化也较小。总的来说,悬停状态的需用功率在直升机的各种飞行状态中是较高的。

垂直上升

直升机在四周有较高障碍物的狭小场地悬停起飞后无法以爬升飞行方式超越障碍物,垂直上升飞行是超越障碍物获取飞行高度的有效方式。在上述情况下一些特殊空间和区域作业,直升机的垂直上升性能则具有非常重要的实用价值。

垂直上升时直升机的力及需用功率

直升机垂直上升飞行速度称为上升率以 Vy表示。通常直升机的垂直上升速度都不大,机体阻力与飞行重量 G比较起来则为一个小量,可以忽略不计,因此直升机垂直上升时力的平衡与悬停时基本相同。即

铅垂方向:T1=G

水平侧向: T尾=T3

垂直上升时旋翼需用功率,主要由三部分组成:诱导功率P诱;型阻功率P型,以及旋翼上升做功的上升功率P升,即

P垂升=P诱+P型+P升

垂直上升与悬停状态相比,诱导功率虽然随上升高度的增加其值有所减小,然而随着 Vy的增加被忽略的机体阻力的功率损耗也有所增加,这两项大至相抵。型阻功率也可认为与悬停状态相同。因此在粗略分析中可以近似认为垂直上升时P 诱与P型之和与悬停时的旋翼需用功率相等。然而上升功率P升=T1Vy则随垂直上升速度线性增加。因此垂直上升的总需用功率比悬停时的需用功率大,并且随上升率的增加而增加。

垂直下降

直升机的垂直下降与垂直上升相反,利用它可以使直升机在被高大障碍物所包围的狭小场地着陆。由于这时旋翼的诱导速度与其运动的相对来流方向相反,流经桨盘的两股方向相反的气流使旋翼流场变得更加复杂。随着下降率的增加,当两股气流的速度数值十分接近时,直升机会进入不稳定的“涡环状态”,这时经典的动量理论不能反映流过旋翼气流的流动规律,通常利用以实验为基础的半经验理论进行描述。下面重点介绍垂直下降中旋翼特有的这一物理现象及相关问题。

垂直下降的直升机的力及需用功率

垂直下降与悬停及垂直上升时力的平衡基本一样,即

铅垂方面: T1=G

水平侧面:T尾=T3

垂直下降时旋奠的需用功率,类似于垂直上升,可写成

P垂降=P诱+P型+P降

需用功率与垂直上升的差别主要表现在两个方面:(1)P降中的Vy 数值为负。即下降的重力做功,旋翼气流中获取能量。(2)在垂直下降速度较小时,P诱由于旋翼周围的不规则的紊乱流动使旋翼垂直下降状态诱导的功率增大。直升机垂直下降中,旋翼从下降中所获取的能量,在很大的速度范围内,消耗到诱导功率中去了。

直升机的前飞

直升机的前飞,特别是平飞,是其最基本的一种飞行状态。直升机作为一种运输工具,主要依靠前飞来完成其作业任务。为了更好地了解有关直升机前飞时的飞行特点,从无侧滑的等速直线平飞人手,有关上升率Vy不为零的前飞(上升和下降)留在下一节介绍。直升机的水平直线飞行简称平飞。平飞是直升机使用最多的飞行状态,旋翼的许多特点在乎飞时表现得更为明显。直升机平飞的许多性能决定于旋翼的空气动力特性,因此需要首先说明这种飞行状态下直升机的力和旋翼的需用功率。

平飞时力的平衡

相对于速度轴系平飞时,作用在直升机上的力主要有旋空拉力T,全机重力G,机体的废阻力 X身及尾桨推力T尾。前飞时速度轴系选取的原则是: X铀指向飞行速度V方向; Y轴垂直于X轴向上为正,2轴按右手法则确定。保持直升机等速直线平飞的力的平衡条件为(参见图2(1—43) 。

平飞时力的平衡

X轴:T2=X身

Y轴: T1=G

Z轴:T3约等于T尾

直升飞机飞行原理

直升飞机飞行原理 直升机的机翼与固定翼飞机一样,当气流从机翼前缘流向机翼后缘,从上翼面流过的气流比下翼面走过的路程长,为避免出现真空,上翼面的气流流速比下翼面的大。根据伯努利方程,相同条件下,气流的静压与动压的和恒定,因为上翼面的气流的流速大,导致动压大,所以其静压就小,机翼收到来自上翼面的压力小于来自下翼面的压力,大气对机翼的总压力向上,这个压力就是升力,有了升力直升机就能飞起来,但机翼旋转会对机身产生扭矩,为了不使机身旋转,通过加尾浆的方式平衡掉这个扭矩,所以直升机都是有尾浆的。直升机的机翼旋转面和轴的夹角可以通过杠杆机构来调整,通过调整这个夹角使升力与直升机的重力同轴或不同轴,同轴时,直升机悬停,不同轴时,直升机前飞 直升机升空的原理和竹蜻蜓是一样的,主桨桨叶上产生升力。至于你说的玩具有两个桨,而真机只有一个,应该是上下两层吧,总共四片桨叶,而真机只有一层。都知道,主桨高速转动,会给机身一个反方向的扭矩,如果不加以平衡,机身就会沿着和主桨转动方向相反的方向高速自旋,这样的直升机能飞么?玩具的两层桨叶就是平衡这个扭矩的,你仔细观察下,上下桨的转动方向一定是相反的,也就是靠两对桨叶给机身的扭矩来平衡机身,它们给机身的扭矩方向是相反的,如果大小也相同,那么机身就能保持稳定。但是真机,或者真正的航模直升机,都是单层桨叶的,因为它们都带尾桨,靠尾桨产生的推力来稳住机身。主桨产生的扭矩如果会使机尾顺时针旋转,那么就让尾桨产生逆时针的推力,平衡这个顺时针的扭矩。

一、直升机与普通飞机区别及飞行简单原理:不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。(1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。(2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。(3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。(4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。二、平衡分析(对单旋翼式):(1)直升飞机的大螺旋桨旋转产生升力平衡重力。直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。(2)直升飞机的横向稳定。因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。三、能量方式分析。根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析 能量也是守衡的

旋翼的空气动力特点

旋翼的空气动力特点 (1)产生向上的升力用来克服直升机的重力。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓直升机下降趋势。 (2)产生向前的水平分力克服空气阻力使直升机前进,类似于飞机上推进器的作用(例如螺旋桨或喷气发动机)。 (3)产生其他分力及力矩对直升机;进行控制或机动飞行,类似于飞机上各操纵面的作用。旋翼由数片桨叶及一个桨毂组成。工作时,桨叶与空气作相对运动,产生空气动力;桨毂则是用来连接桨叶和旋翼轴,以转动旋翼。桨叶一般通过铰接方式与桨毂连接。 旋翼的运动与固定翼飞机机翼的不,因为旋翼的桨叶除了随直升机一同作直线或曲线动外,还要绕旋翼轴旋转,因此桨叶空气动力现象要比机翼的复杂得多。 先来考察一下旋翼的轴向直线运动这就是直升机垂直飞行时旋翼工作的情况,它相当于飞机上螺旋桨的情况。由于两者技术要求不同,旋翼的直径大且转速小;螺旋桨的直径小而转速大。在分析、设计上就有所区别设一旋冀,桨叶片数为k,以恒定角速度Ω 绕轴旋转,并以速度Vo沿旋转轴作直线运动。如果在想象中用一中心轴线与旋翼轴重合,而半径为r的圆柱面把桨叶裁开(参阅图2,1—3),并将这圆柱面展开成平面,就得到桨叶剖面。既然这时桨叶包括旋转运动和直线运动,对于叶剖面来说,应有用向速度(等于Ωr)和垂直于旋转平面的速度(等于Vo),而合速度是两者的矢量和。显然可以看出(如图2.1—3),用不同半径的圆柱面所截出来的各个桨叶剖面,他们的合速度是不同的:大小不同,方向也不相同。如果再考虑到由于桨叶运动所激起的附加气流速度(诱导速度) ),那么桨叶各个剖面与空气之间的相对速度就更加不同。与机翼相比较,这就是桨叶工作条件复杂,对它的分析比较麻烦的原因所在。 旋翼拉力产生的滑流理论 现以直升机处于垂直上升状态为例,应用滑流理论说明旋翼拉力产生的原因。此时,将流过旋翼的空气,或正确地说,受到旋翼作用的气流,整个地看做一根光滑流管加以单独处理。假设: 空气是理想流体,没有粘性,也不可压缩; 旋转着的旋冀是一个均匀作用于空气的无限薄的圆盘(即桨盘),流过桨盘的气流速度在桨盘处各点为一常数;

认识遥控直升机的旋翼头

认识遥控直升机的旋翼头 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。

直升机原理详解真实完整版

发一套最完整的直升机原理(绝对完整,绝对精华) 这是我找到的最完整,最系统介绍直升机的原理及发展史的文章。转到这里,送给论坛里喜欢飞行,向往蓝天的朋友!! 自从莱特兄弟发明飞机以来,人们一直为能够飞翔蓝天而激动不已,同时又受起飞、着落所需的滑跑所困扰。在莱特兄弟时代,飞机只要一片草地或缓坡就可以起飞、着陆。不列颠之战和巴巴罗萨作战中,当时最高性能的“ 喷火 ”战斗机和 Me 109 战斗机也只需要一片平整的草地就可以起飞,除了重轰炸机,很少有必须用“正规”的混凝土跑道起飞、着陆的。今天的飞机的性能早已不能为这些飞机所比,但飞机的滑跑速度、重量和对跑道的冲击,使对起飞、着陆的跑道的要求有增无减,连简易跑道也是高速公路等级的。现代战斗机和其他高性能军用飞机对平整、坚固的长跑道的依赖,日益成为现代空军的致命的软肋。为了摆脱这一困境,从航空先驱的时代开始,人们就在孜孜不倦地研制能够象鸟儿一样腾飞的具有垂直/短距起落能力的飞机。 自从人们跳出模仿飞鸟拍翅飞行的谜思之后,依据贝努力原理的空气动力升力就成为除气球和火箭外所有动力飞行器的基本原理。机翼前行时,上下翼面之间的气流速度差造成上下翼面之间的压力差,这就是升力。所谓“机翼前行”,实际上就是机翼和空气形成相对速度。既然如此,和机身一起前行时,机翼可以造成升力,机身不动而机翼像风车叶一样打转转,和空气形成相对速度,也可以形成升力,这样旋转的“机翼”就成为旋翼,旋翼产生升力就是直升机可以垂直起落的基本原理。

中国小孩竹蜻蜓玩了有2,000 年了,流传到西方后,成为现代直升机的灵感/ 达·芬奇设计的直升机,到底能不能飞起来,很是可疑 旋翼产生升力的概念并不新鲜,中国儿童玩竹蜻蜓已经有2,000 多年了,西方也承认流传到西方的中国竹蜻蜓是直升机最初的启示。多才多艺的达·芬奇在15 世纪设计了一个垂直的螺杆一样的直升机,不过没有超越纸上谈兵的地步。1796 年,英国人George C ayley 设计了第一架用发条作动力、能够飞起来的直升机,50 年后的1842 年,英国人W.H. Philips 用蒸气机作动力,设计了一架只有9 公斤重的模型直升机。1878 年,意大利人Enrico Forlanini 用蒸气机制作了一架只有3.5 公斤重的模型直升机。1880 年,美国发明家托马斯·爱迪生着手研制用电动机驱动的直升机,但最后放弃了。法国人Paul C ornu 在1907 年制成第一架载人的直升机,旋翼转速每分钟90 转,发动机是一台24 马力的汽油机。Cornu 用旋翼下的“舵面”控制飞行方向和产生前进的推力,但Cornu 的直升机的速度和飞行控制能力很可怜。

直升机发动机原理

一、直升机与普通飞机区别及飞行简单原理: 不可否认,直升机和飞机有些共同点。比如,都是飞行在大气层中,都重于空气,都是利用空气动力的飞行器,但直升机有诸多独有特性。 (1)直升机飞行原理和结构与飞机不同飞机靠它的固定机翼产生升力,而直升机是靠它头上的桨叶(螺旋桨)旋转产生升力。 (2)直升机的结构和飞机不同,主要由旋翼、机身、发动机、起落装置和操纵机构等部分组成。根据螺旋桨个数,分为单旋翼式、双旋翼式和多旋翼式。 (3)单旋翼式直升机尾部还装有尾翼,其主要作用:抗扭,用以平衡单旋翼产生的反作用力矩和控制直升机的转弯。 (4)直升机最显眼的地方是头上窄长的大刀式的旋翼,一般由2~5片桨叶组成一副,由1~2台发动机带动,其主要作用:通过高速的旋转对大气施加向下的巨大的力,然后利用大气的反作用力(相当与直升飞机受到大气向上的力)使飞机能够平稳的悬在空中。 二、平衡分析(对单旋翼式): (1)直升飞机的大螺旋桨旋转产生升力平衡重力。 直升飞机的桨叶大概有2—3米长,一般有5叶组成。普通飞机是靠翅膀产生升力起飞的,而直升飞机是靠螺旋桨转动,拨动空气产生升力的。直升飞机起飞时,螺旋桨越转越快,产生的升力也越来越大,当升力比飞机的重量还大时,飞机就起飞了。在飞行中飞行员调节高度时,就只要通过改变大螺旋桨旋转的速度就可以了。 (2)直升飞机的横向稳定。 因为直升飞机如果只有大螺旋桨旋,那么根据动量守衡,机身就也会旋转,因此直升飞机就必须要一个能够阻止机身旋转的装置。而飞机尾部侧面的小型螺旋桨就是起到这个作用,飞机的左转、右转或保持稳定航向都是靠它来完成的。同时为了不使尾桨碰到旋翼,就必须把直升飞机的机身加长,所以,直升飞机有一个像蜻蜓式的长尾巴。 三、能量方式分析。 根据能量守恒定律可知:能量既不会消失,也不会无中生有,它只能从一种形式转化成为另一种形式。在低速流动的空气中,参与转换的能量只有压力能和动能。一定质量的空气具有一定的压力,能推动物体做功;压力越大,压力能也越大;流动的空气具有动能,流速越大,动能也越大。 而空气的流速只有来自于发动机所带的螺旋桨对空气的作用,当然从这里分析能量也是守衡的。

四轴飞行器培训固定翼飞机机翼升力原理旋翼机抬升原理

四轴?飞?行器培训 首先公布一下群名称是无锡科技模型辅导员qq 群号 196390875,本模型培训的相关文本、ppt 都在群共享内。也可以在本群内进行经验交流 四轴飞行器是多旋翼飞行器的一种。旋翼飞行器与通常靠机翼产生升力飞行的飞机不同,其靠螺旋桨直接向下吹动空气产生向上的推力推动飞行器升空。 最常见的旋翼飞行器就是直升机。我们可以根据直升机的飞行原理,对比理解四轴飞行器的飞行及控制原理。 对于旋翼机来说必须克服的问题是螺旋桨旋转时对机身产生的反向扭固定翼飞机机翼升力原理 旋翼机抬升原理

力。 如图所示,螺旋桨在逆时针转动的时候,会向机身施加一个扭力,使机身向顺时针方向旋转,以达到旋转扭力的平衡。这种现象在我们橡筋动力的直升机大动力飞行中有很明显的体现。常规布局的直升机通过机尾的侧转螺旋桨施加一个逆时针的力来抵消这样的扭力。其他抵消扭力的方式还有共轴双旋翼、纵列(横列)双旋翼甚至横列交叉双旋翼,通过一对向相反方向旋转的旋翼来抵消扭力。其中共轴双旋翼是我们模型直升机中比较常见的形式。它靠两个上下共轴的螺旋桨反转来达到扭力的平衡。

多轴旋翼飞行器也需要抵消螺旋桨与机身的扭力,一般通过成对布置相互逆向旋转的螺旋桨的形式来完成。以四轴为例,一般为两个旋翼顺时针旋转,两个旋翼逆时针旋转。 这样我们就很好理解旋翼机在平面空间内对方向的控制了,实际上就是扭力差的控制。单旋翼带尾桨布局靠控制围螺旋桨的推(拉)力;共轴双螺旋桨靠控制两个螺旋桨的扭力差。四轴旋翼机则靠控制对转的螺旋桨的扭力差来实现转向。而电动模型主要靠控制转速来实现对扭力的控制。在这一控制面上常见的电动模型直升机和四轴旋翼飞行器没有多大的区别。 相对于水平面的方向转动,前进后退和左右偏移等动作常规布局的直升机则依靠周期性改变某一对称侧的螺旋桨攻角差来获得相对的升力差。比如向前运动时前侧螺旋桨攻角小升力小,后侧螺旋桨攻角大升力大,左右侧则相同。这样机身或者螺旋桨就前低后高,取得一个向后下的分力,推动机身前进。而我们通常所使用的电动模型直升机,由于受到成本限制,不可能使用这样复杂的机构。所以一般使用共轴双旋翼解决扭力的问题,空出尾螺旋桨不是向左右侧平衡扭力的作用,而是向上下提供先后倾斜的推力(或者拉力)使得直升机能前后行进。这样的话带来的问题就是不具备可控制的左右偏移的能力。所以在控制这样的电动直升机模型的时候向左右侧移动,一般是先机头转向左侧或右侧,然后操纵前进或者后退。 在这个方面四轴旋翼飞行器就有其先天的优势了。由于有两对螺旋桨,就相当于有两组相对的控制面,通过控制任意两组螺旋桨的相对转速,可以调节某一轴向内两侧的升力差,使得飞行器能向前后、左右任意一侧倾斜。以此获得四向任意一侧的分力向这一侧移动。相应的配合电子陀螺仪感应四向中任意一侧的移动向量可以获得更精确稳定的修正值,使得飞行器更稳定。 例如飞行器需要向左侧飞行,那么右侧一对螺旋桨提高转速,升力提高,左侧一对螺旋桨降低转速,升力降低,升力差使飞行器向左侧倾斜,获得向左上的推力分离,飞行器向左 偏移。如果是在非控制状态下,电子陀螺仪感应到飞行器向左侧倾斜,则可调整左右螺旋桨

直升机旋翼头工作原理

解读直升机旋翼头的奥秘 遥控直升机可说是所有遥控模型里头最为复杂的一个项目,各细节的关连性更是环环相扣,其中最复杂的结构莫过於旋翼头的设计,旋翼头也是性能的主要取决性,本章针对於主旋翼结构对性能的影响作深入的分析,直升机迷们不可错过! 决定性能的旋翼头 决定遥控直升机机体特性的几个要素里项,旋翼头所占的比例相当高。要如何分辨机体特性呢?遥控直升机不像飞机一样,可以从外形上直接分辨出特级机、练习机、象真机,直升机可就不一样了,同样的旋翼头,经过不同的设定与调整,可以让性能有截然不同的表现,就算是相同的直升机,也可以安稳的适合初学者,也可以灵活的对应3D飞行,旋翼头的变化可说是相当大的。相信有许多直升机模友们从直升机的种类,即使不曾亲身试飞过,就可以大约知道飞行的特征,对直升机性能的推断依据多半也是来自于旋翼头的造型设计,但是相信也有更多的朋友们对旋翼头的性能会有著『为什么不一样』的想法?但是想要深入研究,却又被复杂的结构打败。这一次我们就来说明一下关於旋翼头的性能取决做一个研究。 决定性能的四大要素 1、三角补偿角 2、贝尔希拉比率 3、修正率 4、避震橡胶 这四个要素的搭配,可决定大多数直升机的性格。实际上有人测试过,将J牌的旋翼头装在H牌的直升机上面,整体飞行起来的感觉就会比较接近於J牌的感觉。 一、三角补正角 一般玩家可以比较简单变更的一项。请参考图一,以目前市面上多数韵.型态多半是主旋翼夹片球头臂在主旋翼後方(三角补正角为正角度),接著要注意的是夹片球头的部分(图二) ,当夹片球头臂太短的时候,三角补偿角便会增加,当主旋翼高转速运转时执行动作,整体旋翼面的倾斜会使的旋翼夹片会受到三角补偿角的影响增大螺距角度,使的直升机的反应迅速加快执行动作,虽然这样可以增加机体的灵活度,但是你也会同时发现直升机变的更加难以操纵,因为既使是简单的停悬动作,只要风轻轻的吹向旋翼面,直升机主旋翼会做出些微的摆荡运动,但是很容易因为三角补偿角的关系而自行产生螺距角度的变化,造成直升机会出现类似打舵的现象,因此会变的难以控制。 以主旋翼相同的旋转方向来说(顺时针) ,三角补正角的正数值(+)越大,机体越灵敏,但也越不安定。三角补正角负数值(-)越大则越安定,但反应也越迟钝。然而要获得一个折衷的办法,就是让三角补正角度为0度,三角补正角为0度的直升机最好掌握而且不失灵活度。而调整三角补正角的方式也很简单,只需要加长旋翼夹片上的球头长度就可以了,但是要注意旋翼夹片的强度喔!如果是塑胶品的话,建议用新品来改装,免得发生断裂的危险。 每一家厂牌的直升机旋翼头的支点不太一样,以遥控直升机为例,大约有五种型式的旋翼头,所以先确定好支点旋翼头的种类的位置,再来做相关的测量。这样才能够有效的发挥三角补正角的效果。

直升机飞行原理(图解)

飞行原理(图解) 直升机能够垂直飞起来的基本道理简单,但飞行控制就不简单了。旋翼可以产生升力,但谁来产生前进的推力呢?单独安装另外的推进发动机当然可以,但这样增加重量和总体复杂性,能不能使旋翼同时担当升力和推进作用呢?升力-推进问题解决后,还有转向、俯仰、滚转控制问题。旋翼旋转产生升力的同时,对机身产生反扭力(初中物理:有作用力就一定有反作用力),所以直升机还有一个特有的反扭力控制问题。 直升机主旋翼反扭力的示意图 没有一定的反扭力措施,直升机就要打转转/ 尾桨是抵消反扭力的最常见的方法 直升机抵消反扭力的方案有很多,最常规的是采用尾桨。主旋翼顺时针转,对机身就产生逆

时针方向的反扭力,尾桨就必须或推或拉,产生顺时针方向的推力,以抵消主旋翼的反扭力。 抵消反扭力的主旋翼-尾桨布局,也称常规布局,因为这最常见/ 典型的贝尔407 的尾桨主旋翼当然也可以顺时针旋转,顺时针还是逆时针,两者之间没有优劣之分。有意思的是,美、英、德、意、日直升机的主旋翼都是逆时针旋转,法、俄、中、印、波兰直升机都是顺时针旋转,英、德、意、日的直升机工业都是从美国引进许可证开始的,和美国采用相同的习惯可以理解,中、印、波兰是从前苏联和法国引进许可证开始的,和法、俄的习惯相同也可以理解,但美国和俄罗斯为什么从一开始选定不同的方向,法国为什么不和选美国一样的方向,而和俄罗斯一致,可能只是一个历史的玩笑。

各国直升机主旋翼旋转方向的比较尾桨给直升机的设计带来了很多麻烦。尾桨要是太大了,会打到地上,所以尾桨尺寸受到限制,要提供足够的反扭力,就需要提高转速,这样,尾桨翼尖速度就大,尾桨的噪声就很大。极端情况下,尾桨翼尖速度甚至可以超过音速,形成音爆。尾桨需要安装在尾撑上,尾撑越长,尾桨的力矩越大,反扭力效果越好,但尾撑的重量也越大。为了把动力传递到尾桨,尾撑内需要安装一根长长的传动轴,这又增加了重量和机械复杂性。尾桨是直升机飞行安全的最大挑战,主旋翼失去动力,直升机还可以自旋着陆;但尾桨一旦失去动力,那直升机就要打转转,失去控制。在战斗中,直升机因为尾桨受损而坠毁的概率远远高于因为其他部位被击中的情况。即使不算战损情况,平时使用中,尾桨对地面人员的危险很大,一不小心,附近的人员和器材就会被打到。在居民区或林间空地悬停或起落时,尾桨很容易挂上建筑物、电线、树枝、飞舞物品。 尾桨可以是推式,也可以是拉式,一般认为以推式的效率为高。虽然不管推式还是拉式,气流总是要流经尾撑,但在尾桨加速气流前,低速气流流经尾撑的动能损失较小。尾桨的旋转方向可以顺着主旋翼,也就是说,对于逆时针旋转的主旋翼,尾桨向前转(或者说,从右

多旋翼无人机的发展以及应用

多旋翼无人机的发展以及应用 多旋翼无人机是一种能够垂直起降的无人直升机,其发展历史最早可以追溯到1907年,当时Breguet兄弟Louis和Jacque在法国科学家CharlesRichet的指导下,设计制造了世界上第一架有人驾驶的多旋翼飞机—“旋翼机一号”。 多旋翼无人机根据旋翼的数目可以分为四旋翼、六旋翼、八旋翼等类型,还有一些特殊造型的多旋翼无人机,其最大特点就是具有多对旋翼,并且每对旋翼的转向相反,用来抵消彼此反扭力矩。多旋翼无机人相较于其它无人机具有得天独厚的优势,与固定翼飞机相比,它具有可以垂直起降,可以定点盘旋的优点;与单旋翼直升机相比,它采用无刷电机作为动力,并且没有尾桨装置,因此具有机械结构简单、安全性高、使用成本低等优点。多旋翼无人机的诸多优点使它在以下领域获得了广泛的应用: 1.教育科研领域应用,多旋翼无人机的研究涉及到自动控制技术、MEMS传感器技术、计算机技术、导航技术等,是多科学领域融合研究的一个理想平台; 2.航拍领域应用,利用多旋翼无人机搭载相机设备(可见光相机/红外相机),并配备图像传输系统,被人们称为“可飞行的相机”已被广泛的应用于影视航拍。 3.军事领域应用,多旋翼无人机搭载侦查设备快速飞行到危险区域执行侦查任务,为作战人员提供战场信息,是单兵作战的理想装备; 4.警用安全领域应用,无人机可搭载高清晰度数码摄像机:实时图传系统和地面控制系统可有效协助工作人员锁定、凝视关注事物。无人机可搭载物质投递设备:通过集成探杆、线轮、物品仓、软梯等装备,并搭载相关投放设备,可执行物资横向运输、线路牵引、传单投递、物资投递等。警用安防无人机无人机能利用承载的高灵敏度照相机可以进行不间断的画面拍摄,获取影像资料,并将所获得信息和图像传送回地面。应用于反恐维稳,如遇到突发事件、灾难性暴力事件,可迅速达到实时现场视频画面传输,传供指挥者进行科学决策和判断;成为一种不可多得的重要工具。无人机能进一步提高公安干警的响应、决策、评估效率,推动公安的信息化建设进程。 5.农业领域应用,利用多旋翼无人机替代人进行喷洒农药,具有成本低、效率高,减少农药对人体伤害等优势;除了喷洒农药,无人机还可以用来检测水稻长势,这项研究已经开发出了成熟产品。无人机装载光谱传感器,在稻田上空飞一圈,就可以记录下水稻颜色深浅,人们可以此来判断水稻生长情况,对后续农药、肥料喷洒提供参考。无人机还能用来研究土地荒漠化变化历程、植被变迁、土壤盐渍化检测等方面,对农林植物进行病虫害监测和预警。 6.交通领域应用,交警在执法过程中用上了无人机,用于抓拍违法行为。无人机能对监控盲区的违法行为进行补充抓拍,在交通拥堵的情况下,无人机可以率先赶到现场勘察,通过图传功能将交通状况传回指挥中心,便于远程指挥疏导。 7.环保领域应用,无人机可用来观测空气、土壤、植被和水质状况,也可实时跟踪和监测突发环境污染事件的发展;监测企业工厂的废气与废水排放,寻找污染源。 8.救生医疗应用,当发生洪水时,无人机可携带救生绳或救生圈,将其投到需要者身边。当有人在登山过程中突发疾病,无人机可携带急救药品飞到患者身边。 9.电力行业应用,电力无人机应用优势具备防雨水功能的无人机可在大雨、中雪天气飞行,不受恶劣天气影响,可随时巡航,有利于加大重点区段的特巡力度,增加大负荷运行下设备检测次数。无人机机动灵活,机身轻巧可靠,结构紧凑、性能卓越,使用不受地理条件、环境条件限制,特别适合在复杂环境执行任务,可定期对线路通道内树木、违章建筑等情况进行重点排查、清理,确保输电通道安全。傻瓜式自主飞行。无人机系统具备全自动一

交叉双旋翼控制方式

植保无人机设计 应用范围 1.农用植保:载药量相对于市面上大,续航能力更强。全自动无人值守控制更方便。 2.森林消防:续航能力强,必要时可添加副油箱。 3大型航拍:载重提升和较高的悬停稳定性能够提供更强大的航拍画面质量。 飞机结构设计 该型无人机采用交叉双旋翼结构,此种结构具有以下优缺点: 优点:抗侧面风能力强、悬停稳定性较好、由于其稳定性较高,所以相对其他机型更适合于吊挂作业和起重工作;机械结构相对简单,相对的,维护成本和难度相对较低。 缺点:由于采用横列双旋翼结构,由于其气动布局,飞行速度会受到影响、主选翼数每侧最多不能超过两片(超过两片存在潜在的桨叶撞击的可能),所以升力不如其他双旋翼的机型。 应用实例 K-1200起重直升机、美国K-MAX无人运输机等,采用该结构的直升机的机型较少,可借鉴的类型不多(现在应用该结构的机型主要产自卡曼公司)。但是,此类结构早在二战时期就已经出现,而且国内有

某农民自造该结构飞机的案例(结果未定)。 控制原理 通过舵机来控制旋翼的桨叶螺距来改变飞机的飞行姿态,尾桨来调整飞行状态。双旋翼通过齿轮结构来同步转速。 飞行控制板采用pixhawk该控制板具有自动控制、修正飞行状态、自动返航等功能,共有8个通道,所以功能相当丰富,满足该类型无人机的要求。 飞行控制 采用人工控制+自动控制相结合的原理且人工控制要优先于飞机的自动控制。 流程图如下:

自动路径规划流程图 飞行安全 该无人机采用了8个车载雷达探头,用来探测飞机飞行时周围的障碍物来自动调整飞机的飞行状态。 设计数据(参考) 飞机尺寸:长(不含旋翼)2700mm 宽(不含旋翼)800mm 高1200mm 主选翼尺寸:1500-1700mm 飞机质量(空载):60-65kg 载油量(不加副油箱):10-15L 标准载重:50kg 最大载重:60-70kg 主旋翼转速:1000-1200r/min

图解直升机原理

图解直升机原理之一---涡轮轴发动机工作 原理 航空涡轮轴发动机 航空涡轮轴发动机,或简称为涡铀发动机,是一种输出轴功率的涡轮喷气发动机。法国是最先研制涡轴发动机的国家。50年代初,透博梅卡公司研制成一种只有一级离心式叶轮压气机、两级涡轮的单转于、输出轴功率的直升机用发动机,功率达到了206kW(280hp),成为世界上第一台直升机用航空涡轮轴发动机,定名为“阿都斯特—l”(Artouste—1)。首先装用这种发动机的直升机是美国贝尔直升机公司生产的Bell 47(编号为X H—13F),于1954年进行了首飞。 涡轴发动机的主要机件 与一般航空喷气发动机一样,涡轴发动机也有进气装置、压气机、燃烧室、涡轮及排气装置等五大机件,涡轴发动机典型结构如下图所示。

进气装置 由于直升机飞行速度不大,一般最大平飞速度在3 50km/h以下,故进气装置的内流进气道采用收敛形,以便气流在收敛形进气道内作加速流动,以改善气流流场的不均匀性。进气装置进口唇边呈圆滑流线,适合亚音速流线要求,以避免气流在进口处突然方向折转,引起气流分离,为压气机稳定工作创造一个好的进气环境。有的涡轴发动机将粒子分离器与进气道设计成一体,构成“多功能进气道”,以防止砂粒进入发动机内部磨损机件或者影响发动机稳定工作,这种多功能进气道利用惯性力场,使含有砂粒的空气沿着一定几何形状的

通道流动。由于砂粒质量较空气大,在弯道处使砂粒获得较大的惯性力,砂粒便聚集在一起并与空气分离,排出机外(见下图)。 压气机 压气机的主要作用是将从进气道进入发动机的空 气加以压缩,提高气流的压强,为燃烧创造有利条件。根据压气机内气体流动的特点,可以分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构简单、工作较稳定。涡轴发动机的压气机,其结构形式几经演变,从纯轴流式、单级离心、双级离心到轴流与离心混装一起的组合式压气机。当前,直升机的

共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制 姓名:张鲲鹏班号:02020802 学号:2008300596 摘要 本文主要目的是设计共轴双旋翼直升机悬停方向的控制系统。文中主要介绍了此控制系统的设计方案,在时域和频域中详细地分析了系统的稳定性、稳态性能和 动态性能。并且,为达到设计指标,对系统进行了串联校正,使系统能够较好地达 到了指标要求。在控制系统的设计过程中,利用了Scilab和Matlab软件进行仿真 分析,动态直观地反映了系统的性能。 关键字共轴双旋翼直升机串联校正稳定性稳态性能动态性能 引言 研究背景 20世纪40年代初,航空爱好者开始对共轴双旋翼直升机产生浓厚的兴趣。然而,由于当时人们对共轴双旋翼气动特性认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932 年,单旋翼带尾桨直升机研制成功,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空气动力学理论成为半个多世纪来世界直升机发展的主流。然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。俄罗斯1945 年研制成功了卡-8 共轴式直升机,至今发展了一系列共轴双旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50 共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美国海军700 多架。从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶共轴双旋翼形式直升机。在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双旋翼的气动特性、旋翼间的气动干扰进行了大量风洞实验研究。经过半个多世纪的发展,共轴双旋翼的旋翼理论得到不断的发展和完善,这种构形的直升机以它固有的优势越来越受到业内人士的重视。 研究对象特点分析 共轴双旋翼直升机有两副完全相同的旋翼,一上一下安装在同一根旋翼轴上,两旋翼间有一定间距。两副旋翼的旋转方向相反,它们的反扭矩可以互相抵消。这样,就用不着再装尾桨了。直升机的航向操纵靠上下两旋翼总距的差动变化来完成。 共轴双旋翼直升机主要优点是结构紧凑,外形尺寸小。这种直升机无尾桨,机身长度大大缩短。有两副旋翼产生升力,每副旋翼的直径也可以缩短。机体部件可以紧凑地安排在直

旋翼式空气动力保险机构在迫1—甲引信中的应用设计

旋翼式空气动力保险机构在迫1—甲引信中的应用设计 摘要迫击炮为滑膛炮,在所配用弹种的引信保险机构设计中,可利用的环境力只有后坐力,国军标GJB373A明确规定引信必须具有两套独立的保险机构,其中每一个都能防止引信意外解除保险和因引信原因使弹药意外爆炸,而且这两个保险装置应从不同的具体环境获得启动力。本设计采用旋翼式空气动力保险机构对迫1-甲引信进行改进设计,寻求除了后坐力外的第二环境力作为引信保险机构的源动力,旨在为众多引信领域科研工作者提供设计思路。 关键词滑膛炮;保险机构;旋翼式;第二环境力 0引言 在整个引信系统中,保险机构是非常重要的组成部分,保险机构是保证引信的隔爆机构、点火机构以及引信的内含能量在非战斗状态下出去安全状态,当战斗部出炮口后在某一弹道点的位置时,引信依靠保险机构的相关部件起作用而解除保险,从安全状态转变为待发状态,这就是引信解除保险的过程。抗战时期和国内战争时期,由于战争的急促行和兵工技术水平等诸多因素的限制,设计制造的引信质量上有很多缺陷,近些年,兵工部门对产品的设计提出了很多新的要求,如国军标GJB373A明确规定引信必须具有冗余保险,即单个引信必须具有两套独立的保险机构,其中每一个机构都能防止引信意外解除保险和因引信原因使弹药意外爆炸,而且这两个保险装置应从不同的具体环境获得启动力。 引信的保险机构的启动力主要依靠内含能源或环境能源。所说的内含能源,是设计引信的时候就附带的启动力能源,如储能电源、火药动力机、拉压簧等零件或部件;环境能源是指可以在战斗部发射瞬间或飞行过程中升温、升压或产生加速度等外界环境与弹药系统作用产生的能源。迫击炮属于滑膛炮,所以其炮弹的稳定方式只能是尾翼稳定,弹丸飞行过程中非旋或微旋,导致迫击炮弹在引信保险机构设计方面可利用的环境力非常有限,通常只有弹丸在发射瞬间的后坐力作为解除保险的源动力,因此,许多迫击炮弹都没有达到国军标GJB373A的规定,这就给引信的设计和使用带来了许多安全隐患。综上所述,为非旋弹和微旋弹寻求第二环境力应用在引信保险机构的设计中显得十分重要和迫切,利用弹丸在空气中飞行时产生的空气动力作为第二环境力应用在引信保险机构设计中将会使得非旋弹和微旋弹引信的设计更加安全和合理,同时也会使引信满足国军标GJB373A的要求。 2迫1-甲引信结构特点和作用原理 2.1迫1-甲引信的结构 迫1-甲引信属于隔爆雷管型引信,主要配用在60mm迫击炮和82mm迫击炮杀伤榴弹上,采用零号装药发射时其炮弹的最大过载系数为1135。迫1-甲引信的基型引信结构原理如图1所示:

航空航天概论习题及答案

第1章绪论 1、什么是航空?什么是航天?航空与航天有何联系? 航空是指载人或者不载人的飞行器在地球大气层中的航行活动。 航天是指载人或者不载人的航天器在地球大气层之外的航行活动,又称空间飞行或宇宙航行。 航天不同于航空,航天器主要在宇宙空间以类似于自然天体的运动规律飞行。但航天器的发射和回收都要经过大气层,这就使航空和航天之间产生了必然的联系。 2、飞行器是如何分类的? 按照飞行器的飞行环境和工作方式的不同,可以把飞行器分为航空器、航天器及火箭和导弹三类。 3、航空器是怎样分类的?各类航空器又如何细分? 根据产生升力的基本原理不同,可将航空器分为两类,即靠空气静浮力升空飞行的航空器(通常称为轻于同体积空气的航空器,又称浮空器),以及靠与空气相对运动产生升力升空飞行的航空器(通常称为重于同体积空气的航空器)。 (1)轻于同体积空气的航空器包括气球和飞艇。 (2)重于同体积空气的航空器包括固定翼航空器(包括飞机和滑翔机)、旋翼航空器(包括直升机和旋翼机)、扑翼机和倾转旋翼机。 4、航天器是怎样分类的?各类航天器又如何细分? 航天器分为无人航天器和载人航天器。根据是否环绕地球运行,无人航天器可分为人造地球卫星(可分为科学卫星、应用卫星和技术试验卫星)和空间探测器(包括月球探测器、行星和行星际探测器)。载人航天器可分为载人飞船(包括卫星式载人飞船和登月式载人飞船)、空间站(又称航天站)和航天飞机。 5、熟悉航空发展史上的第一次和重大历史事件发生的时间和地点。 1810年,英国人G·凯利首先提出重于空气飞行器的基本飞行原理和飞机的结构布局,奠定了固定翼飞机和旋翼机的现代航空学理论基础。 在航空史上,对滑翔飞行贡献最大者当属德国的O·李林达尔。从1867年开始,他与弟弟研究鸟类滑翔飞行20多年,弄清楚了许多飞行相关的理论,这些理论奠定了现代空气动力学的基础。 美国的科学家S·P·兰利博士在许多科学领域都取得巨大成就,在世界科学界久负盛名。1896年兰利制造了一个动力飞机模型,飞行高度达150m,飞行时间近3个小时,这是历史上第一次重于空气的动力飞行器实现了稳定持续飞行,在世界航空史上具有重大意义。

直升机操控原理

第六章 直升机的操纵原理
直升机不同于固定翼飞机,一般都没有在飞行中 供操纵的专用活动舵面。这是由于在小速度飞行 或悬停中,其作用也很小,因为只有当气流速度 很大时舵面或副翼才会产生足够的空气动力。单 旋翼带尾桨的直升机主要靠旋翼和尾桨进行操纵, 而双旋翼直升机靠两副旋翼来操纵。由此可见, 旋翼还起着飞机的舱面和副翼的作用。

直升机操纵原理
旋翼不仅提供升力同时也是直升机的主要操 纵面。
总距操纵杆:通过自动倾斜器改变旋翼桨叶 总距,控制直升机的升降运动。提杆,增大 总距,升力增大,直升机上升;压杆,减小 总距,直升机下降。
周期变距操纵杆:操纵周期变距操纵杆,使 自动倾斜器相应的倾斜,从而使桨叶的桨距 作每周一次的周期改变,造成旋翼拉力矢量 按相应的方向倾斜,达到控制直升机的前、 后(左、右)和俯仰(或横滚)运动。

直升机操纵原理
脚蹬:控制尾桨,实现航向操纵。 尾桨:平衡旋翼反扭矩、航向操纵。 垂尾:增加航向稳定性。 平尾:增加俯仰稳定性。

直升机操纵原理(续)

6.1 直升机操纵特点
直升机驾驶员座舱 操纵机构及配置直 升机驾驶员座舱主 要的操纵机构是: 驾驶杆(又称周期 变距杆)、脚蹬、 油门总距杆。此外 还有油门调节环、 直升机配平调整片 开关及其他手柄.

驾驶杆和脚蹬
驾驶杆位于驾驶员座椅前面,通过操纵线系与旋翼 的自动倾斜器连接。驾驶杆偏离中立位置表示:
向前——直升机低头并向前运动; 向后——直升机抬头并向后退; 向左——直升机向左倾斜并向左侧运动; 向右——直升机向右倾斜并向右侧运动。 脚蹬位于座椅前下部,对于单旋翼带尾桨的直升机
来说,驾驶员蹬脚蹬操纵尾桨变距改变尾桨推(拉) 力,对直升机实施航向操纵。

直升机飞行原理

直升机与旋翼机的飞行原理 直升机的飞行原理 1. 概况 与普通飞机相比,直升机不仅在外形上,而且在飞行原理上都有所不同。一般来讲它没有固定的机翼和尾翼,主要靠旋翼来产生气动力。这里所说的气动力既包括使机体悬停和举升的升力,也包括使机体向前后左右各个方向运动的驱动力。直升机旋翼的桨叶剖面由翼型构成,叶片平面形状细长,相当于一个大展弦比的梯形机翼,当它以一定迎角和速度相对于空气运动时,就产生了气动力。桨叶片的数量随着直升机的起飞重量而有所不同。重型直升机的起飞重量在20t以上,桨叶的数目通常为六片左右;而轻、小型直升机,起飞重量在以下,一般只有两片桨叶。 直升机飞行的特点是: (1) 它能垂直起降,对起降场地要求较低; (2) 能够在空中悬停。即使直升机的发动机空中停车时,驾驶员可通过操纵旋翼使其自转,仍可产生一定升力,减缓下降趋势; (3) 可以沿任意方向飞行,但飞行速度较低,航程相对来说也较短。 2. 直升机旋翼的工作原理 直升机旋翼绕旋翼转轴旋转时,每个叶片的工作类同于一个机翼。旋翼的截面形状是一个翼型,如图所示。翼型弦线与垂直于桨毂旋转轴平面(称为桨毂旋转平面)之间的夹角称为桨叶的安装角,以表示,有时简称安装角或桨距。各片桨叶的桨距的平均值称为旋翼的总距。驾驶员通过直升机的操纵系统可以改变旋翼的总距和各片桨叶的桨距,根据不同的飞行状态,总距的变化范围约为2o~14o。

气流V 与翼弦之间的夹角即为该剖面的迎角。显然,沿半径方向每段叶片上产生的空气动力在桨轴方向上的分量将提供悬停时需要的升力;在旋转平面上的分量产生的阻力将由发动机所提供的功率来克服。 旋翼旋转时将产生一个反作用力矩,使直升机机身向旋翼旋转的反方向旋转。前面提到过,为了克服飞行力矩,产生了多种不同的结构形式,如单桨式、共轴式、横列式、纵列式、多桨式等。对于最常见的单桨式,需要靠尾桨旋转产生的拉力来平衡反作用力矩,维持机头的方向。使用脚蹬来调节尾桨的桨距,使尾桨拉力变大或变小,从而改变平衡力矩的大小,实现直升机机头转向(转弯)操纵。 3. 直升机旋翼的操纵 直升机的飞行控制与飞机的飞行控制不同,直升机的飞行控制是通过直升机旋翼的倾斜实现的。直升机的控制可分为垂直控制、方向控制、横向控制和纵向控制等,而控制的方式都是通过旋翼实现的,具体来说就是通过旋翼桨毂朝相应的方向倾斜,从而产生该方向上的升力的水平分量达到控制飞行方向的目的。 直升机体放在地面时,旋翼受其本身重力作用而下垂。发动机开车后,旋翼开始旋转,桨叶向上抬,直观地看,形成一个倒立的锥体,称为旋翼锥体,同时在桨叶上产生向上的升力。随着旋翼转速的增加,升力逐渐增大。当升力超过重力时,直升机即铅垂上升(图;若升力与重力平衡,则悬停于空中;若升力小于重力,则向下降落。 旋转旋翼桨叶所产生的拉力和需要克服阻力产生的阻力力矩的大小,不仅取决于旋翼的转速,而且取决于桨叶的桨距。从原理上讲,调节转速和桨距都可以调节拉力的大小。但是 桨毂旋转面 桨毂旋转轴线 前缘 后缘 b ? α V 图 直升机的旋翼 (a) (b)

最新共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制

共轴双旋翼直升机悬停方向的控制 姓名:张鲲鹏班号:02020802 学号:2008300596 摘要 本文主要目的是设计共轴双旋翼直升机悬停方向的控制系统。文中主要介绍了此控制系统的设计方案,在时域和频域中详细地分析了 系统的稳定性、稳态性能和动态性能。并且,为达到设计指标,对系 统进行了串联校正,使系统能够较好地达到了指标要求。在控制系统 的设计过程中,利用了Scilab和Matlab软件进行仿真分析,动态直 观地反映了系统的性能。 关键字共轴双旋翼直升机串联校正稳定性稳态性能动态性能 引言 研究背景 20世纪40年代初,航空爱好者开始对共轴双旋翼直升机产生浓厚的兴趣。然而,由于当时人们对共轴双旋翼气动特性认识的缺乏以及在结构设计方面遇到的困难,许多设计者最终放弃了努力,而在很长一段时间对共轴式直升机的探讨只停留在实验阶段。1932 年,单旋翼带尾桨直升机研制成功,成为世界上第一架可实用的直升机。从此,单旋翼带尾桨直升机以其简单、实用的操纵系统和相对成熟的单旋翼空气动力学理论成为半个多世纪来世界直升机发展的主流。然而,人们对共轴双旋翼直升机的研究和研制一直没有停止。俄罗斯1945 年研制成功了卡-8 共轴式直升机,至今发展了一系列共轴双旋翼直升机,在型号研制、理论实验研究方面均走在世界前列。美国也于50 年代研制了QH-50 共轴式遥控直升机作为军用反潜的飞行平台,并先后交付美国海军700 多架。从20 世纪60 年代开始,由于军事上的需要,一些国家开始研制无人驾驶共轴双旋翼形式直升机。在实验方面,从20 世纪50 年代起,美国、日本、俄罗斯等相继对共轴双旋翼的气动特性、旋翼间的气动干扰进行了大量风

航空概论习题1

航空概论习题 一、选择题(每题只有一个正确答案,100X1分) 1、轻于空气的航空器主要包括: ( C ) A.滑翔机和旋翼机 B. 滑翔机和飞艇 C. 气球和飞艇 D. 气球和旋翼机 2、重于空气的航空器主要有:( D ) A固定翼航空器 B.旋翼航空器和 C.固定翼航空器和滑翔机 D.固定翼航空器和旋翼航空器 3、根据温度随高度的分布大气层可划 分为几层( B ) 4、航空器飞行通常在那两层( C ) A. 对流层和电离层 B. 平流层和中间层 C. 对流层和平流层 D. 平流层和散逸层 5、流体的状态参数是指(D ) A.密度 B. 温度 C. 压力 D. 以上都是 6、下列对流体的描述正确的是(A ) A.流体的可压缩性越大、声速越小 B.流体的可压缩性越大、声速越大 C.流体的可压缩性越小、声速越小 D.流体的可压缩性大小与声速无 关 7、连续性定理下列说法正确的是( C ) A. 流管面积小流速小 B. 流管面积大流速大 C. 流管面积小流速大 D. 以上都不对 8、伯努利定理下列叙述正确的是(B ) A. 流速大的地方、气体的压力大 B. 流速小的地方、气体的压力大 C. 流速小的地方、气体的压力小 D. 以上说法都不对 9、飞行器可分为几类(B) A.两类 B.三类 C. 四类 D.五类 10、流体具有的三种物理特性是(C) A.伸张性、传热性、黏性 B.流动性、伸张性、弹性 C.弹性、黏性、热传性 D.流动性、热传性、黏性 11、下列关于机翼参数说法不正确的是(C) A.从机翼翼尖的一端到另一端的距离叫翼展 B.翼根弦长和翼尖弦长之比叫梯形比 C.机翼前缘同垂直于机身中心线的直线之间所夹的角叫后掠角 D.机翼1/4弦线同垂直机身轴线的直线之间所夹的角叫后掠角 12、减小诱导阻力的首选措施是(C) A.选择适当的平面形状 B.采用翼稍邮箱布局来阻挡 C.增大机翼的展弦比 D.采用翼稍小翼装置 13、民用飞机通用的燃料一般是(D ) A.汽油 B.柴油 C.花生油 D.航空煤油 14、充满着运动流体的的空间称为

相关文档
相关文档 最新文档