文档库 最新最全的文档下载
当前位置:文档库 › 避雷器导致变压器损坏事故

避雷器导致变压器损坏事故

避雷器导致变压器损坏事故
避雷器导致变压器损坏事故

编订:__________________

审核:__________________

单位:__________________

避雷器导致变压器损坏事

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-6498-24 避雷器导致变压器损坏事故

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

由于受恶劣天气的影响,导致新疆石河子110kV、35kV系统不同程度的解网,电网负荷从322MVA迅速降至270MVA,红山嘴电厂13台机组甩负荷达60MW,整个电网产生较大的波动。石河子电力调度所进行调整负荷时,又使35kV系统局部产生谐振,谐振过电压导致石河子110kV城东枢纽变电站35kV4#出线(双电源线路)C相避雷器炸裂,A、B两相绝缘击穿。避雷器安装在断路器与线路侧TA之间,从而导致35kV 短路,致使110kV城东变电站40MVA变压器中压侧。后备保护和重瓦斯保护同时动作,主变压器的内部绕组因通过较大的短路电流而严重变形,退出运行需返厂检修处理。

1 石河子电网结构

石河子电网是以110kV电压等级为主网的供电网络,市区以110kV城东变电站、城北变电站、城西变电站和城中变电站构成内环网供电系统;郊外以110kV桃园变电站、新安变电站、下野地变电站、泉水地变电站构成外环网供电网络。电网中水、火、热三电并举,110kV变电站(升压站)13座、35kV变电站10座,其中110kV城东变电站是石河子电网内外环网供电的枢纽、多电源连接的中心,同时又是和新疆玛纳斯火力发电厂110kV双回路的连接点,发电装机总容量达350MVA。

2 运行方式

110kV城东变电站:110kV玛东I、II线(电源),三东线(电源)、军东线、东北线(电源)、东泉线、东西线在运行中,1#主变压器在110kVI段母线上、2#主变压器在110kVII段母线上运行。2#主变压器110kV

中性点112D接地运行。

35kV五东线(电源),东热I、II线(电源)及35kVI、II段母线在运行状态,2#变压器35kV侧中性点352XD消弧线圈接地运行。

10kV14条出线分别在10kVI、II、III、VI段母线上运行,均为无电源馈线。

3 事故经过

20xx年8月22日22时40分左右,天空乌云密布,雷电交加,并伴有6~7级大风,23时04分,110kV城东变电站后台发出事故音响,110kV三东线(电源线)零序II段保护动作,断路器跳闸,与此同时网内的另一条110kV输电线路三紫线发生C相瞬间接地故障,保护装置动作,但断路器并未跳闸,红山嘴电厂二级水电站3#、4#机强励磁动作,有功输出

瞬间降至零。三级水电站一条35kV馈电线路,110kV 条馈电线路,10kV2条馈电线路相继跳闸,2#、3#发电机组灭磁断路器跳闸,三级站110kVI段复合电压闭锁过电流保护动作,2#主变压器差动保护动作、35kVII段单相接地信号发出,110kVII段零序过电流保护动作,110kV三紫线、110kV三东线相继跳闸,三级水电站1#主变压器高压侧断路器跳闸,2#主变压器高、中、低三侧断路器均跳闸,四级水电站1#、4#机全部甩负荷。

23时06分110kV城东变电站35kV母线失压,1#变压器重瓦斯保护动作、三侧断路器,1#变压器中后备(复合电压闭锁过电流)保护动作,35kV母联过电流保护动作跳闸,35kV五东线(电源)距离Ⅲ段保护动作跳闸。

上述线路断路器在较短的时间内相继跳闸,使电网的稳定与平衡遭到严重的破坏,导致了局部谐振过

电压和操作过电压的发生。

经检查110kV城东变电站1#主变压器中压侧线圈绝缘损坏,35kV五东线避雷器一相炸裂,其余两相绝缘击穿,且五东线断路器柜内母线严重损坏,其穿墙套管击穿、断路器瓷质绝缘炸裂。 4 事故分析

8月22日恶劣气候导致110kV、35kV多条线路相继跳闸,电网的稳定性遭到严重的破坏、导致了35kV 系统局部谐振过电压和操作过电压的发生,35kV五东线金属氧化物避雷器一相炸裂、两相绝缘击穿。即TA 采集不到避雷器两相绝缘击穿造成的短路电流,线路断路器不能跳闸,此时相当于35kV母线短路,由于短路点接近于主变压器35kV侧出口处,且主变压器容量较大,内阻抗较小。中压侧出口处的短路将产生较大的短路电流,由此而产生的热效应和机械的电动效应使主变压器内部的35kV绕组严重发热、变形,直接导致绝缘击穿而无法使用。35kV系统内部过电压引起避

雷器动作后,造成工频续流不能及时有效地被截止,导致严重的近距离短路,从而使40MVA三绕组变压器严重损坏。

避雷器的安装位置不正确,按设计规程要求,避雷器应安装在断路器线路侧,即TA的线路侧较为合理,而实际上由于该出线是电缆出线,线路侧安装避雷器受空间位置限制,不能将避雷器安装在断路器与TA之间。这就导致了系统过电压避雷器动作击穿,TA 采集不到故障电流,线路断路器不能迅速有效地将短路故障点切除。此时只有靠主变压器后备保护动作切除短路故障,相对延长了短路电流被切除的时间,大大恶化了主变压器的运行环境,是导致主变压器线圈损坏的又一重要原因。

金属氧化物避雷器在制造过程中存在缺陷,工作性能不稳定,系统过电压时,压敏电阻的阻抗迅速降低,该电阻经高电压和大电流后,压敏电阻在电流热

效应的作用下,分子结构发生变化、体积膨胀,使其炸裂,原子核束缚电子的能力大为减弱,物理性能发生了不可逆转的改变,即在承受工频电压时,也不能有效地将其阻值恢复,从而造成永久性短路故障的发生,也是造成这一事故的重要原因之一。

网络中抵御自然破坏的能力太弱,线路廊道树木较多,得不到及时修剪或修剪困难,遇到刮风下雨的恶劣气候,电网都会遭受不同程度的冲击,是引发系统过电压事故的根本原因。

5 防范措施

从技术、人力、财力提高电网抵御外力破坏和抗风险的能力,排除一切困难及时清除线路廊道内,有碍线路安全运行的一切障碍,消除发生事故的一切隐患和根源。

对于小电流接地系统,要采取有效的技术措施,防止发生单相接地时造成谐振过电压而引起配电装置绝缘击穿,构成变压器出口近距离短路的恶性事故的发生。可采取的措施是:

在相应的电压互感器二次开口三角加装微电脑控制的电子消谐装置。

在电压互感器一次中性点,对地加装小电阻或非线性消谐电阻。

对电容电流超过规程标准,加装自动调谐消弧线圈。

通过有效的技术手段,可避免谐振过电压的发生。

调整避雷器的安装位置,将避雷器由断路器的上侧调整到断路器的下侧安装,若柜内位置狭小,安装

发电厂变压器常见故障及表现分析

发电厂变压器常见故障及表现分析 发表时间:2020-01-03T14:54:40.653Z 来源:《河南电力》2019年7期作者:郁杰峰 [导读] 变压器作为发电厂的重要设备,具有调节电压、输送电能的作用。 (浙江浙能镇海发电有限责任公司浙江宁波 315200) 摘要:变压器作为发电厂的重要设备,具有调节电压、输送电能的作用。变压器持续运行时间长且运行工况相对复杂,其状态的好坏直接影响到整个发电厂电力系统的良好有序地运转。本文通过分析发电厂变压器常见故障现象及故障处理,为相关变压器的常见故障诊断和研究奠定实践基础,对保障发电厂安全、可靠的运行具有重要意义。 关键词:发电厂;变压器;故障要点分析;应对措施 前言 随着经济的发展,发电厂变压器的安全运行与否直接影响到电力的正常传输,直接影响到人们在实践生产生活的正常运转。变压器作为发电厂电力运输的常见故障源,其状态的好坏很大程度地会影响到电力系统正常工作。在实际生产生活中,变压器故障也是常见的故障源,其工作状态也往往受到人们的广泛关注。针对变压器的故障诊断分析,在明确故障问题种类的基础上进行总结,是确保发电厂安全、稳定的运行的重要前提,为相关问题的深入研究奠定基础。 1 发电厂变压器常见故障现象 1.1 变压器的运行异响 变压器在正常运行中的声音往往相对稳定,其正常运行状态下的声音往往为均匀的嗡嗡电磁声,然而当变压器出现异常时则会出现不正常的异响情况,这种异响情况往往是依靠声音来进行问题故障判定最为直接的方法。 1.2 变压器的温度异常 变压器正常运行过程中,其温度会根据变压器的工作持续性而表现出较为稳定的温度状态,而异常变压器会出现局部温度过高,这也是故障发生的重要表现。而在日常的变压器维护过程中就需要相关人员进行阶段化的运行温度测量,对于出现温度异常的变压器进行及时地温度测量,进而形成有序常规的温度记录表,方便后期变压器运行温度出现异常时进行对应的温度比较,从而实现通过温度来判定故障。 1.3 变压器的气味的变化 在实际的变压器运行过程中,相关的运行人员还需要关注变压器周边的气味变化,因为在实际工作中,当变压器的绝缘部件损坏的情况下,往往会出现相关材质被烧焦而散发出气味,这种焦糊味也是变压器故障的重要预警信号。该异常的出现需要相关人员进行有效处理。 2 发电厂变压器的常见故障与表现分析 2.1 变压器绕组故障分析 变压器的内部结构具有多数量的绕组结构,其各匝间往往是通过绝缘材质的胶套进行绝缘。在运行过程中,随着变压器的运行时间的增长,其散热效果会随之降低,绕组防护层会出现绝缘老化、脆裂等现象,使得整个变压器的绝缘性能降低,绝缘层出现较大的变形状况。绕组绝缘表现出轻线的特征,该现象往往会在电压波动时,使得绝缘被击穿。在整个变压器的绕组发生受潮的情况下,会因为绕组局部出现过热现象而使得变压器绝缘被击穿,后续还可能因为无绝缘防护而出现匝间短路的情况,必须对该现象进行及时有效的检查。 2.2 变压器铁芯故障分析 变压器的铁芯故障也是常见的故障之一,此故障出现往往是因为铁芯柱的穿心螺杆损坏绝缘从而导致铁芯故障发生。在实际的生产中,如果铁芯故障出现,则会使得铁芯叠片以及穿心螺杆出现两点接地的情况,该过程会使得变压器内部产生环流进而出现局部发热现象,甚至会使得铁芯局部出现熔毁。当铁芯出现故障时,也经常会伴随着绕组局部短路的发生,随后就会使得涡流过热,进而使叠片之间的绝缘层受到损坏,导致变压器空载损耗加大,绝缘油出现异常气体等情况。 当变压器的铁芯出现故障时,需要关注的是内部各相绕组的直流电阻变化,防止其出现较大差异,一但绕组故障则会影响到整个变压器的使用安全。在具体检测中可通过对铁芯外观进行检查,利用电压表法和直流电流法对片间绝缘电阻进行测量,进而判断绕组是否存在故障。对于受损不严重的绕组,可以通过涂漆的方法来对受损部位进行处理。 2.3 变压器分接开关故障分析 变压器分接开关故障,一般是因为连接螺丝出现松动,使得分接开关接触面腐蚀而使得开关难以正常工作,也有因分接头绝缘板接触不良而使得在电流流通时出现故障的情况。常见的分接开关故障主要有分接开关的表面发生高温熔损,开关的接头或者相间处触头发生放电现象等。在分解开关出现故障的状态下需对其进行校验或者修复,在确认其不能满足正常工作的情况下应及时进行更换。 2.4 瓦斯保护故障分析 对于瓦斯保护应根据其浓度进行及时有效的动作信号匹配。通过变压器的瓦斯过载特征进行分析,防止其内部出现轻微的故障或者是二次回路发生故障等。在日常的生产过程中,应该根据瓦斯的浓度进行阶段可持续性气体取样分析;在变压器工作过程中,往往会发生瓦斯保护动作跳闸,可能是由于变压器内部出现比较严重的故障,造成绝缘油分解出大量的气体,亦或是出现二次回路故障等。针对该类故障的发生,需要根据瓦斯防护的特征而进行必要的备用变压器投入,并且需要根据设备的运行特征,进行严格的检查,检查变压器的外观是否出现变形,检查各焊接缝是否出现开裂,还要检查绝缘油中释放气体的成分等。当变压器出现瓦斯保护自动跳闸以后,必须要准确地分析保护动作原因,然后决定采取相对于的处理措施。如果确定是由于外部故障或者是工作人员的错误动作而造成的,那么无需进行内部检查,就可以投入送电。反之,则必须要对此保护范围内的所有设备实行全面检查。 3 结束语 针对发电厂变压器的常见故障进行外部特征要素的总结,以常见的绕组、铁芯、分接开关以及瓦斯保护为例,对其故障产生的原因以及导致的后果进行判断分析,并提出相应的处理解决建议。以提高发电厂变压器的安全可靠运行,进而不断提高整个电力系统的可靠性。

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

金属氧化物避雷器常见故障及处理

金属氧化物避雷器常见故障及处理避雷器是电力系统所有电力设备绝缘配合的基础设备。合理的绝缘配合是电力系统安全、可靠运行的基本保证,是高电压技术的核心内容。而所有电力设备的绝缘水平,是由雷电过电压下避雷器的保护特性确定的(在某些环境中,由操作过电压下避雷器的保护特性确定)。金属氧化物避雷器,简称氧化锌避雷器,以其良好的非线性,快速的陡波响应和大通流能力,成为新一代避雷器的首选产品。由于避雷器是全密封元件,一般不可以拆卸。同时使用中一旦出现损坏,基本上没有修复的可能。所以其常见故障和处理与普通的电力设备不同,主要是预防为主。选则原则。避雷器是过电压保护产品,其额定电压选择比较严格,且与普通电力设备完全不同,容易出现因选型失误造成的事故。对于这类事故,只要明确了正确的选择方法,就可以有效避免。正确的金属氧化物避雷器额定电压的选择,应遵循以下原则。 1、对于有间隙避雷器,额定电压依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.1 倍选取。35kV 至66kV 避雷器,额定电压按系统最高电压选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8 倍选取。例如:35kV 有间隙避雷器,额定电压应选择42kV 。 2、对于无间隙避雷器,额定电压同样依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.38倍选取。35kV至66kV避雷器,额定电压按系统最高电压的1.25 倍选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8倍选取。例如:10kV无间隙避雷器,额定电压应选择17kV。但对于电机保护用的无间隙避雷器,不按额定电压选择,而按持续运行电压选择。一般应选择持续运行电压与电机额定电压一致的避雷器。例如:13.8kV 电机,应选用13.8kV 持续运行电压的避雷器,即:选用17.5/40 的避雷器。具体的型号选择,可参考GB11032-2000 标准,或我公司的避雷器产品选型手册。另外,由于传统碳化物阀式避雷器以及按1989老国家标准制作的早期金属氧化物避雷器在很多系统中还在使用。为确保新生产的产品在这类老系统中可以安全的配合,遇到老系统产品的更换替代时,建议用户直接咨询我公司,以确保选型正确。二、正确的预防及维护性试验方法。预防及维护性试验,是及时发现事故 隐患,防止隐患演变为事故的重要手段。金属氧化物避雷器的预防及维护性试验,一般每两年到四年进行一次。有条件的用户,最好每年雷雨季节前测试一次。以最大可能的提早发现事故隐患。测试的目的是提前发现产品的劣化倾向, 及早作出更换。测试主要考察两个性能指标:a、转变电压值(稳压电源下), 用以考察避雷器的工作特性有无明显变化。b、泄漏电流值(转变点以下),用以考察避雷器的安全特性有无明显变化。 1、有间隙金属氧化物避雷器的测试方法。a、测试工频放电电压值,考 察避雷器的工作特性。具体的试验方法和合格范围可参考JB/T9672-2005 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的10%为正常。b、测试系统最高电压下的电导电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考 JB/T9672-2005 ,或者我公司的产品使用说明书。一般以不大于20 ^A为正常。 2、无间隙金属氧化物避雷器的测试方法。a、测试直流1mA 参考电压值,考察避雷器的工作特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的5%为正常。b、测试0.75 倍直流1mA 参考电压下的泄漏电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以不大于50 yA为正常。 3、其它的替代办法。在没有合适的测试设备,不能进行上述的测试时,可以采用一些替代的办法,但同时也存在一些测试盲点。a、用摇表测试绝缘电

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

主变异常及事故处理

主变异常处理 一.声音异常的处理: 1) 当变压器内部有“咕嘟咕嘟”水的沸腾声时,可能是绕组有较严重的故障或分接开关接触不良而局部严重过热引起,应立即停止变压器的运行,进行检修。 2) 变压器声响明显增大,内部有爆裂声时,立即断开变压器断路器,将变压器转检修。 3) 当响声中夹有爆裂声时,既大又不均匀,可能是变压器的器身绝缘有击穿现象,应立即停止变压器的运行,进行检修。 4) 响声中夹有连续的、有规律的撞击或摩擦声时,可能是变压器的某些部件因铁芯振动而造成机械接触。如果是箱壁上的油管或电线处,可增加距离或增强固定来解决。另外,冷却风扇、油泵的轴承磨损等也发出机械摩擦的声音,应确定后进行处理 二.油温异常升高的处理: (一)变压器油温异常升高的原因 1) 变压器冷却器运行不正常。 2) 运行电压过高。 3) 潜油泵故障或检修后电源的相序接反。 4) 散热器阀门没有打开。 5) 变压器长期过负荷。 6) 内部有故障。 7) 温度计损坏。 8) 冷却器全停。 (二)油温异常升高的检查 1) 检查变压器就地及远方温度计指示是否一致 2) 检查变压器是否过负荷。 3) 检查冷却设备运行是否正常。 4) 检查变压器声音是否正常,油温是否正常,有无故障迹象。 5) 检查变压器油位是否正常。 6) 检查变压器的气体继电器内是否积聚了可燃气体。 7) 必要时进行变压器预防性试验。 (三)油温异常升高的处理 1) 若温度升高的原因是由于冷却系统的故障,且在运行中无法修复,应将变压器停运修理;若不能

立即停运修理,则应按现场规程规定调整变压器的负荷至允许运行温度的相应容量,并尽快安排处理;若冷却装置未完全投入或有故障,应立即处理,排除故障;若故障不能立即排除,则必须降低变压器运行负荷,按相应冷却装置冷却性能与负荷的对应值运行 2) 如果温度比平时同样负荷和冷却温度下高出10℃以上,或变压器负荷、冷却条件不变,而温度不断升高,温度表计又无问题,则认为变压器已发生内部故障(铁芯烧损、绕组层间短路等),应投入备用变压器,停止故障变压器运行,联系检修人员进行处理。 3) 若经检查分析是变压器内部故障引起的温度异常,则立即停运变压器,尽快安排处理。 4) 若由变压器过负荷运行引起,在顶层油温超过105℃时,应立即降低负荷。 5) 若散热器阀门没有打开,应设法将阀门打开,一般变压器散热器阀门没有打开,在变压器送电带上负荷后温度上升很快。若本站有两台变压器,那么通过对两台变压器的温度进行比较就能判断出。 6) 如果三相变压器组中某一相油温升高,明显高于该相在过去同一负荷、同样冷却条件下的运行油温,而冷却装置、温度计均正常,则过热可能是由变压器内部的某种故障引起,应通知专业人员立即取油样做色谱分析,进一步查明故障。若色谱分析表明变压器存在内部故障,或变压器在负荷及冷却条件不变的情况下,油温不断上升,则应按现场规程规定将变压器退出运行。 三.油位异常的处理 (一)引起油位异常的主要原因有: ①指针式油位计出现卡针等故障。②隔膜或胶囊下面蓄积有气体,使隔膜或胶囊高于实际油位。 ③吸湿器堵塞,使油位下降时空气不能进入,油位指示将偏高。④胶囊或隔膜破裂,使油进入胶囊或隔膜以上的空间,油位计指示可能偏低。⑤温度计指示不准确。⑥变压器漏油使油量减少(二)油位异常的处理 1.油位过低的处理 油位过低或看不到油位,应视为油位不正常。当低到一定程度时,会造成轻瓦斯动作告警。严重缺油时,会使油箱内绝缘暴露受潮,降低绝缘性能,影响散热,甚至引起绝缘故障。 1)油位过低的原因: (1) 变压器严重渗油或长期漏油。 (2) 设计制造不当,储油柜容量与变压器油箱容量配合不当。一旦气温过低,在低负荷时油位下降过低,则不能满足要求。 (3) 注油不当,未按标准温度曲线加油。 (4) 检修人员因临时工作多次放油后,而未及时补充。 2)油位过低的处理: ①若变压器无渗漏油现象,油位明显低于当时温度下应有的油位(查温度~油位曲线),应尽快补

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器异常运行及事故处理

一、变压器异常运行 1、值班人员在变压器运行中发现有任何不正常现象(如漏油、油位变化过高或过低,温度异常,音响不正常及冷却系统不正常等),应设法尽快消除,并及时汇报值长、班长。应将经过情况记入值班操作记录簿和设备缺陷记录簿内。 2、若发现异常现象必须停用变压器才能处理,且有威胁整体安全的可能性时,应申请调度同意立即停下修理。 (一)、变压器声音不正常 1. 变压器运行时,应为均匀的嗡嗡声,如变压器产生不均匀声音或异音,都属于声音不正常。 2.变压器过负荷:使变压器发出沉重的“嗡嗡声”。 3. 变压器负荷急剧变化:变压器发出较重的“哇哇声”或“咯咯”的突发间歇声 4. 系统短路:变压器发出很大的噪声,值班员应对变压器加强监视。 5. 电网发生过电压:变压器发出时粗时细的噪声,值班员可结合电压表指示综合判断。 6. 变压器铁芯夹紧件松动:变压器发出“叮当叮当”和“呼呼呼”等锤击和类似大风的声音,此时变压器油位、油温和油色均正常。 7. 变压器内部故障放电打火:使变压器发出“哧哧”或“劈啪”放电声此时应停电处理并做绝缘油的色普分析。 8. 绝缘击穿或匝间短路:变压器声音中夹杂不均匀的爆裂声和“咕噜咕噜”的沸腾声,应停电处理并做绝缘油的色普分析。 9. 外部气候引起的放电:套管处有蓝色的电晕或火花发出“嘶嘶”或“嗤嗤”的声音,说明瓷件污秽严重或设备线卡接触不良,应加强监视,待机停电处理。 (二)、变压器油温异常 1. 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。 2. 变压器内部故障:如匝间短路或层间短路、绕组对围屏放电、内部引线接头发热、铁芯多点接地使涡流增加而过热等产生的热量,使油温升高,这时变压器应停电处理。

电力变压器常见故障及处理方法

仅供参考[整理] 安全管理文书 电力变压器常见故障及处理方法 日期:__________________ 单位:__________________ 第1 页共5 页

电力变压器常见故障及处理方法 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。 2.2变压器渗油 变压器渗油会影响变压器的安全,造成不必要的停运及事故隐患,因此,我们有责任解决变压器渗油问题。 油箱焊接渗油:平面接缝处渗油可直接进行焊接、拐角及加强筋连接处渗油则渗漏点难找准,补焊后往往由于内应力的作用再次渗漏油。对于这样的漏点可加用铁板进行补焊,两面连接处,可将铁板裁成仿锤状进行补焊;三面连接处可根据实际位置将铁板裁成三角形补焊。 高压套管升高座或进入孔法兰渗油:主要原因是胶垫安装不合适造成的。处理方法为:对法兰紧固螺丝,将施胶枪嘴拧入该螺丝孔,然后用高压将密封胶注入法兰间隙,直至各法兰螺丝帽有胶挤出为止。 第 2 页共 5 页

低压侧套管渗油:原因是受母线拉伸和低压侧引线引出偏短,胶珠压在螺纹上造成的,可按规定对母线加装软连接;如低压引出线偏短,可重新调整引出线长度;如引出线无法调整,可在安装胶珠的各密封面加密封胶;为了增大压紧力可将瓷质压力帽换成铜质压力帽。 2.3接头过热 载流接头是变压器的重要组成部分,接头连接不好,将引起发热甚至烧断,严重影响变压器的正常运行和电网的安全运行,因此,接头过热问题一定要及时解决。铜铝连接,变压器的引出线头都是铜制的,在室外和潮湿的环境中,不能将铝导体用螺栓与铜端头连接。因为当铜与铝的接触面间渗入含有溶解盐的水份。即电解液时,在电耦的作用下,会产生电解反应,铝被强烈电腐蚀。触头很快遭到破坏,引起发热造成事故,为避免上述现象的发生,就必须采用一头为铝、另一头为铜的特殊过渡接头。普通连接,在变压器上是较多见的,它们都是过热的重点部位,对平面接头,对接面加工成平面,清除平面上的杂质,并抹导电膏,确保接触良好。 油浸电容式套管发热:处理的方法可以用定位套固定方式的发热套管,先拆开将军帽,若将军帽引线接头丝扣烧损,应用牙攻进行修理,确保丝扣配合良好,然后在定位套和将军帽之间垫一个和定位套截面大小一致、厚度适宜的薄垫片,重新安装将军帽,使将军帽在拧紧情况下,正好可以固定在套管顶部法兰上。引线接头和将军帽丝扣公差配合应良好,否则应更换。确保在拧紧的情况下,丝扣之间应有足够的压力,减少接触电阻。 作为一名电力检修工人,发现并及时处理设备缺陷是我的职责,彻底处理好每一项设备隐患是我的荣耀,我会一直朝着这个目标努力工作 第 3 页共 5 页

10kV配电避雷器故障分析

10kV配电避雷器故障分析 发表时间:2018-10-18T10:00:25.623Z 来源:《电力设备》2018年第18期作者:卓清林 [导读] 摘要:随着当前汕尾海丰经济的迅速发展,推动了供电需求急速的增长,在这样的背景之下,l0kV配电线路负荷的日益增大。(广东电网有限责任公司汕尾海丰供电局广东省汕尾市海丰县 516400) 摘要:随着当前汕尾海丰经济的迅速发展,推动了供电需求急速的增长,在这样的背景之下,l0kV配电线路负荷的日益增大。如果出现线路故障,不仅影响配网供电线路的正常运行,而且还将严重影响地区经济的发展和广大居民的正常用电,这就对l0kV配电线路避雷器的可靠性和安全性提出了更高的要求。因此,加强l0kV配电线路避雷器故障分析及处理十分关键,相关研究工作人员必须要给予高度重视。基于此,本文对10kV配电避雷器故障分析及防范进行探讨。 关键词:10kV配电;避雷器;故障 避雷器是一种过电压保护装置,当电网电压升高达到避雷器规定的动作电压时,避雷器动作,释放电压负荷,将电网电压升高的幅值限制在一定水平之下,从而保护设备绝缘所能承受的水平,除了限制雷击过电压外,有的还能限制一部分操作过电压。当前,在10kV的配电网中,配电用避雷器的使用频繁而大量,以防止因为配电设备在雷电过电压下发生损坏。在实际运行中,避雷器因质量原因或者运行维护不到位,从而导致一些避雷器发生击穿故障。避雷器被击穿后,10kV线路通过避雷器发生接地,此时,必须停电才能处理或者隔离故障,故在一定程度上降低了供电可靠性。 1 10kV配电线路避雷器故障分析的必要性 目前,金属氧化锌避雷器在配网线路中得到广泛应用,配电线路和设备的耐雷水平有所提高。作为这种限制过电压、进行变电站和直流换流站绝缘配合电力设备来说,本身具有残压小、体积小、保护性能好以及吸收过电压能量大等特点。在目前运行过程中,因避雷器被击穿而发生的线路跳闸事故时有发生,这样供电的可靠性就得以降低,因此对10kV配电线路避雷器故障分析就显得很有必要,必须要给予高度关注。 2 10kV配电避雷器故障原因分析 2.1由阀片侧面高阻层裂纹所导致的故障 2.1.1高阻层裂纹故障典型例子 2015年9月29日,在南方某地发生了一起避雷器被击穿故障。事故后,相关维修人员对避雷器实施了解体击穿,他们发现,其内部并没有一般想象中的金属锈蚀,也未见阀片内部以及喷铝面的放电现象。不过,他们还是在阀片侧面发现了电弧通道。更重要的是,有关维修人员还在避雷器侧面绝缘层发现了非常微细的裂纹。经分析,正是这些裂纹,使得避雷器绝缘强度被大大地降低,最终造成了被击穿的后果。 2.1.2高阻层裂纹原因分析 就避雷器绝缘釉而言,其中的高阻层,是可以用一种涂料充当的,这样的涂料必须是有机材料所配制。就侧面绝缘层而言,实际上为高温烧结而成的。在某些情况下,这样的绝缘釉是有可能有细微裂纹出现的,这就是两种热膨胀系数的差异过大:一个是阀片的,另一个是高阻尼的。这种裂纹的出现,会导致避雷器的绝缘釉产生强度降低的后果。这样的后果带来的是过电压下会发生闪络现象。而正是这样的现象,直接造成了故障的发生。这是因为,避雷器的制作中,一定是要将雷器阀片和外绝缘筒之间的空腔消除掉,其所用材料为温度比较高的注胶。由此带来的后果是:就避雷器阀片而言,它和侧面高阻层热膨胀系数之间,由于注胶而来了的较大差异,而所有的问题,就是以此为根源的。 2.2避雷器内部受潮原因分析 避雷器自身的质量问题则是其内部受潮的主要原因。具体分析产生这样的原因包括以下几个方面:第一,在避雷器生产过程中密封有可能在生产与装配的过程中,由于安装环境湿度超标所致;第二,部分潮气滞留在阀片及内部零部件上,烘干不彻底所致;第三,密封圈漏放放偏在装配时,或者杂物在密封圈与瓷套密封封面之间存在都影响避雷器内部受潮。 2.3雷电冲击的故障的原因分析 避雷器应能耐受2次65kA(或40kA)的雷电流冲击,这是避雷器国家标准。由于避雷器中流过雷电流有两种途径,即雷电直击和沿线路来波,所以10kV系统中避雷器不可能流过超过65kA(或40kA)的雷电流。对于超过10kV线路耐雷水平的65kA(或40kA)的雷电流来说,这个不可能成立的;当是雷直击杆塔的情况下,雷电流可能超过65kA(或40kA),同时应该注意,此值远远超过10kV杆塔反击耐雷水平,所以,线路多相闪络现象就会出现,这样就会引起相间短路速断跳闸。对于线路单相接地这个故障来说,没有进行速断跳闸现象,所以说,雷电直击产生的雷电流不可能超过65kA(或40kA)。 对于雷电流是冲击电流波来说,不同电流下的故障表象及阀片仔细分析可以得出,避雷器遭受到雷电过电压作用而使阀片中流过雷电流是阀片损坏原因,同时,阀片中的电流密度也是比较大的。不是均匀分布的冲击电流在阀片,阀片就会遭破坏是因为更容易使得局部阀片的雷电冲击电流密度超过其允许极限值。阀片破碎、爆炸只有在电流能量很大的情况下形成,在电流能量不太大情况下,一般造成阀片破裂。这里分析阀片破碎原因如下:系统电压一般情况下是由避雷器内4片阀片共同构成承担,但是当其中的2片破裂恶化后,其余2片就承担全部的系统电压,这样使得劣化程度进一步加重,最后工频电压下阀片会遭到破坏。当能量较大的工频电源下,就会出现阀片的破碎或者爆炸。 3 10kV配电线路避雷器故障的防范措施 3.1加强异常气象条件下避雷器的巡视 基于对避雷器故障发生前的了解,避雷器处于运行区域轻微雾霾和无雷电阴雨环境之中,这说明避雷器在空气湿度大且户外温差变化较大的环境之中容易出现受潮故障。为了尽可能的避免避雷器受潮故障,应当加强异常气象条件下避雷器巡视工作,尽量避免避雷器受到潮气的影响,降低避雷器内部出现受潮击穿情况的概率。总之,在异常气象条件下,相关工作人员应当提前制定特殊环境下的巡视计划,并且做好避雷器防护工作,以便避雷器状态良好,能够持续发挥作用,有效保护输电线路或电气设备。 3.2加强管理及维护 管理和维护工作是长期而复杂的一项工作,要关注的方面很多,工作量大、任务重。具体来说,可以从以下几个方面入手:第一,对

电力变压器常见故障及处理方法

编号:SM-ZD-29412 电力变压器常见故障及处 理方法 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电力变压器常见故障及处理方法 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1、在电能的传输和配送过程中,电力变压器是能量转换、传输的核心,是电网中最重要和最关键的设备、变压器如果发生严重事故,不但会导致自身损坏,还会中断电力供应,后患无穷。 2、常见故障及其诊断措施 2.1铁心多点接地 变压器铁心只允许有一点接地,若出现两点及以上接地,为多点接地。多点接地运行将导致铁心出现故障,危及变压器安全运行。应及时处理。 吊壳检查(1)铁心夹件垫脚与铁轭间的绝缘纸板是否脱落破损,按要求更换厚度相同的新纸板。 (2)紧固铁心夹件所有螺丝,防止铁心移位、变形。 (3)清除油中金属异物、金属颗粒及杂质,清除油箱各部位油泥,对变压器进行真空滤油、注油、彻底清除油中水分及杂质。

变压器异常运行和常见故障分析及事故处理

变压器异常运行和常见故障分析及事故处理 [摘要] 变压器的安全运行管理工作是我们日常工作的重点,通过对变压器的异常运行情况、常见故障分析的经验总结,将有利于及时、准确判断故障原因、性质,及时采取有效措施,确保设备的安全运行。 [关键词] 变压器异常故障常见故障分析事故处理 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。现根据对变压器的运行、维护管理经验,分析总结变压器异常运行和常见故障如下: 一、变压器声音出现异常的情况 1、电网发生单相接地或产生谐振过电压时,变压器的声音较平常尖锐; 2、当有大容量的动力设备起动时,负荷变化较大,使变压器声音增大。如变压器带有电弧炉、可控硅整流器等负荷时,由于有谐波分量,所以变压器内瞬间会发出“哇哇”声或“咯咯”间歇声; 3、过负荷使变压器发出很高而且沉重的“嗡嗡”声; 4、个别零件松动如铁芯的穿芯螺丝夹得不紧或有遗漏零件在铁芯上,变压器发出强烈而不均匀的“噪音”或有“锤击”和“吹风”之声; 5、变压器内部接触不良,或绝缘有击穿,变压器发出“噼啪”或“吱吱”声,且此声音随距离故障点远近而变化; 6、系统短路或接地时,通过很大的短路电流,使变压器发出“噼啪”噪音,严重时将会有巨大轰鸣声; 7、系统发生铁磁谐振时,变压器发生粗细不匀的噪音。 二、在正常负荷和正常冷却方式下,变压器出现油温不断升高的情况 1、由于涡流或夹紧铁芯用的穿芯螺丝绝缘损坏均会使变压器的油温升高。而穿芯螺丝绝缘破坏后,使穿芯螺丝与硅钢片间的绝缘破坏,这时有很大的电流通过穿芯螺丝,使螺丝发热,也会使变压器的油温升高; 2、绕组局部层间或匝间的短路,内部接点有故障,接触电阻加大,二次线路上有大电阻短路等等,也会使油温升高。 三、变压器绝缘油颜色出现显著变化的情况 绝缘油在运行时可能与空气接触,并逐渐吸收空气中的水份,从而降低绝缘性

变压器故障诊断常识及方法

电力变压器常见故障分析及处理 一、常见故障分析 1、内部声音异常 正常运行的变压器,会发出均匀的电磁交流声,在变压器运行不正常时,有时会出现声音异常或声音不均匀。造成该现象的主要原因:变压器过负荷运行时,内部会发出很沉重的声音,在内部零件发生松动的情况下,会有不均匀的强烈噪声发出。假如未夹紧铁芯最外层硅钢片,则会在运行时产生震动,发出噪音。此外,变压器发出异响还有可能是由于变压器顶盖螺丝松动所致。 变压器内部过电压时,会导致铁芯接地线断路,或一二次绕组对外壳闪络,在外壳及铁芯感应出高电压,使变压器内部发出噪音。假如变压器内部发生击穿或者接触不良,会由于放电而发出吱吱的声音。若发生短路或接地,将有较大的短路电流出现在变压器绕组中,使其发出大且异常的声音。若设备有可能产生谐波,或将大容量的用电设备接在变压器负载上,则易产生较大的启动电流会使变压器发出异常噪音。 2、瓦斯保护故障 一种情况是发生了瓦斯保护信号动作。瓦斯保护其动作灵敏可靠,变压器内部大部分故障都可被瓦斯保护有效监视。在瓦斯保护信号动作发生后,即可恢复到正常音响信号,对变压器的运行情况严密监视。 一般来讲,有几种原因可以引起瓦斯保护动作:一是在变压器进行滤油或加油时,没有及时排出带入变压器内部的空气,变压器运行时油温升高,逐渐排出内部空气,引发瓦斯保护动作;二是变压器发生穿越性短路,或者由于内部故障产生气体而引发瓦斯保护动作。 当发生瓦斯保护信号动作时,若检查中未发现异常,就要立刻对瓦斯继电器中的气体进行收集,并分析试验。假如气体不燃烧且无色无味,则可认为变压器内部被空气侵入,这种情况下,变压器是正常运行的,只需立即将瓦斯继电器中的气体放出即可,同时注意观察信号动作时间间隔是否越来越长,直至不久消失。假如气体是可燃的,则可证明变压器发生了内部故障,应将变压器立刻停止运行,并进行电气试验,查找事故原因,送去检修。 另一种情况是发生了瓦斯保护动作与跳闸。发生此情况的原因有以下几种:首先是有严重故障发生在变压器内部;此外还有保护装置二次回路发生了故障;假如变压器是大修后或者新近安装投入运行的,有可能因为变压器油中含有的空气过快分离而造成保护动作与跳闸;还有一种原因是由于变压器内的油位下降速度过快而引起。在发生瓦斯保护动作与跳闸后,值班人员应立即解除工作变压器,对其外部实施检查。检查其防爆门是否完整、是否有绝缘油喷溅现象、外壳是否鼓起、油位是否正常等。然后分析收集的气体,对变压器内部故障的性质进行鉴定,检修完毕,并经试验合格后,方可再次投运。 3、自动跳闸故障 发生自动跳闸故障时,应进行外部检查,查明保护动作情况。假如在检查之后,确认是由于人员误动作或者外部故障,而不是内部故障引起的,则可越过内

简析变压器的运行维护和事故处理

简析变压器的运行维护和事故处理 发表时间:2015-10-09T16:19:50.250Z 来源:《基层建设》2015年7期作者:常晓闯 [导读] 阳西海滨电力发展有限公司 529800 从变压器运行的日常管理入手,探析变压器运行过程中易出现的故障,采取变压器日常维护的有效措施,是保证和实现电网系统有效运行的重要手段。 常晓闯阳西海滨电力发展有限公司 529800 摘要:随着我国现代科学技术的发展,电力变压器在供电系统中有着极其重要的作用,是企业供电设备的核心之一,但由于变压器事故处理和维护水平低等原因,变压器故障问题发生的仍比较频繁,对企业的正常生产和运行产生非常严重的影响,变压器是电力系统的重要组成部分,变压器的运行状态影响着电网系统的安全与稳定。从变压器运行的日常管理入手,探析变压器运行过程中易出现的故障,采取变压器日常维护的有效措施,是保证和实现电网系统有效运行的重要手段。 关键词:变压器;运行维护;故障处理 电力变压器是电力系统的重要组成部分,在电力系统的运行过程中发挥着重要作用。由于变压器的设计制造工艺、技术以及变压器运行维护水平等方面的原因,在电力系统运行过程中,经常发生变压器故障。因此,在电力系统运行过程中,采取有效措施,防止变压器发生故障,加强对变压器的维护,对确保变压器及电力系统的安全稳定运行有着重要意义。 1、运行维护 1.1监视仪表及抄表。变压器运行中,运行人员应监视控制盘上的仪表,负荷不应超过额定值,电压不能过高或过低,并按规定及时抄录表计。过负荷时,应每半小时抄表一次,无人值班的变电所,每次检查变压器时,应记录其电压、电流和上层油温。 1.2变压器的巡视周期。有人值班的变电所,每天应按要求进行巡视,每天至少一次,每星期应有一次夜间检查,无人值班的变电所和室内变压器容量在 3 200 kVA 及以上者,每10 天至少检查一次,变压器在投入和停用后,都要进行检查,另外可根据气候变化等情况,增加检查次数,特别注意变压器的油位变化。此外,在瓦斯继电器发出告警信号时,亦应对变压器进行外部检查。 1.3变压器的铁芯,应每月进行一次铁芯电流测量,净油器中的吸附剂发现变色时,应及时更换。 2、变压器运行中出现的不正常现象 2.1渗漏油 变渗漏油是变压器常见的缺陷,渗与漏仅是程度上的区别,渗漏油常见的部位及原因是:阀门系统,蝶阀胶材质安装不良,放油阀精度不高,螺纹处渗漏;胶垫接线桩头,高压套管基座流出线桩头,胶垫较不密封、无弹性,小瓷瓶破裂渗漏油;设计制造不良,材质不好。 2.2声音异常 变压器内部音响很大,很不正常,有爆裂声;温度不正常并不断上升;储油柜或安全气道喷油;严重漏油使油面下降,低于油位计的指示限度;油色变化过快,油内出现碳质;套管有严重的破损和放电现象等,应立即停电修理。 2.3油温异常 当发现变压器的油温较高时,而其油温所应有的油位显著降低时,应立即加油。加油时应遵守规定。如因大量漏油而使油位迅速下降时,应将瓦斯保护改为只动作于信号,而且必须迅速采取堵塞漏油的措施,并立即加油。 2.4油位异常 变压器油位因温度上升而逐渐升高时,若最高温度时的油位可能高出油位指示计,则应放油,使油位降至适当的高度,以免溢油。 2.5 高压侧熔丝熔断或掉闸 首先判断高压侧熔丝是否熔断,究竟是断了一相熔丝还是两相或三相,可通过表 1 中所列出的情况进行判断。 表1熔丝熔断情况判断 2.6出现强烈气体 变压器内部发生严重故障,油温剧烈上升,同时分解出大量的气体,使变压器油很快流入油枕.如装有瓦斯保护动作的变压器,其瓦

避雷器故障排除案例分析 图文 民熔

避雷器产品介绍 民熔 HY5WS-17/50 氧化锌避雷器 10KV高压配电型 A级复合避雷器 参数: 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量:100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压)

注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 避雷器故障排除案例,一:避雷器质量不良引起的事故雷雨高某生产厂及生活区高、低压全部停电。经检查;35kV 高压输电线中的B相导线断落;雷击时变电所内高压跌落式熔断器有严重的电弧产生。低压配电室内也有电弧现象并伴有爆炸声;有一台低压配电柜内的二次线路被全部击坏。 变电所;输电线路呈三角形排列;全线架设了避雷线?35kV变电所的入口处;装设了避雷器和保护间隙。保护间隙被雷击坏后;一直没有修复?在变电所的周围还装设了两根24m高的避雷针;防雷措施比较全面;但还是遭受到雷害。 雷击发生后;进行了认真检查;防雷系统接地电阻均小于4Ω;符合规程要求。检查有关预防性试验的记录;发现35kV变电所内的B相避雷器;其试验数据当时由于生产紧张等原因;一直未予以处理

浅析电力变压器故障原因及处理方法

浅析电力变压器故障原因及处理方法 摘要:随着我国不断完善的工业体系,电能是促进国民经济不断发展的重要基础,而且电能安全不仅与国民的生产和生活有着直接的关系,对整个国家的战略 安全还能造成一定的影响。电力系统非常重要的一部分就是电力变压器。因此, 只有其良好的运行,电力系统才可以可靠供电。 关键词:电力变压器;故障原因;处理方法 引文:电力变压器在长期的运行过程当中可能会有一些事故和故障出现,而 这些事故和故障又有很多方面的原因。而且,由于一些工作人员具有较低的业务 素质,以及技术不够或者违章违规作业等,都有可能使的事故发生或者扩大事故,从而对整个电力系统的运行造成影响。 1电力变压器故障类型及其原因 1.1电力变压器的冷却系统异常 运行所引起温度的异常电力变压器的冷却器发生了故障不能正常运行,例如 潜油泵停止运行,风扇出现了损坏,散热器管道发生堵塞,冷却的效果不好,温 度计指示出现失灵,散热器阀门闭合等,很多原因都会引起温度的升高,这种情 况下,应该即时的对冷却器进行检查和维修,以提高冷却系统的冷却效率。 1.2绝缘油的油位异常情况分析 在电力变压器运行时,出现渗漏油现象以及油位异常现象的情况,比较常见,应该进行不定期的检查和巡视,其中电力变压器的主要表现有这两个情况。一是 假油位,油枕吸管器出现了堵塞,油标管堵塞,防爆的管道气孔堵塞;油面低, 出现严重漏油的情况。由于工作人员因为工作需要,在放油之后没有进行补充。 或者气温比较或者油量不足,油枕的容量小而不能满足电力变压器的运行需求的 时候。 1.3变压器放电与线路故障 在电力变压器中,有一些比较常见的变压器放电与线路故障现象:变压器在 运行的期间会有一些“噼啪噼啦”的噪音,这是因为导电引线在空气作用之下,对 电力变压器外壳,出现的放电现象;假如听到了一些好像通过液体状物质的声音,这可能是因为导体击穿了电力变压器,对变压器的外壳放电的声音;如果绝缘的 距离比较短,则应该停电放油后,进入变压器器身内部进行检查;假如导线间连 接处或者三相接头的部位发生了断线,则一旦出现弧光或者火花,电力变压器会 出现断断续续的噪音;假如低压的线路发生了接地或者出现了短路的故障时侯, 电力变压器就可能发出“轰轰”的噪音,假如短路的点比较近,变压器就会发出像 动物的吼叫的声音。另外,当电力变压器负荷严重的时侯,就会发出比较低沉的 声音。 1.4瓦斯保护装置出现故障 动作出现的原因有可能是:变压器的内部的元件出现了比较轻微的故障,电 力变压器的内部进入了空气或者二次保护的回路出现异常等。这个时候运行的人 员应该及时进行全面的检查,如果没有发现异常的现象,应该在瓦斯的继电器处,采集气样并且送到试验单位分析。重瓦斯保护出现跳闸的时候,有可能是由于电 力变压器的内部的元件出现了严重的故障,引起电力变压器的油受热,短时间之内,分解并且释放出了大量的气体。假如出现了重瓦斯保护跳闸,应该先投入使 用备用变压器,然后再进行外部的检查,检查电力变压器的压力释放的装置有没 有动作喷油,变压器的外壳有没有变形以及变压器的各焊接的接缝有没有开裂等,

相关文档
相关文档 最新文档