文档库 最新最全的文档下载
当前位置:文档库 › 求变力做功的六种方法

求变力做功的六种方法

求变力做功的六种方法
求变力做功的六种方法

求变力做功的六种方法

方法一 动能定理法

动能定理是求变力做功的首选思路,基本方法是:由动能的变化求合力功,再求某个力的功.

例1 (2015·海南)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高.质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g ,质点自P 滑到

Q 的过程中,克服摩擦力所做的功为( C )

A.14mgR

B.13

mgR C.12mgR D.π4

mgR

方法二 图像法

在F -x 图像中,图线和x 轴所围的面积表示F 做的功.在x 轴上方的“面积”表示正功,x 轴下方的“面积”表示负功.

例2 一质量为2 kg 的物体,在水平恒定拉力的作用下以一定的初速度在粗糙的水平面上做匀速运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图像.已知重力加速度g =10 m/s 2,由此可知(ABC )

A .物体与水平面间的动摩擦因数约为0.35

B .减速过程中拉力对物体所做的功约为13 J

C .匀速运动时的速度约为6 m/s

D .减速运动的时间约为1.7 s

方法三 平均力法

若F -x 按线性规律变化,当F 由F 1变化到F 2的过程中,力的平均值为F =F 1+F 22

,再利用功的定义式W =Flcos α来求功.

例3 如图所示,长为L ,质量为m 的矩形板,以速度v 沿光滑水平面运动,滑上长度为l 的粗糙水平面(l <L),在板的前端刚到达粗糙水平面的末端时,这一过程中克服摩擦力做的功为多大?已知动摩擦因数为μ.

【答案】 μmgl 22L

【解析】 矩形板滑上粗糙水平面过程中,所受摩擦力与位移成正比,摩擦力的平均值为f -=μmgl 2L

, 克服摩擦力做功为W =f -·l =μmgl 22L

. 方法四 等效转换法

若所求变力的功和某一恒力的功效果相同,可将变力做功转化为恒力做功,在“滑轮拉物体”的问题中,注意应用这种方法.

例4 人在A 点拉着绳通过一定滑轮吊起质量m =50 kg 的物体,如图所示,开始时绳与水平方向的夹角为60°.当人匀速提起重物由A 点沿水平方向运动l =2 m 而到达B 点时,绳与水平方向成30°角.则人对绳的拉力做了多少功?

五种方法搞定变力做功问题

五种方法搞定变力做功 一.微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w ?=来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的 质量为m ,物块与轨道间的动摩擦因数为μ。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大 小不变,方向时刻变化,是变力,不能直接用求解; 但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直 线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做 的功,然后再累加起来,便可求得结果 图1 把圆轨道分成无穷多个微元段,摩擦力在每一 段上可认为是恒力,则每一段上摩擦力做的功分别 为 , ,…,,摩擦力在一周内所做的功 二、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值2 21F F F +=,再由αc o s L F W =计算变力做功。如:弹簧的弹力做功问题。 例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运 动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则 小物块运动到x 0处时的动能为 ( ) A .0 B .02 1x F m C .04x F m π D .204 x π 【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为 04m F x π.C 答案正确. 图2

三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经 过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系 一定是: A .E K B -E KA =E K C -E KB B .E KB -E KA E KC -E KB D . E KC <2E KB 【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD. 四.应用公式Pt W =求解。 当机车以恒定功率工作时,在时间内,牵引力做的功Pt W =。 例 4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值m v 。求机车在这段时间内牵引力所做的功。 解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力是变力,因此,机车的牵引力做功不能直接用公式αcos FS W =来求解,但可用公式Pt W =来计算。 根据题意,机车所受阻力kmg f =。且当机车速度达到最大值时,f F =牵。 所以机车的功率为:max max max kmgv fv v F P ===牵。 根据Pt W =,机车在这段时间内牵引力所做的功为: t kmgv Pt W m ==牵。 五.S F -图象法。 在S F -图像中,图线与坐标轴围成的面积在数值上表示力F 在相应的位移上对物体做的功。这一点对变力做功问题也同样适用。 例5.如图4所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 图4

增强记忆力的10种方法

增强记忆力的10种方法 记忆方法是因人而异的,有的擅长看(视觉型),有的人擅长听(听觉型),有的人擅长用嘴和手(运动型)等等;比较常见的是混合型的记忆方法,而这种方法的记忆效果最佳。 科学研究表明,人的大脑的功能只有很小的一部分被开发和利用,人的脑细胞还没有得到充分的使用。人的许多能力的培养,大多要从掌握方法做起,人的记忆能力之差距,在很大程度上是由记忆方法的差距引起的。人们通常使用的记忆方法,多是运用了大脑左半球的一部分功能而已,右半球的功能只是偶尔被利用一下。 人的记忆潜能从理论上讲是无限的。有的人记忆力好得出奇,是因为他们能天长日久地训练自己的记忆力,脑子中的记忆方法越来越多,结果,记忆力就越来越好。因此,要想成功地改进孩子的记忆能力,关键在于要加强记忆方法的训练。 1在理解基础上进行记忆 在积极思考、达到深刻理解的基础上记忆材料的方法,叫做理解记忆法。理解记忆的基本条件是对材料进行思维加工。 有些材料,如科学概念、范畴、定理、法则和规律、历史事件、文艺作品等,都是有意义的。人们记忆这类材料时,一般都不采取逐字逐句强记硬背的方式,而是首先理解其基本含义,即借助已有的知识经验,通过思维进行分析综合,把握材料各部分的特点和内在的逻辑联系,使之纳入已有的知识结构,以便保持在记忆中。理解记忆的全面性、牢固性、精确性及迅速有效性,依赖于小学生对材料理解的程度。理解记忆的效果优于机械记忆。 ◎实验证明 德国著名心理学家艾宾浩斯在做记忆的实验中发现:为了记住12个无意义音节,平均需要重复历5次;为了记住36个无意义音节,需重复54次;而记忆六首诗中的480个音节,平均只需要重复8次!这个实验告诉我们:凡是理解了的知识,就能记得迅速、全面而牢固。不然,愣是死记硬背,那真是费力不讨好。 理解记忆是以理解材料内容为前提的。这种理解不仅指看懂了材料,而且包括搞懂了材料各部分之间的逻辑联系,以及该材料和以前的知识经验之间的关系。因此,在记忆材料的时候,我们要尽可能向孩子强调先理解、后记忆的要求,而不要从一开始就逐字逐句地死记。 2利用直观形象进行记忆 根据心理学家的统计和研究,小学生擅长于具体形象的记忆。直观、形象的东西,尤其是视觉映像,容易给孩子留下深刻的印象。 因此,当孩子记忆一些抽象的东西,尽可能与具体、形象的东西结合起来,在形象的基础上,概括出具有普遍性的结论。

新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等. 一、求解变力做功的几种方法 法1.用公式W =F - l cos α求变力做功 如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2 2来计 算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力. 【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(3-1)d B .(2-1)d C. 5-1d 2 D. 22 d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F - 2d ′=kd +k d +d ′2 d ′,联立解得d ′ =(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确. 【答案】 B 法2.用图象法求变力做功 在F - x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同. 【典例2】 用质量为5 kg 的均匀铁索,

从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2 ) 【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002 N =225 N 故该过程中拉力做功:W =F - h =2 250 J. 方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200 2×10 J =2 250 J. 【答案】 2 250 J 法3.用微元法求变力做功 圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了. 【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功. 【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF . 【答案】 2πRF . 变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块

增强记忆力的简单训练方法

增强记忆力的简单训练方法 来源:未知 | 作者:admin | 本文已影响 185107 人 美国麻省理工学院科学家的一份报告说:假设你始终好学不倦,那么,你脑子一生储藏的各种知识,将相当于美国国会图书馆藏书的五十倍。据说,该图书馆藏书一千多万册,也就是说,人的记忆容量相当于五亿本书籍的知识总量。还有人估计,全世界图书馆藏书七亿七千万册。它们所包括的信息总量共有四千六百万亿比特,这正好和一个人脑所能记忆的信息大体相当。并且,人的记忆可以保持七十到八十年以上。 一、增强记忆能力的简单方法 (一)回忆一天的细节 这种增强记忆的锻炼你可以每天在入睡之前进行。如果你能老老实实地坚持一个月内每天晚上都做一次,结果会让你大吃一惊。 .上床准备睡觉前,或背靠着忱头坐着,或躺着,但要确保自己在10-15分钟之内保持清醒。 .通过有意识的做几分钟呼吸运动来放松自己。 .从今天做的最后一件事开始,回忆其最具体的细节。这可能包括让自己舒舒服服地躺在床上,注意自己的呼吸运动。 .然后再往前想,回忆就在这之前做的事,也许是爬上床。然后是在这之前的事,也许是刷牙,回忆你的感觉和想法。 .想像你的一整天是一盘电影胶片,现在正在倒着放映。就像倒退着走路或说倒话,就与看倒着放的电影一样,假如这样,你是观众(也是回忆者),倒着回顾你一天中的每一时刻。 诸如: 我正躺在床上开始回忆我的一天。 我从浴室走到床边。 我从梳妆台走到浴室。 我站在梳妆台旁对妻子或丈夫说了这样的话。 我从起居室走进卧室,站在梳妆台旁。 我关掉起居室内的电视和灯。 我坐在自己喜欢的椅子上,翘着脚,看<亡命天涯>. 在此之前,我透过窗户,看到一轮圆月从天边冉冉升起。

变力做功的计算

变力做功的计算 Prepared on 22 November 2020

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少 图3 答案:。 二、图象法

提高记忆力的方法秘诀

提高记忆力的方法秘诀 许多学习材料很难记忆,在它们之间不易找出有意义的联系,例如,历史年代、统计数字等等。 如果对这些学习材料利用谐音加某种外部联系,这样就便于贮存,易于回忆。 据说,有位老师上山与山顶寺庙里的和尚对饮,临走时,布置学生背圆周率,要求他们背到小数点后22位:3.1415926535897932384626。 大多数同学背不出来,十分苦恼。 有一个学生把老师上山喝酒的事结合圆周率数字的谐音编了一句顺口溜:“山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐而乐。 待老师喝酒回来,个个背得滚瓜烂熟。 这位聪明的学生就是利用谐音法来帮助记忆的。 利用谐音法还可以帮助记忆某些历史年代。 不少学生觉得记忆历史年代是件很苦恼的事,不容易记住,而且还容易混淆。 但是,要学好历史,又必须记住历史年代,因为没有时间也就无所谓历史。 于是,许多考生利用谐音法来帮助记忆历史年代。 例如,甲午战争爆发于1894年,用它的谐音:“一把揪死,就非常容易记住。

当然,谐音记忆法只适于帮助我们记忆一些抽象、难记的材料,并不能推而广之,用于记忆所有的材料。 2.联想法训练联想法是运用想象把有关信息联想起来的方法。 当一种事物和另一种事物相类似时,往往会从这一事物引起对另一事物的联想。 把记忆的材料与自己体验过的事物连结起来,记忆效果就好。 在外语单词里,有发音相似的,有意义相似的,这些都可以利用相似联想法来帮助记忆。 辽宁黑山北关实验学校和北京景山学校在小学低年级试验一种集中识字的方法,可使学生在两年内认字2500个,阅读一般书籍报纸。 这种识字法就运用了类似联想记忆法的道理,把字形、字音相近,能互相引起联想的字编成一组一组的,像把“扬、肠、场、畅、汤放在一起记,把“情、清、请、睛、睛放在一起记。 每组汉字的右边都是相同,每组字的汉语拼音也有共性,前一组的汉语拼音后面都是“ang,后一组的汉语拼音都是qing,这样就可以学得快、记得住。 3.利用直观形象进行记忆直观、形象的东西,尤其是视觉映像,容易给孩子留下深刻的印象。 因此,当孩子记忆一些抽象的东西,尽可能与具体、形象的东西结合起来,在形象的基础上,概括出具有普遍性的结论。 一位学生说:他很快就记住了他的一个朋友的电话号码:33329916。

求变力做功的几种方法

求变力做功的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时 细绳与水平方向夹角分别为α和β。求滑块由A 点运动到B点过程中,绳的拉力对滑块所做的 功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为: A 0焦耳 B 20π焦耳 C 10焦耳 D 20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故 B正确。

如何提高人记忆力的小方法

如何提高人记忆力的小方法 方法1、把两腿跷在椅子或者桌子上几分钟,记住,腿一定要高过心脏位置。 当一个人的双腿跷起高过心脏之后,脚和腿部的血液会回流到肺部及心脏,不仅可以减轻脚部和腿部静脉的压力,还可使头部的供血量大大增加,使你神清气爽。 方法2、没事的时候摇摇头、晃晃脑也有助于记忆力的提高。 颈动脉是向脑部供血的管道,摇头晃脑可使这些组织得到活动,不但可以增加脑部的供血,还可以减少脂肪在颈动脉血管沉积的可能,也有利于高血压、颈椎病的预防。 方法3、一天叩齿50次,可拉动头部肌肉,促进头部血液循环,增强大脑记忆力。 叩齿时,口水分泌也会增多,口水中含有腮腺素,有延缓衰老的作用。近年来有人研究发现,口水中含有抑癌成分,可有效预防消化道的恶性肿瘤。 方法4、多动手指能刺激大脑。 手指是人的第二大脑,手指与大脑相连的神经最多,通过运动手指,可以有效刺激大脑,延缓脑细胞死亡时间 方法5、不经意间的伸懒腰,对大脑也有好处。 身体长时间处于一种姿势时,上肢肌肉组织的末梢血管会淤积很多血液,伸懒腰的过程,恰是肌肉收紧和放松的过 程,淤积的血液被赶回心脏,心脏得到的血多了,输往全身各处的血也多了,大脑也能分得一杯羹。 方法6、良好的头部血液循环功能有助于提高记忆力,延缓大脑衰老。

随身携带一把牛角梳,或者以指梳头,可改善头皮的血运。具体做法是两手十指微张,从前到后,由上向下,梳理头发,一天做三四次,一次做三五分钟,可起到提高智力、养神健脑的作用,对于神经衰弱的患者更有益处。 没事的时候,可伸伸手指,蜷蜷手指,二者交替进行,或者左右手交替按摩指尖,也可经常用手握握健身球,让两个健身球在手中旋转。或者把大米与黑豆掺在一起,再把它们分别拣出来,用这些动作来锻炼双手,达到强化或保持大脑记忆力的目的 方法7、“迈开腿、勤喝水”。 大脑由两个半球组成,左侧大脑支配右侧肢体,右侧大脑支配左侧肢体,所以说下肢的活动可刺激对侧大脑皮层的活动,起到健脑作用。一周慢跑、快走5次,一次半个小时的运动虽然简单,却能提高记忆力。 水分占了大脑的50%,勤喝水,不仅可以延缓衰老,还对大脑有好处。喝水时应掌握少量多次的原则,等到渴了再喝,说明你体内已经相当缺水了

高中生提高记忆力的方法及诀窍

高中生提高记忆力的方法及诀窍 高中生提高记忆力的方法1、背诵找窍门、联想法 学习一些记忆法来帮助你记忆。比如首字母记忆法,把要记忆的一组东西编成一个小故事,或者找出数字间的规律等等。使用记忆法可以帮助你记住一些复杂的东西。 2、大脑保持活跃 大脑就象肌肉,常锻炼能促进大脑发育。学一种新语言、一种乐器,或者玩玩智力游戏都是保持大脑活跃的好办法。前面几条都能做到的话,大脑自然可以保持长久的活力! 3、舍得花时间去记 不专心去记的东西一定是转眼就忘。如果你真想记住,不要分心,放下手中复杂的工作,花一点时间专心去记,效果会很好。 4、生活有条理 用过的东西放回原处,使用备忘录或者计划手册来记住每天的安排,把电话号码和地址存在固定的地方。井井有条的生活可以让你的大脑有更多空余部分来记住更重要的东西,而不是被琐事困扰。说句俗话,就是少占用内存! 5、善于观察 很多时候记不住不是因为记性差,是因为看的不仔细。头天见到的新人,第二天再碰见就想不起来了,多半是因为没有专门去记。训练观察力可以用一张自己不熟悉的画面,看几秒钟后翻过去,尝试叙述画中的内容。每次做这个练习的时候都找一张自己没见过的画,多加训练就可练就过目难忘。看到的想到的都可

以帮助记忆,多看多记效率也会更高一点。 高中生提高记忆力的窍门1、减轻压力 持续的压力对大脑有损害。突发性的压力也会让你暂时难以专心有效的工作。放松,练练瑜珈或者看看心理医生来排解压力。无压力是一种很奢侈的状态,先把自身精神状态调节好,自然就可以集中精力放心记忆了! 2、重复记忆 重复得越多,记得越牢。可以心里默念,也可以写下来,找各种方法重复需要记住的内容。重复记忆不是笨方法,是一种记忆规律,所以不要觉得重复记忆浪费时间就不去做,如果有效率,重复记忆是最简单最准确的记忆方法哦。 3、归类 杂乱无章的东西很难记住,给它们分类,往往记住一个就能联想起一组。 4、每天锻炼身体 有氧锻炼对身体的各部分,包括大脑都有好处。锻炼身体虽说没有什么直观性,但是如果身体好,精神有活力,记忆东西是非常有效率的,身体是革命的本钱,同志们锻炼起来! 如何提高记忆力的方法方法一:多看看自然景色 心理学家早就发现,自然对于我们人类有许多神奇的作用,其中之一就是能够提高我们的记忆力。有人做了这样一个研究,让两组人完成同一个记忆任务,一组人在繁忙的大街上走一圈,一组人在植物园里走一圈,结果发现后者的记忆效果超过前者20%。你甚至都不要真的走到室外,只要看一眼风景照片都会有效,尽管效果要打些折扣。所以,我们强烈建议你将电脑的桌面和屏保设置成风景,这将会有利于你拥有好的情绪,情绪和心情的好坏可以决定你的记忆力的强

考物理复习二轮专题《求变力做功的几种方法》.doc

考物理复习二轮专题《求变力做功的几种方法》 一、知识讲解 功的计算在中学物理中占有十分重要的地位, 中学阶段所学的功的计算公式 W=FScosa 只能用于恒力做功情况, 对于变力做功的计算则没有一个固定公式可用, 当 F 为变力时, 用 动能定理 W= E k 或功能关系求功,高中阶段往往考虑用这种方法求功。这种方法的依据是: 做功的过程就是能量转化的过程, 功是能的转化的量度。 如果知道某一过程中能量转化的数 值,那么也就知道了该过程中对应的功的数值。 下面是对这种方法的归纳与总结下面对变力 做功问题进行归纳总结如下: 1、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。 而恒力做功又可以用 W=FScosa 计算,从而 使问题变得简单。 例 1、如图,定滑轮至滑块的高度为 h ,已知细绳的拉力为 F (恒定),滑块沿水平面由 A 点前进 S 至 B 点,滑块在初、末位置时细绳与水平方向夹角 分别为α和β。求滑块由 A 点运动到 B 点过程中,绳的拉力对滑块所做的功。 分析与解:设绳对物体的拉力为T ,显然人对 绳的拉力 F 等于 T 。T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该 问题是变力做功的问题。 但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下, 人对绳做 的功就等于绳的拉力对物体做的功。 而拉力 F 的大小和方向都不变, 所以 F 做的功可以用公 式 W=FScosa 直接计算。 由图 1 可知,在绳与水平面的夹角由α变到β的过程中 , 拉力 F 的作 用点的位移大小为: S S 1 h h S 2 sin sin W T W F F . S Fh ( 1 1 ) sin sin 2、微元法 当物体在变力的作用下作曲线运动时, 若力的方向与物体运动的切线方向之间的夹角 不变, 且力与位移的方向同步变化, 可用微元法将曲线分成无限个小元段, 每一小元段可认 为恒力做功,总功即为各个小元段做功的代数和。 例 2 、如图所示,某力 F=10N 作用于半径 R=1m 的转盘的边缘上,力 F 的大小保持不变,但方向始终保持与作用点的切线方向一 致,则转动一周这个力 F 做的总功应为: A 、 0J B 、 20π J C 、10J D 、20J. 分析与解:把圆周分成无限个小元段,每个小元段可认为 与力在同一直线上,故 W=F S ,则转一周中各个小元段做功的代数和为 W=F × 2π R=10× 2 π J=20 π J ,故 B 正确。 3、平均力法

求变力做功的几种方法

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时细 绳与水平方向夹角分别为α和β。求滑块由A点 运动到B点过程中,绳的拉力对滑块所做的功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是 变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这 个力F做的总功应为: A0焦耳B20π焦耳 C 10焦耳D20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20π J,故B正确。 三、平均力法

求变力做功的六种方法

求变力做功的六种方法 都匀市民族中学:王方喜 在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。本文举例说明了在高中阶段求变力做功的常用方法,比如微元累积(求和)法、平均力等效法、功率的表达式Pt W=、F-x图像、用动能定理、等效代换法等来求变力做功。 一、运用微元积累(求和)法求变力做功 求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。 例1 如图1-1所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功. 图1-1 【分析与解答】在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小位移Δs同向.这样,无数瞬时的极小位移Δs1,Δs2,Δs3…Δsn都与当时的F方向同向.因而在转动一周过程中,力F做的功应等于在各极小位移段所做功的代数和.即 W=FΔs1+FΔs2+…FΔsn =F(Δs1+Δs2+Δs3+…Δsn) =F2πR 【总结】 变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉直考虑,在各小段位移上将变力转化为恒力用W=FLcosθ计算功,而且变力所做功应等于变力在各小段所做功之和。 【检测题1-1】 如图1-2所示,有一台小型石磨,某人用大小恒为F、方向始终与磨杆垂直的力推磨,设施力点到固定转轴的距离为L,在使磨转动一周的过程中,推力做了多少功? 图1-2【检测题1-2】 小明将篮球以10 m/s的初速度,与水平方向成30°角斜向上抛出,被篮球场内对面的小虎接到,小明的抛球点和小虎的接球点离地面的高度都为1.8 m.由于空气阻力的存在,篮球被小虎接到时的速度是6 m/s.已知篮球的质量m=0.6 kg,g取10 m/s2.求: (1)全过程中篮球克服空气阻力做的功; (2)如果空气阻力恒为5 N,篮球在空中飞行的路程. 二、运用平均力等效法求变力做功 当力的方向不变,而大小随位移线性 ..变化时(即F=kx+b),可先求出力的算术平均值2 2 1 F F F + =,再把平均值当成恒力,用功的计算式求解。用平均值求变力做功的关键是先判断変力F 与位移x是否成线性关系。 例2. 要把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k。问此钉子全部进入木板需要打击几次? 【分析和解答】 在把钉子打入木板的过程中,钉子把得到的能量用来克服阻力做功,而阻力与钉子进入木板的深度成正比,先求出阻力的平均值,便可求得阻力做的功。 钉子在整个过程中受到的平均阻力为:

变力做功的求解方法

变力做功的求解方法 物理与电子信息工程学院物理学 [摘要] 功是物理学中最常见的物理量,变力做功的求解方法也是贯穿大学物理的重点和难点之一,它在力学、理论力学中都占有十分重要的地位。本文分别用图像法、动能定理、功能原理、微元法、平均力法、等值法等不同方法对物理学中变力做功的求解方法进行了较全面、系统的研究,并附以实例说明这些方法的应用。通过对这些方法和实例的讨论,以使我能对变力做功的求解方法有更深刻的理解和巩固,进一步提高我灵活运用这些方法解决实际问题的能力。 [关键词] 变力功图像法等效代换法 1 前言 功是物理学中最常见的物理量,对于变力做功的求解,教材上通常采用极限的思想和微积分的方法将物体的运动轨迹分割成许多小段,因每小段很小,所以每小段可视为一方向不变的位移,而在这小位移上的力也可视为恒力。又因小位移为无穷小量,可认为它与轨迹重合,称之为元位移,而力在元位移上做的功称之为元功。这样就顺利的将求解变力做功的问题转化为了求无数多个元功之和。然而,求解变力做功的方法并不是唯一的,在很多实际问题中也可以根据实际寻找最为简便有效的方法。对此,本文将分别从图像法、微元法、等值法、平均力法、动能定理、功能原理等不同角度对变力做功的求解方法进行较全面、系统的研究,并以实例说明这些方法的应用。 2 用图像法求变力做功 功是描写力对空间的积累作用的,它的大小可以用作用力随位移变化的关系曲线,如图2.2.1力-位移图象下的一块图形面积的大小来表示。如图甲所示表示恒力的力-位移图像,横坐标表示力F在位移方向上的分量,功W的数值等于直线下方画有斜线部分的面积.如图乙所示表示变力的力-位移图像,曲线下方画有斜线部分的面积就表示变力所做的功,它近似地等于成阶梯形的小矩形面积的总和。

几种求变力做功的常用方法

几种求变力做功的常用方法 摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教 学的难点。本文举例说明在高中阶段求变力做功的常用方法,比如用等效转换、 平均值及F-s图像、动能定理及功能关系、功率的表达式W=Pt、微元法、转换参 考系等方法来求解变力做功。 关键词:変力功等效平均值图像动能定理功能关系功率微元 法参考系 对于功的定义式W=Fscosα,其中的F是恒力,适用于求恒力做功,其中的s 是力F的作用点发生的位移,α是力F与位移s的夹角。在高中阶段求变力做功 问题,既是学生学习和掌握的难点,也是教师教学的难点。求变力做功的方法很多,比如用等效转换、平均值及F-s图像、动能定理及功能关系、功率的表达式 W=Pt、微元法、转换参考系等方法来求解变力做功。 一、等效转换法 求某个过程中变力做的功,可以通过等效转换法把求该变力做功转换成求与 该变力做功相同的恒力功,此时可用功定义式W=Fscosα求恒力的功,从而可知 该变力的功。等效转换的关键是分析清楚该变力做功到底与哪个恒力的功是相同的。 例1:如图所示,某人用恒定的力F拉动放在光滑水平面上的物体。开始时 与物体相连的轻绳和水平面间的夹角为α,当拉力F作用一段时间后,绳与水平 面间的夹角为β。已知图中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力FT 对物体所做的功。 解析:拉力FT在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。由题意可知,人对绳做的功等于拉力FT对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。 由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移为:,所以绳对物体做功:。 二、平均力法及图像法 1.如果一个过程中,若F是位移s的线性函数时,即F=ks+b时,可以用F的平均值 F=(F1+F2)/2来代替F的作用效果来计算。关键是先判断变力F与位移s是否成线性关系,然 后求出该过程初状态的力F1和末状态的力F2,再求出平均力和位移,然后由W=Fscosα求其功。 2.对于力与位移方向在同一条直线上,大小随位移变化的力,在F-x图像中,图线与坐标 轴所围成的“面积”表示功,作出变力变化的F-x图像,图线与位移轴所围的“面积”即为变力做的功。力学中叫作示功图。 例2:如图所示,轻弹簧一端与竖直墙壁相连,另一端与一质量为m的木块连接,放在光 滑的水平面上。弹簧劲度系数为k,开始时处于自然长度。现用水平力缓慢拉木块,使木块 前进x,求拉力对木块做了多少功? 解析:在缓慢拉动过程中,力F与弹簧弹力大小相等,即F=kx。当x增大时,F增大, 即F是一变力,求变力做功时,不能直接用Fscosα计算,可以用力相对位移的平均值代替它,把求变力做功转换为求恒力做功。F缓慢拉木块,可以认为木块处于平衡状态,故拉力等于 弹力,即F=kx。因该力与位移成正比,可用平均力F=kx求功,故W=F·x=kx2。 此题也可用图像法:F缓慢拉木块,可以认为木块处于平衡状态,故拉力等于弹力,即 F=kx,作出F-x图,求出图线与坐标轴所围成的“面积”,结果也是 W=F·x=1/2kx2。 三、动能定理法及功能关系法

变力做功的计算

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然 后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元 段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用 计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少? 图3 答案:31.4J。 二、图象法 在直角坐标系中,用纵坐标表示作用在物体上的力F,横坐标表示物体在力的方向上的位移s。如果作用在物体上的力是恒力,则其F-s图象如图4所示。经过一段时间物体发生的位移为s0,则图线与坐标轴所围成的面积(阴影面积)在数值上等于力对物体做的功W =Fs,s轴上方的面积表示力对物体做正功(如图4(a)所示),s轴下方的面积表示力对物体做负功(如图4(b)所示)。

高中物理变力做功的解法总结

变力做功的解法 一、化变力为恒力求变力功 变力做功直接求解时,通常都比较复杂,但若通过转换研究的对象,有时可化为恒力做功,可以用W=Fl cos α求解.此法常常应用于轻绳通过定滑轮拉物体的问题中. 1.如图所示,某人用大小不变的力F拉着放在光滑水平面上的物体,开始时与物体相连接的绳与水平面间的夹角是α,当拉力F作用一段时间后,绳与水平面间的夹角为β.已知图中的高度是h,求绳的拉力F T对物体所做的功.假定绳的质量、滑轮质量及绳与滑轮间的摩擦不计. 二、用平均力求变力功 在求解变力功时,若物体受到的力的方向不变,而大小随位移是成线性变化的, 即力均匀变化时,则可以认为物体受到一大小为F=F1+F2 2的恒力作用,F1、F2分别为 物体初、末态所受到的力,然后用公式W=F l cos α求此力所做的功. 2.把长为l的铁钉钉入木板中,每打击一次给予的能量为E0,已知钉子在木板中遇到的阻力与钉子进入木板的深度成正比,比例系数为k.问此钉子全部进入木板需要打击几次?

三、用F-x图象求变力功 在F-x图象中,图线与x轴所围“面积”的代数和就表示力F在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况. [典例3] 放在地面上的木块与一轻弹簧相连,弹簧处于自由伸长状态.现用手水平拉弹簧,拉力的作用点移动x1=0.2 m时,木块开始运动,继续拉弹簧,木块缓慢移动了x2=0.4 m的位移,其F-x图象如图所示,求上述过程中拉力所做的功. 四、用动能定理求变力功 动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.因使用动能定理可由动能的变化来求功,所以动能定理是求变力功的首选. 4.如图甲所示,一质量为m=1 kg的物块静止在粗糙水平面上的A点,从t=0时刻开始物块受到如图乙所示规律变化的水平力F的作用并向右运动,第3 s末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A点,已知物块与粗糙水平面间的动摩擦因数μ=0.2,求:(g=10 m/s2) (1)A与B间的距离; (2)水平力F在前5 s内对物块做的

变力做功的六种常见计算方法[1]

变力做功的六种常见计算方法在高中阶段,力做功的计算公式是W=FScosα,但是学生在应用时,只会计算恒力的功,对于变力的功,高中学生是不会用的。下面介绍六种常用的计算变力做功的方法,希望对同学们有所启发。 方法一:用动能定理求 若物体的运动过程很复杂,但是如果它的初、末动能很容易得出,而且,除了所求的力的功以外,其他的力的功很好求,可选用此法。 例题1:如图所示。质量为m的物体,用细绳经过光滑的小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个数值F时,转动半径为R;拉力逐渐减小到0.25F时,物体仍然做匀速圆周运动,半径为2R,求外力对物体所做的功的大小。 解析:当拉力为F时,小球做匀速圆周运动,F提供向心力,则F=mv12/R;当拉力为0.25F时,0.25F=mv22/2R。此题中,当半径由R 变为2R的过程中,拉力F为变力,由F变为2F,我们可以由动能定理,求得外力对物体所做的功的大小W=0.5mv12—0.5mv22=0.25RF。 方法二:用功率的定义式求 若变力做功的功率和做功时间是已知的,则可以由W=Pt来求解变力的功。 例题2:质量为m=500吨的机车,以恒定的功率从静止出发,经过时间t=5min在水平路面上行使了s=2.25km,速度达到最大值v=54km/h。假设机车受到的阻力为恒力。求机车在运动中受到的阻力大小。

解析:机车先做加速度减小的变加速直线运动,再做匀速直线运动。所以牵引力F先减小,最后,F恒定,而且跟阻力f平衡,此时有功率P=Fv=fv。在变加速直线运动阶段,牵引力是变力,它在此阶段所作的功可以由w=Pt来求。由动能定理,Pt—fs=0.5mv2—0,把P=Fv=fv代入得,阻力f=25000N。 方法三:平均力法 如果变力的变化是均匀的(力随位移线性变化),而且方向不变时,可以把变力的平均值求出后,将其当作恒力代入定义式即可。 例题3:如图所示。 轻弹簧一端与竖直墙壁连接,另一端与一质量为m的木块相连,放在光滑的水平面上,弹簧的劲度系数为k,开始时弹簧处于自然状态。用水平力缓慢的拉物体,在弹簧的弹性限度范围内,使物体前进距离x,求这一过程中拉力对物体所做的功。 解析:物体在缓慢运动过程中,拉力是从零开始均匀增大的,呈线性变化,所以整个过程中,拉力的平均值是F=0.5(0+kx)。因此,拉力对物体所做的功W=Fx=0.5(0+kx)×x=0.5kx2。 方法四:F——S图像法 利用图像中的“面积”求。在F——S图像中,在S内的图像跟S 轴所夹图形的“面积”,等于力F在位移S上所做的功。 例题4:在例题3中,可以利用此法求出结果。 解析: 做出拉力的F——S图像,如图所示。

求变力做功的方法总结

[变式训练]1、如图7所示,质量为m的滑块可以在光滑水平面上滑动,滑块与一不可伸长的轻绳相连,绳跨过一光滑的定滑轮(滑轮大小不计),另一端被人拉着,人的拉力大小、方向均不变,大小为,已知滑轮到水平面的高度为,的长度 ,求滑块从A被拉到B的过程中,外力对它所做的功。 分析与解:在本题中,只有绳子拉力对滑块做功,该拉力大小 虽然不变,但方向时刻改变(与水平方向的夹角逐渐增大),故属 于变力做功,不能直接求解。但如果将研究对象由滑块转变为绳的 另一端,因为人的拉力为恒力,所以是恒力做功,显然这个恒力做功与绳子对滑块拉 力做功是相等的,故可以用人对绳子做的功代换绳子拉力对滑块的功。则有。由几何关系可求得s,联 立即得。 小结:变力始终与速度在同一直线上或成某一固定角度时,可把曲线运动或往复运动的路线拉 直考虑,在各小段位移上将变力转化为恒力用计算功,而且变力所做功应等于变力在各小段所做功之和,化曲为直的思想在物理学研究中有很重要的应用,研究平抛运动和单摆的运动时,都用到了这种思想。 [变式训练]2、木块A做匀速圆周运动,向心力F大小保持不变的作用,且10牛,木块A位于半径为1米的转盘的边缘上,则转动一周力F做的总功应为: A、0焦耳 B、20 n焦耳 C、10焦耳 D、20焦耳 分析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故△△ S,则转一周中各 个小元段做功的代数和为X 2 n 10X 2 n 20 n J,故B 3、平均力法 例3、用铁锤将一铁钉击入木块,设木块对铁钉的阻力与铁钉钉入木块内的深度成正比。在铁锤击 第一次时,能把铁钉击入木块内1,问击第二次时,能击入多深?(设铁锤每次做功都相等) 1、将变力转化为恒力做功 在某些情况下,通过等效变换可以将变力做功转换成恒力做功,于是可以用求解。例1、如图1所示,某人用大小不变的力F拉着放在光滑水平面上的物体。开始时与物体相连的 轻绳和水平面间的夹角为a,当拉力F作用一段时间后,绳与水平面间的夹角为B。已知图中的高度是h,绳与滑轮间的摩擦不计,求绳的拉力对物体所做的功。 分析:拉力在对物体做功的过程中大小不变,但方向时刻改变,所以这是个变力做功问题。由题意 可知,人对绳做的功等于拉力对物体做的功,且人对绳的拉力F是恒力,于是问题转化为求恒力做功。由可知,在绳与水平面的夹角由a变到B的过程中,拉力F的作用点的位移为:2、微元求和法 例2、如图所示,某人用力F转动半径为R的转盘,力F的大小不变,但方向始终与过力的作用点的转盘的切线一致,则转动转盘一周该力做多少功。 分析与解:在转动转盘一周过程中,力F的方向时刻变化,但每一瞬时力 F总是与该瞬时的速度同向(切线方向),即F在每瞬时与转盘转过的极小 位移……都与当时的F方向同向,因而在转动一周过 程中,力F做的功应等于在各极小位移段所做功的代数和,即:

相关文档
相关文档 最新文档