文档库 最新最全的文档下载
当前位置:文档库 › 喷嘴型ICD

喷嘴型ICD

喷嘴型ICD
喷嘴型ICD

Copyright 2008, Society of Petroleum Engineers

This paper was prepared for presentation at the 2008 SPE Saudi Arabia Section Technical Symposium held in Alkhobar, Saudi Arabia, 10–12 May 2008.

This paper was selected for presentation by an SPE Program Committee following review of information contained in an abstract submitted by the author(s). Contents of the paper, as presented, have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Papers presented at SPE meetings are subject to publication review by Editorial Committees of the Society of Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper for commercial purposes without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O. Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract

This paper discusses the PLT-correlated results of two test wells completed during 2006; one in sandstone and one in a carbonate reservoir, with the new completion technology of nozzle-based passive inflow control devices (ICD) which improves performance of wells with reservoir challenges as described:

1. In highly productive sandstone reservoirs, horizontal

wells suffer from uneven flow profile and subsequent premature cresting/coning effects. In general, there is a tendency to produce more at the heel than at the toe of horizontal wells, which contributes to poor well cleanup at the toe. Additionally, excessively increasing the rate and/or horizontal well length can increase the risk of limiting sweep efficiency, resulting in bypassed reserves 1. 2. In carbonate reservoirs, permeability variations and

fractures can cause uneven inflow profile and accelerate water and gas breakthroughs. Wells with early gas or water breakthrough have to be shut-in until remedial plans are decided and implemented, resulting in deferred production.

The main reservoir objectives for applying passive ICD technology in the two test wells are: a. Sandstone: Decrease the influence of heel-toe

effects and high permeability zones; hereby

deferring water/gas breakthrough, improving well cleanup and sweep efficiency.

b. Carbonate: Control flow rates from high

permeability intervals and to limit production from each compartment based on lateral offset from the gas-oil contact to prevent premature gas breakthrough.

The test well PLT-logs were correlated to static reservoir simulations. Analyses of the well performances show that the objectives of both completions were achieved. By having proper matches of the completions with ICD, the value over standard completions can be evaluated.

Post-evaluation of the completion designs based on the PLT-log results has increased our understanding of the nozzle-based ICD performance. As a result several approaches for completing wells in both sandstone and carbonate reservoirs with ICD have been recommended in order to achieve optimized inflow performance.

Introduction

Two trial wells with nozzle-based passive ICD systems were designed and completed in 2006; one for sandstone and one for carbonate reservoirs. To evaluate and approve the new ICD completion, these wells were production logged and the results were carefully analyzed.

The most important feature of the ICD completion is the self-adjusting effect of flow variations anywhere along the well trajectory and whenever they occur during entire well life. The key benefits are:

1) Increased well life and reserves due to improved

sweep efficiency.

2) Delayed gas and water breakthrough.

3) Decreased water/gas rates after breakthrough when

water/gas mobility is higher than oil. 4)

Improved well cleanup.

SPE 120795

Case Histories of Improved Horizontal Well Cleanup and Sweep Efficiency with Nozzle Based Inflow Control Devices (ICD) in Sandstone and Carbonate Reservoirs

A.H. Sunbul, J.E. Lauritzen, D.E. Hembling, A. Majdpour, Saudi Aramco, A.G. Raffn, M. Zeybek, T. Moen, Schlumberger

2 SPE 120795

The pressure drop through the ICD unit is generated by the flowing fluid through the nozzles (Figure 1a), described by a part of the Bernoulli equation: (Eq. 1)

Where: ?p N = pressure across ICD nozzles, Cu= units

conversion constant, ρ density of fluid, v = velocity, Cv= dimensionless flow coefficient for the nozzle, q = rate and A = total cross section area of the nozzles.

The ICD unit is equipped with at least 2 or more nozzles and the pressure drop across the unit is designed based on the reservoir characteristics and flow rates in order to achieve the objectives of the well. An advantage with these nozzles is that at least one or more of the nozzles will be exposed to inflow of fluid, making the system reliable for cleaning up the well even if the well has been left with solids-laden fluids down hole for a longer period before the well is put on production.

Fig. 1: a) ICD unit integrated in a sand control screen. Screen

ensures a solids-managed flow (allow particles < 45 μm to be produced), length 12m=one joint. b) An ICD completion example with packers for every ICD joint in a naturally fractured reservoir.

Figure 1b shows a schematic of a well with packers to divide the lateral into compartments of permeability variations. The benefits of having packers supporting the ICD completion are:

a) Permeability variations are captured and

segmented. b) High productivity (high permeability) intervals

are controlled by lower number of ICD units

run in those segments, preventing cresting/coning in those segments.

c) Inflow of gas or water through fractured zones

can be isolated or highly restricted. d) Annular flow between compartments is

prevented. e) Potential wet zones can be isolated while the

rest of the well can produce dry oil.

When a barefoot or a conventional horizontal well is put on production, the filter cake is preferentially lifted at the heel of the well as a function of the heel to toe pressure gradient (Figure 2a and b). This leads to poor inflow performance due to higher completion skins at the toe. Usually as the horizontal well length increases, the inflow profile and corresponding recovery degrades because of insufficient well cleanup and lesser contribution from the toe.

Fig. 2: Principle of improved wellbore cleanup:

a) Barefoot b) Conventional Completion c) Passive ICD completion

For a horizontal well with ICD completion, flow rate per compartment is restricted (Figure 2c). At higher rates, a higher differential pressure is created and transmitted along the completion to other compartments and eventually to the toe. This differential pressure created lifts the filter cake off the formation face and additionally cleans the near wellbore damage, resulting in:

A q v Cv v Cu p N

==Δ,222ρ

SPE 120795 3

a)Skin reduction

b)Higher well PI

c)Enhanced sweep efficiency

Once ICD units are introduced into the completion, an additional pressure drop is created in the system. It is therefore very important to design the ICD unit pressure drop in accordance with the reservoir properties to achieve a design with the lowest possible ICD pressure drop and still achieve the objectives.

Figure 3 shows the principle of a standard screen completion compared to an ICD completion in a reservoir with 1 Darcy and 2 Darcy zones simulated in a static reservoir model. The two zones are supposed to be completed with a packer separating the annular flow between the zones. For a conventional completion the draw-down into the completion is shown as the ?P F.

Fig. 3: Principle of a standard screen completion compared to an ICD. a) Flux into wellbore, screen completion

(Blue line) and ICD completion (Pink line). b)

Comparison of the pressures along the well bore.

With an ICD completion the total draw-down into the completion is described as the ?P ICD, and we observe that the draw-down pressure ?P F of the original horizontal well is now being re-distributed between the two zones when completed with an ICD completion.

The high permeability zone of 2 Darcy is having less draw-down (?p F2) while the low permeability zone of 1 Darcy is having a higher draw-down (?p F1), and the relationship is as follows:

?P ICD = ?p F1 + ?p N1 = ?p F2 + ?p N2 (Eq.2) Where: ?p Fi is the pressure from the reservoir into the annulus and ?p Ni is the pressure from the annulus to

the tubing = pressure across the ICD unit.

Simulating the two different completion types at the same rates, the flow rates for the zones are re-distributed (Figure 3a) and as a consequence the ICD completion will be able to defer gas or water breakthrough in high permeability layers. In addition, over time this will assure a much better sweep efficiency of the reservoir, because it is less likely that oil will be left behind in low permeability intervals.

Using the principle of Figure 3, the well PI for an ICD completion at the sandface (annulus) can be estimated, because when the flow rate per segment is known from the PLT-logging, we can calculate the pressure drop across the nozzle-based ICD units per segment from Eq. 1.

To compare the PLT results with the PI potential for the well, it is assumed that an ideal horizontal well is performing according to2:

(Eq.3)

It should be noted that an estimate of the P wf from this equation is not including friction loss along the horizontal well length. The P wf may therefore be slightly more optimistic than the actual PLT measurement.

The evaluation of the well PI for both PLT and theoretical has been completed for the two trial wells in order to measure and understand their performance. Sandstone Reservoir Trial Well

The sandstone ICD well was completed in November 2006 (Figure 4). The objectives of the ICD completion were to reduce the heel-toe effect, deferring gas and water breakthrough.

V

H

w

w

w

e

o

H k

k

r

h

L

h

L

r

B

h

k

Cx

J/

,

2

ln

2/

2

ln

2

=

?

?

?

?

?

?

?

?

??

?

?

??

?

?

+??

?

?

??

?

?

π

β

β

μ

π

4 SPE

120795

Fig. 4: Sandstone ICD completion with packers for every second joint

It was decided to test having a large number of packers to achieve better inflow control. The well has a total of 30 packers, i.e., approximately one packer for every second joint. This can be achieved very reliably and cost-effectively with small swellable elastomer packers.

The well was put on production for approximately four months at about 6-7 MSTB/D before the PLT-logging. During logging shown in Figure 5, it became obvious that the well most likely had not been properly cleaned up, and the logging tool had problems reaching TD. At the low rate, the well stopped short of TD by 650 ft due to solids-laden mud in the toe of the well (Figure 5, Green dashed line). This was not expected because the well had produced over a relatively long time period to ensure proper cleanup prior to the PLT. After increasing the rate to about 9-10 MSTB/D for just four hours, repeating the logging at this higher rate, the well could be logged to an additional 350 feet of measured depth. Now the well showed improved flux to a nearly perfect inflow profile across the entire production interval (Figure 5, Brown dashed line).

This quantitatively demonstrates that the higher rate resulted in a significant cleanup effect. After four hours, the well was re-logged at the high rate traversing all but the last 50 ft of production interval (Figure 5, Brown solid line). For cleanup verification the log was finally repeated at the lower rate (Figure 5, Green solid line) and a permanent change in profile was noted.

Fig. 5: Raw PLT-log data of rate vs. length of the well. Green: lower rate and Brown: higher rate. Dashed lines indicate

initial PLT runs, and the solid lines indicate repeated PLT

runs.

This effect has also been inferentially observed in other wells. When a well is logged at two different PLT rates, occasionally when correlating a static simulation model to actual PLT results, the simulations will not match both rate curves. This can occur for one of two obvious reasons:

1)Either the simulation is simply invalid due to

insufficient or invalid inputs, or

2)the production profile changed in the time it

took to log the two rates.

The results of the sandstone trial test in Figure 5 indicate that unloading at high rate can result in rapid wellbore cleanup; therefore, the latter condition 2), i.e. production profile changes due to wellbore cleanup, are evident. When this occurs, the utility of the lower rate PLT dataset is greatly diminished; therefore when logging a passive ICD well, it is recommended to log the high rate first, preferably for as long as possible. Then log the lower rate afterwards.

Calculating the well PI at the sandface (annulus) based on the PLT-log results indicate clearly that the well performance improved during PLT-logging (Table 1) and that the actual well PI is approaching the theoretical well PI estimated from Eq. 3. The numbers for the Pwf from PLT are here marked with blue and are the same number for the rate variations during the PLT, because of uncertainty during the stationary readings.

SPE 120795 5

Table 1: PLT results compared to theoretical calculated

well PI and static reservoir model PI with skin 0 The well PI estimated from the static reservoir model is assuming a skin of 0 along the entire wellbore and the performance according to the Pwf is in good agreement with the actual measured Pwf; however the well PI at sandface shows that the static reservoir modeling is over predicting the PI for the low rate, which is not that odd, since the initial low rate PLT-log did not perform very well. At the high rate the static model is under predicting with about 100-200 STB/D/psi, which we will look further into in details below.

Calculating the inflow per segment reveals that the toe part at the high rate has some problems (Figure 6a) because comparing actual PLT results with the static reservoir model with 0 skin along the entire wellbore, shows that segment 18 to 25 has less inflow than expected.

Fig. 6: Inflow per segment and cumulative rate:

a) Comparison of the PLT results with static model

skin 0.

b) Match of PLT results with static model adjusted

skin and permeability.

Reviewing the permeability log for the well, there is no clear explanation for this low rate from these segments, so instead of extensive permeability changes, the skin was changed from 0 to 30 for these segments.

For segment 5 to 7 the static reservoir model predicted too low inflow (Figure 6a), so in these three segments the skin was adjusted to between -5 to -10 and the permeability slightly increased. By doing these adjustments, the static model achieved a much better representation of the actual PLT-log (Figure 6b).

Once the static reservoir model with the ICD completion matches the actual PLT-log performance at the high rate with less than 5% difference, then standard procedure is to simulate how the well would have performed if the well was completed with a screen completion instead. Note: The simulation of the screen is assuming a perfectly performing conventional screen completion, and does not take into consideration the risk of improper well cleanup of the toe as we saw from the PLT-log, and which we cannot predict if the well was only having screens.

Fig. 7: Static modeling of ICD (Blue lines) and standard screen completion (Pink lines):

a) Static model skin 0.

b) Static model adjusted skin and permeability.

For the case of skin 0 along the entire well path, the simulations of the standard screen completion in Figure 7a (Pink line) shows a remarkable heel-toe effect, with almost twice as much inflow for the first two compartments which could potentially cone in gas or water within a very short timeframe. Also the screened well in this case is leaving the toe part with about 20% lesser inflow while the ICD completion has decreased the inflow in the heel from about 11 STB/D/ft to about 6 STB/D/ft and increased the contribution from the toe; confirmed by the PLT-log.

The static reservoir simulations of the ICD well match PLT-log results as shown in Figure 7b, where the heel has a negative skin and the lower part of the well has high skin due to improper well cleanup. Comparing this case with a standard screen completion, the well is very fortunate to have an ICD completion. (Please note the remarkable change in the scaling.) The well has increased contribution from the high skin compartments 18 to 25 by about 2/3rd, meaning

6 SPE

120795

that the ICD completion is able to help high skin areas too, just as ICD completions can help on increasing contribution from low permeability layers. The well will therefore not suffer remarkably from the skin effects and the ICD completion will ensure good sweep efficiency of all layers. Carbonate Reservoir Trial Well

The carbonate well was completed during June 2006 and put on production in May 2007 (Figure 8). The objectives of the ICD completion in the carbonate reservoir were to restrict inflow from the three last compartments, due to expected higher reservoir pressure towards the toe. Additionally, the toe part of the well was close to the gas-oil contact. The PLT-logging did not indicate a significant pressure gradient or free gas. Furthermore, there was no loss of circulation during drilling, which usually indicates severe fracture zones.

Fig. 8: Carbonate ICD completion with 5 packers and 6 compartments

The PLT loggings were first performed at the high choke and then at a lower choke size (Figure 9a), to ensure that well had been properly cleaned up before the logging.

Since the three last compartments have fewer ICD units, the well has an artificial heel-toe inflow profile. Also there was measured crossflow of 1000 RB/D during shut-in of the well which indicated a pressure gradient of about 2 psi decreasing towards the heel.

The high rate was then matched in the static reservoir model (Figure 9b) and required a manipulation of the permeability data. The well was initially designed based on an average permeability of 500 mD however the average permeability had to be increased to about 590 mD. Also the well had a higher GOR than expected, which was accounted for in the matching process.

Fig. 9: Inflow per segment and cumulative rate:

a) PLT results at high and low chokes

b) Match of PLT results with static model adjusted

permeability.

The well PI during the PLT-logging was measured to 110 STB/D/psi and when excluding the pressure drop across the ICD units the well PI in the annulus is about 500 STB/D/psi. This annulus well PI measurement is in good agreement with the theoretical horizontal well PI calculated from Eq. 3 and therefore the well has no indications of formation damage. This is a remarkable result, since the well was shut-in for almost 10 months.

Once the passive ICD completion model correlates to the actual PLT-log performance, standard procedure is to simulate how the well would have performed if the well was open hole (OH). The passive ICD static simulation is then juxtaposed against the OH simulation to compare oil flux per compartment (Figure 10a) and pressure along the well bore (Figure 10b).

Fig. 10: Flux and pressure comparison OH vs. ICD:

a) Oil flux per compartment; comparison between

ICD (Blue line) and OH completion (Pink line).

b) Pressures along well bore; ICD annulus (Blue),

ICD tubing (Pink), OH (Green) and P reservoir

(Orange).

SPE 120795 7

Note: This should be considered as an optimistic evaluation, because the OH would most likely not have been able to perform as predicted in the passive ICD static reservoir model. Specifically, the OH well would have higher skins in the toe due to non-uniform unloading; however, for comparative analysis, the skins in the two simulation scenarios are treated as identical and zero in both cases.

The modeling results show that the pressure across the ICD completion is about 80 psi, which is a substantial pressure loss in the system. The reason for having such a high additional pressure would be to eliminate any unforeseen events caused by fracture systems which could cone gas and cause excessive gas production. Figures 11a and 11b show the results of the open hole and ICD static reservoir simulations, evaluating the potential GOR decrease with the ICD completion if gas breaks through in the last compartment in the toe.

Fig. 11: Oil rate and GOR as a function of gas saturation:

a) OH completion, Oil rate (Black lines) and GOR

(Dashed Black line).

b) ICD completion (Blue line) and GOR (Dashed Blue

line).

As the gas saturation increases from 0 to 40% the GOR in the OH completion increases from the initial of 1000 SCF/STB to 40,000 SCF/STB, while the ICD well is predicted to maintain a GOR of only about 4200 SCF/STB. These remarkable results have however not yet been verified in true field trial wells.

Lessons Learned and Future Completion Designs Matching the PLT-log to a static reservoir simulation for the sandstone well, then removing the ICD completion and replacing it with a conventional screen completion, the model shows the theoretical performance of the well without ICD. When the rate is increased to 15,000 STB/D for a standard screen completion, the well suffers from extreme heel-toe effect with the toe only contributing 1/4th that of the heel (Figure 12a). Increasing the rate from 10,300 to 15,000 STB/D for the ICD completion shows better balancing of the inflow including higher contribution from the toe (Figure 12b). Clearly, the sweep efficiency of the ICD completion is improved over the conventional screen completion, deferring gas or water breakthrough and draining the reservoir layers in a more balanced way.

Fig. 12: Static modeling of ICD and standard screen completion, Rate 10,300 STB/D (Blue lines) Rate

15,000 STB/D (Pink lines):

a) Oil flux for screen cases

b) Oil flux for ICD cases

Taking the next step by looking at new options to utilize the advantages of the ICD completion, the wells can easily be extended without compromising the balancing effect, thus expanding the drainage area resulting in an increase of well reserves (Figure 13a represents 2700ft and 10,300 STB/D and Figure 13b represents 3300 ft and 12,000 STB/D). The well PI for the 3300ft well is increased from about 1300 to 1360 STB/D/psi. As a result, fewer numbers of wells are needed to drain the reservoir volumes; however, it is recommended to perform dynamic reservoir simulation evaluations to establish a drainage strategy for the entire reservoir with the longer ICD wells.

Fig. 13: Static modeling of a longer well with ICD:

a) Oil flux for 2700ft and 10,300 STB/D

b) Oil flux for 3300ft and 12,000 STB/D

For carbonate wells with very low PI, the potential for enhancing the well life by using ICD completions is best illustrated by simulating water breakthrough in fractures for two cases with different packer density. In this case, a sensitivity of synthetic low permeability and the impact of upscaling the magnitude of this log (Figure 14) have been

8 SPE

120795

performed to study the difference in the static reservoir modeling results.

Fig. 14: Synthetic permeability log (Pink) and an upscaled Average Perm log (Blue).

Additionally, this well has a large pressure differential along the wellbore of about 300 psi, being high at heel and lower at toe. This gradient is caused by pressure support from water injectors and low connectivity between the reservoir layers.

The ICD completion simulations are performed with two sets of different nozzle sizes in Figure 15 and 16 respectively. The “ICD” simulations have the same nozzle size along the entire wellbore and the “ICD variable” simulations have different sizes to balance the inflow according to the large pressure differential in the reservoir. The average pressure drop across the nozzle-based ICD units is initially only half of the previous carbonate well (about 40 psi in these cases), which should be sufficient for the ICD completion to achieve the upside potential for maintaining oil production at low water cut. It should however be noted that this pressure drop is designed specifically for this well to achieve good well performance, and should not be considered as a standard ICD unit pressure for low permeability reservoirs as a generality.

Simulation sensitivities are run for different packer spacing, based on both synthetic permeability logs (Figure 15a and 16a), and an average permeability (Figure 15b and 16b). In the first set of sensitivities (Figure 15), packer spacing is located every 120 ft (every 3rd joint).

Fig. 15: Static modeling of perm variations with packers (Black lines) for every 3rd joint; OH (Blue lines), ICD (Pink

lines) and ICD variable (Orange lines): a) Oil flux for

Synthetic Perm log and b) Oil flux for Average Perm

120ft

Figure 16 shows sensitivities for packer spacing every 480 ft (every 12th joint = four compartments). The impact on the simulations is noticeable when simulating is based on the upscaled permeability along the wellbore instead of using the log data. Figure 16a (Orange line), clearly shows that the ICD solution with four compartments is not able to capture high inflow from the high permeability layers towards the toe, which is much better captured with a packer on every third joint (Figure 15a, Orange line).

Fig. 16: Static modeling of perm variations with packers (Black lines) for every 12th joint; OH (Blue lines), “ICD” (Pink

lines) and “ICD variable” (Orange lines); a) Oil flux for

Synthetic Perm log and b) Oil flux for Average Perm

120ft

Table 2 shows the results after simulating water breakthrough in 3 fractures in the heel. It is how much the ICD effectively decreases the water cut when water breaks through. If the well has “ICD variable” (designed accordingly to pressure differentials) and packers every third joint the water cut is estimated to be about 7% compared to an OH completion, which may be suffering from water cut of about 53%.

SPE 120795 9

Table 2: Comparison of OH completion and ICD completions with different packer density

This is substantial water cut decrease, which could remarkably extend the well life. The ICD solution with 4 compartments showed the water cut of 22%. With respect to evaluating the number of packers to deploy, there is a cut-off limit as how much water cut decrease will economically justify the increased quantity of packers. To accurately assess the economics, dynamic model is required, which is beyond the scope of this paper; however, inferentially even the simplest dynamic studies would likely indicate that the additional expenditure is justifiable.

Recommendations for future design workflow:

1)To propose the best ICD completion design for

future wells, the field or the development area

should to be evaluated as a whole.

2)The final ICD design of the completion should be

performed based on LWD data and pressure

gradients along wellbores. This means that drilling

measurements are important to refine the ICD

completion design.

3)If the well has severe pressure differentials, then

firm operation guidelines for production rates

should be established in order to avoid crossflow.

Conclusions

1)All completion and production objectives are met with

the nozzle-based ICD completions.

2)Sandstone reservoir PLT evaluation: The well had

initial indications of formation damage due to higher skin at the toe. After cleanup at higher rates, the ICD completion has increased the contribution for those zones by 2/3rd. Consequently better sweep efficiency is expected.

3)Carbonate reservoir PLT evaluation: There are no

indications of formation damage in this well, because the well PI of about 500 STB/D/psi is as predicted for an ideal horizontal well PI.

4)For correlation purposes, perform PLT-logging at high

rate first and low rate afterwards to ensure that well

cleanup does not alter the rate-based inflow profiles while collecting data.

5)Conclusively the nozzle-based ICD completion have

several advantages:

a.The ICD unit is integrated with a screen,

designed to exclude abrasive particles above 45

μm, securing a long lifetime without plugging

and erosion risk of the nozzles and the ICD

unit.

b.The ICD unit is equipped with at least 2 or

more nozzles, so at least one nozzle will be

exposed to inflow of fluid, making the system

reliable even if the well has been left with

solids-laden fluids down hole for a longer

period before the well is put on production.

6)Recommendations for future completion design options:

a.Explore options of drilling and completing

longer horizontal wells.

https://www.wendangku.net/doc/9b17817046.html,e annular packers more extensively in order

to decrease gas or water rates when breaking

through.

Acknowledgement

We would like to thank Saudi Aramco for the great team work leading to the success of these two trial wells and permission to publish the results.

Nomenclature

A = inflow area nozzles, sq.ft [m^2)]

Bo = oil volume factor, RB/STB [Rm^3/Sm^3]

Cu = units conversion constant

Cv = dimensionless flow coefficient for nozzle

Cx = units conversion constant

h = reservoir height, ft [m]

ICD = inflow control device

J = productivity index (PI), STB/D/psi

[Sm^3/d/bar]

k H and k V = horizontal and vertical permeability, D[m^2] Lw = well length, ft[m]

LWD = logging while drilling

?P F= pressure drop from reservoir pressure to

Pwf for a conventional completion, psi[bar]

?P ICD= total pressure drop from reservoir

pressure to Pwf for an ICD completion, psi

[bar]

?p Fi = pressure drop from formation into

annulus, psi[bar]

?p Ni = pressure from the annulus to the tubing

= pressure across nozzle based ICD unit

P wf=flowing bottom hole pressure, psi[bar]

120795 10 SPE

PLT =production logging tools

r e, r w = external boundary radius and wellbore

radius, ft [m]

ρ = density, lb/cf [kg/m^3]

μ= viscosity, cP [Pa*sec]

References

[1] SPE 85332 “New Technology Application to Extend the

Life of Horizontal Wells by Creating Uniform-Flow-

Profiles: Production Completion System: Case Study”

[2] H.A. Asheim 1997. Compendium: “Horizontal Well

Inflow Performance.” Norwegian University of Science and

Technology (NTNU)

通用实心锥形喷嘴

通用实心锥形喷嘴 喷嘴的特点: 实心锥形系列喷嘴结构紧凑,雾化效果均匀,技术性能优良,能产生实心锥形喷雾形状,喷流角度为45°-120°。 这种喷嘴产生的喷雾分布均匀,喷雾液滴大小为中等到偏大,这种均匀的喷雾分布效果来源于独特的叶片设计,大而通畅的流道和先进的喷流控制特性,对于要求覆盖一个区域的喷流应用领域,能发挥极佳的效果。 当需要若干个喷嘴产生重叠喷雾时,需要有25%-30%的喷雾重叠区,以使整个方向的喷雾覆盖区分布均匀。用户可根据喷雾面积的需要,可选用不同流量和喷射角度的喷嘴,组成喷射集管。 该喷嘴可选用不锈钢,黄铜, 塑料等优质材料精密加工而成。产品逐个检测,可按客户要求定制,产品均达到国家GB标准,并符合客户的理想要求。 实心锥形喷嘴主要应用于钢铁连铸及钢坯轧制中对铸坯的强制冷却,同时也适用于工业产品冲洗及清洗,气体和固体物质进行表面喷洒,喷洗气体洗涤器中的滤垫,以利于改进化学反应效果。 实心锥喷嘴具有英制管螺纹BSP, BSPP, BSPT,美制锥管螺纹NPT外/内螺纹接头。本公司产品长期出口美国,英国,法国,德国,日本,菲律宾,马来西亚等国,可来图,来样加工,均可满足不同国家不同螺纹标准需求. 性能特点: * 喷嘴材质:不锈钢,BRASS黄铜等; * 喷嘴结构:一流体喷嘴,带内部叶片; * 喷雾形状:标准实心锥雾化效果; * 喷雾角度:45-120度; * 喷嘴压力:0.2-10巴(0.49-65升/分); * 接口类型:1/8", 1/4", 3/8", 1/2", 3/4" ; 螺纹标准:标准英制管螺纹BSPT, 美制锥管螺纹NPT, 外螺纹或内螺纹接口 粤伯斯公司生产的GGD墙壁安装型实心锥形喷嘴产品说明: GGD型实心锥形喷嘴主体采用日产303SS、304SS、316SS、316LSS、BRASS等优质材料,内镶“X”形导流叶片,喷雾模式为实心锥形,连接尺寸从3/16至6寸。 GGD墙壁安装型实心锥形喷嘴产品特点: 1、使用时产生实心锥形喷雾形状,喷雾区域成圆形,喷雾角度为43-120度。 2、能在大范围流量和压力下产生分布均匀、液滴大小为中等到偏大的喷雾,叶片设计是其设计机理,并大而畅通的通道和先进的喷流控制。 3、该喷嘴对于要求完全覆盖一个区域的喷流应用领域能发挥极佳的效果。 4、喷嘴的头部配有外螺纹接头,螺纹规格与喷嘴入口处螺纹相同。 5、适合安装在管道或者容器的外壁。 6、有标准角度和广角度的区别,具有可以拆卸的帽盖和叶片。 7、GGD系列金属喷嘴为外螺纹接头,GD系列金属喷嘴为内螺纹接头。 GGD墙壁安装型实心锥形喷嘴喷雾模式:

喷头的选型及布置

喷头的选型与布置 喷头的选型 选择喷头时,除需考虑其本身的性能,如喷头的工作压力、流量、射程、组合喷灌强度、喷洒扇形角度可否调节之外,还必须同时考虑诸如土壤的允许喷灌强度、地块大小形状、草坪品种、水源条件、用户要求等因素。另外,同一工程或一个工程的同一轮灌组中,最好选用一种型号或性能相似的喷头,以便于灌溉均匀度的控制和整个系统的运行管理。在已建项目中,有的为片面追求水景效果,安装了各种性能截然不同的喷头,致使灌溉均匀度无法保证。选择喷头时需特别注意的是,灌溉系统不是喷泉,其目的是为了弥补植物需水时空上的不足,而不是创作人工水景。因此,只能在首先满足草坪需水的前提下,尽量照顾到景观效果。 目前,草坪喷灌系统一般均采用埋藏升降式草坪喷头。 此类喷头品种繁多,以美国雨鸟公司(RAIN BIRD)的产品为例,按射程分,有0.9~6.1米的小射程喷头,6.4~15.3米的中等射程喷头,11.6~25.0米的大射程喷头;按驱动机构分,有球驱动、齿轮驱动和摇臂喷头;按调节方式分,有无工具调节和有工具调节喷头,等等。这些喷头均可在加压喷水时自动弹出地面,而灌水停止时又缩入地面,不会影响园林景观和草坪上的机械作业。 1.1 小射程喷头一般为非旋转散射式喷头,如雨鸟1800系列、UNI-Spray系列。这些喷头的弹出高度有50mm、75mm、100mm、150mm和300mm,可选配喷洒形式繁多或可调角度的喷嘴,喷灌强度较大。不但适用于小块草坪,也可用于灌木、绿篱的灌水和洗尘。这类喷头的喷嘴大多为“匹配灌溉强度喷嘴”,即无论全圆喷洒,还是半圆或90度及其他角度,其灌溉强度基本相同。这种特性对保证系统的喷洒均匀度极为有利。 1.2 中等射程喷头多为旋转喷头,如雨鸟T-Bird系列齿轮驱动无工具调节喷头、R-50球驱动无工具调节喷头、Maxi-Paw摇臂式无工具调节喷头、5004齿轮驱动有工具顶部调节喷头。这些喷头适用于中型面积绿地的灌溉。其中T-Bird、R-50和5004喷头均配有雨鸟公司性能独特的雨帘(Rain Curtain)喷嘴,使喷洒均匀度大为提高;Maxi-Paw喷头尤其适合水源水质较差的条件。 1.3 大射程喷头,如雨鸟Falcon和Talon系列均为旋转式齿轮驱动顶部有工具调节喷头。其特点是材料强度高,抗冲击性能好。除用于大面积草坪灌溉外,特别适合于运动场草坪灌溉系统。由于高尔夫球场草坪与一般公共草坪相比具有本身的特殊性,因此,高尔夫球场草坪喷头独成体系,如雨鸟Eagle系列和Impact-D系列喷头,即专为高尔夫球场草坪喷灌而设计。 在各种射程的喷头中,均可选择“止溢型”喷头。带止溢功能的喷头一般安装在地形起伏较大的草坪喷灌系统中的地形较低的部位,可有效防止当灌水停止时管道中的水从低位喷头溢出,影响喷头周围草坪的正常生长。 土壤的允许喷灌强度是影响喷头选型的主要因素之一。喷灌强度是指单位时间内喷洒在地面上的水深。我们一般考虑的是组合喷灌强度,因为灌溉系统基本上都是由多个喷头组合

双碱法脱硫技术方案

(一)脱硫系统设计 1、双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充; (2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2CO3 + SO2→ Na2SO3 + CO2↑ (1) 2NaOH + SO2→ Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O → 2NaHSO3(3) 其中:

式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 → Na2SO4 (4) NaHSO3 + 1/2O2 → NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3→ 2 NaOH + CaSO3(6) Ca(OH)2 + 2NaHSO3→ Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程 CaSO3 + 1/2O2 → CaSO4 (8) 式(6)为第一步反应再生反应,式(7)为再生至pH>9以后继续发生的主反应。脱下的硫以亚硫酸钙、硫酸钙的形式析出,然后将其用泵打入石膏脱水处理系统,再生的NaOH可以循环使用。 本钠钙双碱法脱硫工艺,以石灰浆液作为主脱硫剂,钠碱只需少量补充添加。由于在吸收过程中以钠碱为吸收液,脱硫系统不会出现结垢等问题,运行安全可靠。由于钠碱吸收液和二氧化硫反应的速率比钙碱快很多,能在较小的液气比条件下,达到较高的二氧化硫脱除率。 (三)双碱法湿法脱硫的优缺点 与石灰石或石灰湿法脱硫工艺相比,双碱法原则上有以下优点:

螺旋喷嘴结构性能及螺旋喷头选型应用

螺旋喷嘴结构性能及螺旋喷头选型应用 一、螺旋喷嘴结构及工作原理 喷嘴有内、外螺纹型。通常1/4英寸-2英寸的喷头可分别用黄铜、不锈钢、塑料材料制造的。如需应用于特殊领域,擎工喷嘴https://www.wendangku.net/doc/9b17817046.html,也可提供其它材料制造。 液体(或料浆)通过与连续变小的螺旋面相切和碰撞后,变成微小的液珠(粒子)喷出而形成雾状喷射。 擎工陶瓷螺旋喷嘴实心螺旋喷嘴喷雾效果空心螺旋喷嘴喷雾效果 二、螺旋喷嘴特点 螺旋喷头腔体内从进口至出口的流线型设计使得阻力系数降至最低。耐磨性、耐腐性、成雾性、防堵性超过普通喷嘴。螺旋喷头永久不堵塞,不锈钢材料耐腐蚀。 三、螺旋喷嘴行业应用 上海擎工生产的螺旋喷嘴通常被化工、环保、电力、纺织等众多工业领域所采用,特别是工业锅炉脱硫脱硝除尘工艺中螺旋喷头应用更为广泛。 1.废气洗涤:螺旋喷嘴应用于工业喷嘴的除尘洗涤中; 2.气体冷却:化工气体的喷雾降温; 3.洗涤与漂淋过程:造纸、纺织行业中的洗涤、漂淋; 4.防火灭火:螺旋喷嘴也应用于消防灭火防火中; 5.使用于烟气脱硫系统:如脱硫螺旋喷嘴、脱销螺旋喷嘴在工业废气的脱硫脱硝工艺中的应用; 6.使用于除尘降尘系统:螺旋喷嘴的降尘除尘功能在各种粉尘场合非常实用。 四、上海擎工螺旋喷嘴型号及产品说明 1.型号:SJ-SS不锈钢螺旋喷嘴,SJ-SIS陶瓷螺旋喷嘴,SJ-PTFE特氟龙螺旋喷嘴,SJ-PP 塑料螺旋喷嘴,SJ-SS法兰螺旋喷嘴,SJ-BRASS法兰螺旋喷嘴,SJ-180螺口螺旋喷嘴。 2.产品说明:喷射角度:60o-180o;? 喷雾形状:实心(空心)锥形喷雾、喷射区域成圆形(环形);? 液滴大小:液滴大小为中到大,压力和流量适用范围广;? 材质:黄铜(BRASS)、不锈钢(SS)、塑料(PP/PVC/ PTFE)等。 3.型号说明:1/4》接口尺寸;SJ》喷嘴型号;SS材质代码;60》喷射角度;20》力量大小。

除雾器的选型

除雾器的选型 为了提高除雾效果,一般采用两级叶片,第一级为粗除,第二级为精除。屋脊型除雾器布置在烟气垂直流动的吸收塔上层,多采用单层梁支撑两级叶片的固定方式。但为了检修方便,也有用户要求用两层梁支撑。平板型除雾器可以布置在烟气垂直流动的吸收塔内,也可以布置在烟气水平流动的烟道中,一般采用双层梁支撑或固定。 屋脊型除雾器的优点是烟气通过叶片法线的流速要小于塔内水平截面的平均流速,这样,即使塔内烟气流速偏高,在通过除雾器时,由于流通面积增大而使得烟气流速减小。但是,由于屋脊型除雾器需要在吸收塔的截面上留出矩形通道,而吸收塔是圆形的,所以部分面积需要用盲板封起来,从而部分抵消了一部分优势。另外,屋脊型除雾器的结构较平板型除雾器更稳定,可以耐受的温度较高,因此,当脱硫系统不设GGH时,建议采用屋脊型除雾器。单层梁的屋脊型除雾器高度一般为2 850mm,而两级平板型除雾器高度为3 230mm,即单层梁的屋脊型除雾器占用空间较小。但是,考虑到减小携带水量,通常要求烟气在除雾器叶片以上1m 处开始改变流向和提高流速,这样可以使大的颗粒落回到除雾器。如果加上这预留的1m空间,屋脊型和平板型除雾器占用总空间接近。 另外,从经济角度分析,平板型除雾器的成本比屋脊型稍低一些,所以,一般情况下最好选择平板型,只有在烟温相对较高时,为了提高安全性才选择屋脊型除雾器。 3结垢原因分析及冲洗系统设计 3. 1结垢原因分析 (1)吸收剂浆液附着于除雾器叶片上。SO2溶于水的电离产物主要是H+和HSO3 - ,为了促进SO2的吸收和溶解,采取了2种措施:加入石灰石以中和溶液中的H+ ;向浆池中鼓入过量空气,以促进石膏的形成和结晶。吸收塔底部的石膏浆液与新鲜的石灰石浆液混合后由喷嘴喷出,与烟气充分接触后,其中很小一部分被烟气携带附着于除雾器的叶片或其他零部件上。如果浆液在叶片上停留的时间较长,就会在叶片表面形成垢层。 (2)吸收剂过量。过量的吸收剂会导致溶液中钙离子浓度过高,过饱和度增大,结垢加快。 (3)吸收塔内烟气流动不均匀。这种情况会在烟气流速较快的位置产生二次携带,导致除雾器结垢,其根本原因是吸收塔流场设计不合理。 除雾器叶片一旦开始结垢,发展将十分迅速。 因为结垢层的存在减小了通道面积,导致该处的烟气流速增大,加大了二次携带的风险。 3. 2除雾器冲洗系统设计 在设计除雾器冲洗系统时要考虑的因素有:冲洗面选择、冲洗水压力、冲洗强度、喷嘴角度、冲洗频率、冲洗水水质等。 为了减少烟气通过除雾器后的携带水量,冲洗系统通常设计成只冲洗除雾器初级叶片的迎风面和背风面。冲洗水的压力一般要求200 kPa以上,冲洗强度在40 L/ (m2?min)左右,喷嘴角度一般选择90°或110°, 200%重叠。 通过调整各冲洗通道的间隔时间可调节补充水量,冲洗通道可以按空间顺序依次冲洗,也可以将一个周期内的冲洗次数调整为迎风面多于背风面。冲洗频率一般取决于吸收塔每小时的蒸发水流量,当吸收塔内的水位低于设定值时,自动控制系统将执行除雾器冲洗程序。

水泵、管道及喷嘴选型计算公式

一、 喷嘴选型 根据要求查雾的池内样本,选10个除磷喷嘴3/8 TDSS 40027kv-lcv(15°R)。 参数:喷角区分40°,额定压力5MPa ,喷量27.7L/min ,喷嘴右倾15°。 二、水泵选型计算 1、水泵必须的排水能力 Q B =20 16.2242024max ?=Q = 19.44 m 3/h 其中,系统需要最大流量16.2)601027.7(10-3max =???=Q m 3/h 2、水泵扬程估算 H=K (H P +H X )= 1.3 ?(178+2)=234 m 其中:H P :排水高度,160+18=178m ;(16mPa ,扬程取160m ) H X :吸水高度,2m ; K :管路损失系数,竖井K=1.1—1.5,斜井?<20°时K=1.3~1.35,?=20°~30°时6K=1.25~1.3,?>30°时K=1.2~1.25,这里取1.3。 查南方泵业样本,故选轻型立式多级离心泵CDL42-120-2,扬程238m ,流量42 m 3/h ,功率45kW ,转速2900r/min 。 三、管路选择计算 1、管径:泵出水管道86.2290042'900'=?== ππV Q d n mm 泵进水管道121.91 90042'900'=?== ππV Q d n mm 其中: Qn :水泵额定流量; 'V 经济流速m/s ;'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m ,这里泵进水管流速为1m/s ,泵出水管流速为1.5m/s 。 查液压手册,选泵出水管道内径89mm ,泵进水管道内径133mm 2、管壁厚计算 泵进水口

固瑞克喷嘴的选型指南

固瑞克喷嘴的选型指南 o喷嘴是用来控制喷幅(喷涂范围)和涂料流量(漆膜厚度)。 o喷嘴需要和喷嘴座配合使用,常用的喷嘴座有3种,每种喷嘴座所含的喷嘴不能够互相通用。 o喷嘴有6位数订货编码,前面三位是指喷嘴的类型,后三位是喷幅和孔径,常用的喷嘴座和其包含的喷嘴有: ?RAC X (蓝色喷嘴座) ?LTX ――蓝色,适用于乳胶漆喷涂 ?WR ――蓝色,宽喷幅喷嘴 ?FFT ―-绿色,精饰型喷嘴 ?RAC 5 (桔黄色喷嘴座) ?286 ――黑色,标准型喷嘴 ?FF5 ――绿色,精饰型喷嘴 ?LL5 ――黄色,划线车喷嘴 ?RAC Heavy-Duty (桔黄色喷嘴座) ?GHD ――灰色,耐磨性喷嘴 o喷嘴识别说明: LTX 5 17 蓝色适用于喷涂乳胶漆的喷嘴 5代表喷幅(喷涂范围)的一半为5英寸,相当于25-30cm左右, 17代表其孔径为0.017英寸,大约是0.42mm左右 o常用喷嘴口径都是以奇数递增,如15,17,19等,只有FFT和FF5系列是以偶数递增 o乳胶漆的喷涂: ?喷涂乳胶漆时,综合施工效率和质量(膜厚)来说,可以采用标配的LTX517或515喷嘴。 ?在墙角分色时为减少漆雾可采用喷幅较小的喷嘴如315或317等。 ?为了取得绝佳的表观质量,可以选用FFT精饰型喷嘴,包括414或416等

?在大面积施工时可选用WR1221或1223喷嘴,她的喷幅可达到55-65cm,施工效率较LTX等可提高一倍。由于它的喷幅变大,为确保漆膜的厚度,喷嘴孔径需要加大,由于小型设备不能够为大口径喷嘴提供足够的涂料压力,所以WR喷嘴只有ULTRA 695以上机型才能使用。 o2K PU的喷涂 ?喷涂木器家具时――由于无气喷涂的涂料流量较空气喷涂大很多,使用标配LTX517时出漆量会很大,喷涂立面时会流挂,所以推荐使用FFT精饰型喷嘴(FFT310,312,314等),顾名思义它的雾化效果较普通喷嘴好,能够用较低的压力将涂料雾化的非常均匀,并延长喷嘴使用寿命。 ?喷涂地板漆时――由于地板的漆膜要求一次性能够达到一定的厚度,所以可以选用较大的喷嘴,如LTX521或523等,需要注意的是,在喷涂时压力不要选用过高,由于地板漆的流平性很好,只要能够均匀雾化即可,通常选用40-60Bar左右的涂料压力为宜。 o环氧地坪涂料和各类防火和防腐涂料的喷涂(以下喷嘴选择仅供参考,喷嘴的孔径会随实际的涂料粘度和固含量的不同而改变) ?由于该类型的涂料中的固含量较高,颗粒较大较硬,会对喷嘴造成较大的磨损,缩短使用寿命,所以推荐使用耐磨型GHD喷嘴。 ?由于防腐防火喷涂要求涂层较厚,在喷涂前选用的喷嘴口径也要放大,由于选用涂料的不同,常用的有GHD517到GHD531等。在钢结构防腐中喷涂钢梁时如果使用GHD517的喷嘴会造成大量过喷,改用GHD317的喷嘴,使其喷幅变窄即可解决问题。 ?在喷涂溶剂型环氧地坪涂料时可以选用519-523的喷嘴,在喷涂环氧自流平涂料时可以选用523-527的喷嘴 ?部分聚氨酯防水涂料可以选用GHD645-651喷嘴进行喷涂 ?部分JS防水涂料可以选用GHD635-639喷嘴进行喷涂

喷嘴如何选型

1)喷嘴简介 喷嘴种类较多,可供选择的范围较大。一般来说,喷嘴具体类型名称有:窄角喷嘴,广角喷嘴,组合式扇形喷嘴,单体式扇形喷嘴,自清洗式扇形喷嘴,扁平式扇形喷嘴,燕尾扇形喷嘴,夹扣式扇形喷嘴,快拆扇形喷嘴,侧喷扇形喷嘴,通用扇形喷嘴. 选用喷嘴的因素有流量、压力、喷雾角度、覆盖范围、冲击力、温度、材质、应用等,而这些因素之间往往相互牵连、相互制约。流量与压力,喷雾角度与覆盖范围均成正比关系。任何喷嘴的喷射目的是要维持连续不断使槽液与工件接触,流量这个因素比压力更为重要。液体的温度不会影响喷嘴的喷雾性能,但它影响黏度和比重,同时还影响材料的选择。喷嘴的材料还应根据槽液的化学特性来确定,对非腐蚀性槽液可根据加工的难易,采用青铜铸造或塑料压铸。为防止腐蚀,可采用非金属材料;对硫酸、盐酸等强腐蚀槽液,可采用尼龙塑料;用于磷化槽液的喷嘴材料一般采用耐酸的不锈钢,防止锈蚀的喷嘴也可直接选用不锈钢或尼龙材质制作。 具有一定冲击力的喷嘴应选用小角度喷嘴,以液柱流(即射流)为最佳;扇形喷嘴适用于清洗、脱脂、冷却等方面,锥形喷嘴适用于漂淋、表层、磷化、加湿、除尘等方面;在储漆缸、槽体中应安装文丘里搅拌喷嘴,以"H"型即搅拌喷嘴(也称为文丘里喷嘴)为例,槽液经一定压力与引道口被吸入的液体共同以1:4的流量混合后扩散喷射出来,达到溶质无空气混合搅拌的效果,从而防止了沉淀,因为搅动确保了化学溶液均匀的混合。 喷嘴的安装: 在按工件的外廓尺寸组成的环形管道上按一定的排列安装若干喷嘴,将工件包围,使工件经过喷淋区时,全部表面均能被槽液喷洗,整个喷淋区应均匀布置喷嘴以保证喷洗的工艺时间及效果。喷嘴距工件之间的距离,应在射流最佳扩散射程之内,为此喷管与喷嘴布置要合理。喷管与喷嘴之间的距离为250mm~300mm,交叉排布时,喷嘴与工件之间的距离最好不低于250mm。 浸渍式涂装前处理搅拌装置由泵到管道至搅拌喷嘴,构成了完整的槽液喷射系统。搅拌喷嘴运用文丘里原理,槽液在一定压力的作用下进入管道,通过搅拌喷嘴的喷孔形成高速射流,并在喷嘴四周引道口产生低压区,形成虹吸现象,在压力差的作用下槽液被吸入搅拌喷嘴,从而能循环大量的液体。搅拌喷嘴距槽底的距离为25mm~75mm,与工件的距离为200mm~380mm,喷孔的角度应根据工件大小来确定。当工件宽度较小时,喷孔可设计垂直向上,当工件较大时,

喷淋洗涤塔

喷淋洗涤塔、液柱塔及动力波洗涤器 李秋萍程建伟邵国兴 (上海化工研究院上海200062) 摘要:本文简单介绍了喷淋洗涤塔、液柱塔及动力波洗涤器的结构特点及性能。并以工业应用装置的操作参数为基础,进行分析汇总,提出了各设备的设计参数,供同行参考。 :湿式洗涤器;喷淋洗涤塔;液柱塔;动力波洗涤器;除尘;雾化喷嘴;脱硫设备 0 前言 湿法除尘设备是采用液体(通常为水)作为洗涤液,通过气液两相的接触,实现气液两相间的传热、传质等过程,以满足气体净化(除尘或吸收)、冷却、增湿等要求。 湿法除尘设备具有结构简单、投资少、操作及维修方便等优点。但在使用中产生的污水、污泥必须进行处理,否则会造成二次污染。另外,当气体中含有腐蚀性介质时,要考虑设备的防腐措施。 湿法除尘设备设计的关键是要使气液两相充分接触,增加洗涤液与粉尘颗粒的碰撞概率等,以提高设备的除尘效率。 喷淋洗涤塔、液柱塔及动力波洗涤器均采用液相喷嘴将洗涤液雾化成细小液滴,均匀地分散于气相中,增大液相的比表面积,有利于提高碰撞及拦截粉尘的概率,达到较高的除尘效率。上述设备均由空筒体、喷嘴及除沫器三部分组成,结构简单,操作维修方便,而且不易产生结垢和堵塞问题,确保设备能够安全长期连续运行。另外,该类设备还具有放大效应小的特点,更适用于作为超大气量的洗涤设备。 近年来,随着人们环保意识的日益加强,烟气脱硫除尘问题受到各方面广泛关注。而火电厂烟气脱硫除尘系统的烟气处理量特别大,一般为105~106[Nm3/h],在采用石灰石—石膏湿法脱硫工艺中,喷淋洗涤塔,液柱塔及动力波洗涤器成了脱硫吸收塔的首选设备,并在工程应用中得到了不断的改进与提高。本文以工业应用装置的操作参数为基础,进行分析汇总,提出了这三种设备的合适的设计参数,供同行参考。 1 喷淋洗涤塔 喷淋洗涤塔是一种古老的湿法除尘设备,由于其结构简单,阻力小,在工业生产中,特别是作为环保设备得到广泛应用。 1.1结构型式及传统设计方法 喷淋洗涤塔结构见图1所示。洗涤液通过喷嘴雾化成细小液滴均匀地向下喷淋,含尘气

喷头的温级选用

喷头温级的选用: 1、自行车、地下汽车库采用易熔合金,温级为57~77℃; 2、其他部位采用玻璃球喷头,厨房灶台上部的喷头温级为93℃, 厨房其他部位的喷头温级为79℃。其他部位的喷头温级为68℃。 3、洗衣房、厨房、直燃机房喷头温级为98℃; 4、汽车库及吊顶内上喷喷头温级为74℃; 5、建筑需要装修部位用采用装饰喷头; 喷头的选用: 汽车库、洗衣房、厨房、机房用吊顶内上喷喷头采用易熔合金喷头。其他部位选用玻璃泡喷头。 厨房、地下车库采用93℃和72℃温级和易熔合金喷头,其它等用68℃温级的下喷喷头。 喷头选用:除地下一层车库、展厅中立体停车场选用易熔元件喷头外,其余部位全部采用玻璃球喷头,其中有吊顶的地方均采用装饰型喷头、无吊顶的地方均采用直立式型喷头。喷头温级:易熔元件采用72℃;玻璃球除厨房采用93℃外,其余部位采用68℃。 观众厅网架处采用121℃。 由于管线较长,卫生器具多,按现行规范管道水力计算,水头损失较大,虽然进户管径采用DN25,水表为DN20,水表损失超过4m,

已超出规范的要求,如果再通过放大管径以减少水头损失显然不合适。 当每户使用人数一定时,随着卫生器具当量总数的增加,用水量标准增大,但卫生洁具同时使用率变小。对于高档住宅,建议b0的取值为0.15,k值也应减小,如取k=0.002。设计秒流量计算公式为:q = 0.15(Ng)1/2 + kNg 灭火器类型规格编码的字母含义

喷头选用: 采用玻璃球闭式喷头,其中设于封闭式吊顶下的喷头均采用装饰型喷头,设于敞开式吊顶中的喷头均采用带集热板的下垂型喷头,设于吊顶内或无吊顶处的喷头均彩直立式喷头。喷头温级:除此之外厨房采用93oC、观众厅网架处采用121oC外,其余部位均采用68oC。 雨淋系统: 保护部位——舞台葡萄架下部及侧台、后台。 系统设计:按严重危险级设计。在水泵内设雨淋泵和稳压设备。在报警阀室设八雨淋阀。系统采用开式喷头。 系统控制:自动控制、消防中心手动远控、水泵房及现场应急操作。雨淋泵设自动巡检装置。 水幕系统: 保护部位:舞台口防火幕。 系统设计:在泵房内设水幕泵和稳压设备。在报警阀室设一雨淋阀,系统采水幕喷头。 系统控制:自动控制、消防中心手动远控、水泵房及现场应急操作。水幕泵及定期自动巡检装置。

喷淋洗涤塔

喷淋洗涤塔 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

喷淋洗涤塔、液柱塔及动力波洗涤器 李秋萍程建伟邵国兴 (上海化工研究院上海 200062) 摘要:本文简单介绍了喷淋洗涤塔、液柱塔及动力波洗涤器的结构特点及性能。并以工业应用装置的操作参数为基础,进行分析汇总,提出了各设备的设计参数,供同行参考。 关键词:湿式洗涤器;喷淋洗涤塔;液柱塔;动力波洗涤器;除尘;雾化喷嘴;脱硫设备 0 前言 湿法除尘设备是采用液体(通常为水)作为洗涤液,通过气液两相的接触,实现气液两相间的传热、传质等过程,以满足气体净化(除尘或吸收)、冷却、增湿等要求。 湿法除尘设备具有结构简单、投资少、操作及维修方便等优点。但在使用中产生的污水、污泥必须进行处理,否则会造成二次污染。另外,当气体中含有腐蚀性介质时,要考虑设备的防腐措施。 湿法除尘设备设计的关键是要使气液两相充分接触,增加洗涤液与粉尘颗粒的碰撞概率等,以提高设备的除尘效率。 喷淋洗涤塔、液柱塔及动力波洗涤器均采用液相喷嘴将洗涤液雾化成细小液滴,均匀地分散于气相中,增大液相的比表面积,有利于提高碰撞及拦截粉尘的概率,达到较高的除尘效率。上述设备均由空筒体、喷嘴及除沫器三部分组成,结构简单,操作维修方便,而且不易产生结垢和堵塞问题,确保设备能

够安全长期连续运行。另外,该类设备还具有放大效应小的特点,更适用于作为超大气量的洗涤设备。 近年来,随着人们环保意识的日益加强,烟气脱硫除尘问题受到各方面广泛关注。而火电厂烟气脱硫除尘系统的烟气处理量特别大,一般为105~ 106[Nm3/h],在采用石灰石—石膏湿法脱硫工艺中,喷淋洗涤塔,液柱塔及动力波洗涤器成了脱硫吸收塔的首选设备,并在工程应用中得到了不断的改进与提高。本文以工业应用装置的操作参数为基础,进行分析汇总,提出了这三种设备的合适的设计参数,供同行参考。 1 喷淋洗涤塔 喷淋洗涤塔是一种古老的湿法除尘设备,由于其结构简单,阻力小,在工业生产中,特别是作为环保设备得到广泛应用。 结构型式及传统设计方法 喷淋洗涤塔结构见图1所示。洗涤液通过喷嘴雾化成细小液滴均匀地向下喷淋,含尘气体由喷淋塔下部进入,自下向上流动,两者逆流接触,利用尘粒与水滴的接触碰撞而相互凝聚或尘粒间团聚,使其重量大大增加,靠重力作用而沉降下来。被捕集的粉尘,在贮液槽内作重力沉降,形成底部的高含固浓相液并定期排出作进一步处理。部分澄清液可循环使用,与少量的补充清液一起经循环泵从塔顶喷嘴进入喷淋塔进行喷淋洗涤。从而减少了液体的耗量以及二次污水的处理量。经喷淋洗涤后的净化气体,通过除沫器除去气体所夹带的细小液滴后,由塔顶排出。

除雾器安装

张热项目脱硫吸收塔内的除雾器采用MUNTERS EUROFORM GmbH公司生产的设备,除除雾器分为两层,第一层为粗除雾器,第二层为精除雾器。两层除雾器之间有一定的空间。为了防止堵塞,除雾器设置高效的冲洗系统,包含3层冲洗层,冲洗系统能够有效清除叶片上的沉淀物,保证除雾器不被堵塞和长时间的无故障运行。冲洗系统能够在线运行,自动依据给定程序分别在第一级除雾器上、下游和第二级除雾器上游分别进行冲洗,冲洗喷嘴为实心锥喷嘴,能防止堵塞,每根冲洗水管接有多个冲洗喷嘴,并独立负责一部分区域的除雾器冲洗工作,吸收塔外每一根冲洗水管设置一个自动阀,使得每一根冲洗水管都能独立工作。 除雾器材质: 除雾器本体材质:PPTV (PP 加20%滑石粉) 冲洗水管,法兰和喷嘴材质:PP (聚丙烯) 外部紧固件:(热镀锌碳钢) 内部紧固件: PP 垫圈:EPDM 除雾器安装步骤 开箱检验-----现场运输--------吊装-------安装第一层除雾器--------安装第二层除雾器-----安装冲洗水管-----厂家检验安装质量--------验收投入运行 到货除雾器设备

除雾器设备的叶片(材质为PPTV) 除雾器表面

除雾器端部 除雾器外形

除雾器的安装:除雾器分片由吊车吊运到吸收塔平台,由除雾器检修人孔门运入塔内,按照顺序平铺在除雾器防腐支撑梁上,每层除雾器有五根支撑梁,支撑梁的制作现场完成。 除雾器端部搭在支撑梁上,中间是支撑梁

除雾器端部搭在支撑梁上,中间是支撑梁 除雾器冲洗水管的安装,冲洗水管支架生根在支撑梁底部,共三层冲洗水管

冲洗水管与吸收塔法兰连接 除雾器安装完毕

推荐:喷嘴的选用

喷嘴的选用 由于喷嘴是按其在多种不同喷雾条件下工作而设计的,因而选用适合需要的喷嘴,以便在使用中达到最佳喷雾性能。喷嘴的特性主要体现在喷嘴的喷雾类型,即液体离开喷嘴口时形成的形状以及它的运行性能。喷嘴的命名一是以喷雾形状区分为扇形、锥形、液柱流(即射流)、空气雾化、扁平喷嘴,其中锥形喷嘴又分为空心锥形与实心锥形二大类;而文丘里喷嘴(即混合搅拌喷嘴)、强冷(热)风口吹风风嘴以及专用喷嘴(如园林喷嘴、缸子洗涤喷嘴、管子清洗喷嘴等系列)的命名则体现了喷嘴的运行性能。 选用喷嘴的因素有流量、压力、喷雾角度、覆盖范围、冲击力、温度、材质、应用等,而这些因素之间往往相互牵连、相互制约。流量与压力,喷雾角度与覆盖范围均成正比关系。任何喷嘴的喷射目的是要维持连续不断使槽液与工件接触,流量这个因素比压力更为重要。液体的温度不影响喷嘴的喷雾性能,但它影响黏度和比重,同时还影响材料的选择。 喷嘴材料的选择 喷嘴的材料还应根据槽液的化学特性来确定: 1、对非腐蚀性槽液可根据加工的难易,采用青铜铸造或塑料压铸; 2、为防止腐蚀,可采用非金属材料; 3、对硫酸、盐酸等强腐蚀槽液,可采用尼龙塑料;

4、用于磷化槽液的喷嘴材料一般采用耐酸的不锈钢; 5、防止锈蚀的喷嘴也可直接选用不锈钢或尼龙材质制作。 喷嘴选型方法 具有一定冲击力的喷嘴应选用小角度喷嘴,以液柱流(即射流)为最佳; 扇形喷嘴适用于清洗、脱脂、冷却等方面,锥形喷嘴适用于漂淋、表层、磷化、加湿、除尘等方面; 在储漆缸、槽体中应安装文丘里搅拌喷嘴。以H型即搅拌喷嘴(也称为文丘里喷嘴)为例,槽液经一定压力与引道口被吸入的液体共同以1:4的流量混合后扩散喷射出来,达到溶质无空气混合搅拌的效果,从而防止了沉淀,因为搅动确保了化学溶液均匀的混合;脱脂和水洗工序的喷嘴,可选用冲击力较强的喷射型喷嘴:以V型即扇型喷嘴为例,其喷射角度以60为最佳,具有较大的冲击力量; 磷化工序的喷嘴则可选用雾化好、水粒细密均匀、冲击力较弱的离心喷嘴:以Z型即锥形喷嘴为例,其喷嘴离工件的最佳距离为40cm~50cm,具有分散,使液体雾化的喷淋作用。 结语:借用拿破仑的一句名言:播下一个行动,你将收获一种习惯;播下一种习惯,你将收获一种性格;播下一种性格,你将收获一种命运。事实表明,习惯左右了成败,习惯改变人的一生。在现实生活中,大多数的人,对学习很难做到学而不厌,学习不是一

双碱法脱硫

双碱法脱硫技术介绍 碱法, 脱硫, 技术 (一)双碱法烟气脱硫技术介绍 双碱法烟气脱硫技术是为了克服石灰石—石灰法容易结垢的缺点而发展起来的。传统的石灰石/石灰—石膏法烟气脱硫工艺采用钙基脱硫剂吸收二氧化硫后生成的亚硫酸钙、硫酸钙,由于其溶解度较小,极易在脱硫塔内及管道内形成结垢、堵塞现象。结垢堵塞问题严重影响脱硫系统的正常运行,更甚者严重影响锅炉系统的正常运行。为了尽量避免用钙基脱硫剂的不利因素,钙法脱硫工艺大都需要配备相应的强制氧化系统(曝气系统),从而增加初投资及运行费用,用廉价的脱硫剂而易造成结垢堵塞问题,单纯采用钠基脱硫剂运行费用太高而且脱硫产物不易处理,二者矛盾相互凸现,双碱法烟气脱硫工艺应运而生,该工艺较好的解决了上述矛盾问题。 (二)双碱法脱硫技术工艺基本原理 双碱法是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造。 双碱法烟气脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。脱硫工艺主要包括5个部分:(1)吸收剂制备与补充;(2)吸收剂浆液喷淋;(3)塔内雾滴与烟气接触混合;(4)再生池浆液还原钠基碱;(5)石膏脱水处理。 双碱法烟气脱硫工艺同石灰石/石灰等其他湿法脱硫反应机理类似,主要反应为烟气中的SO2先溶解于吸收液中,然后离解成H+和HSO3-;使用Na2CO3或NaOH液吸收烟气中的SO2,生成HSO32-、SO32-与SO42-,反应方程式如下: 一、脱硫反应: Na2SO3 + SO2 →NaSO3 + CO2↑(1) 2NaOH + SO2 →Na2SO3 + H2O (2) Na2SO3 + SO2 + H2O →2NaHSO3 (3) 其中: 式(1)为启动阶段Na2CO3溶液吸收SO2的反应; 式(2)为再生液pH值较高时(高于9时),溶液吸收SO2的主反应; 式(3)为溶液pH值较低(5~9)时的主反应。 二、氧化过程(副反应) Na2SO3 + 1/2O2 →Na2SO4 (4) NaHSO3 + 1/2O2 →NaHSO4 (5) 三、再生过程 Ca(OH)2 + Na2SO3 →2 NaOH + CaSO3 (6) Ca(OH)2 + 2NaHSO3 →Na2SO3 + CaSO3?1/2H2O +3/2H2O (7) 四、氧化过程

喷淋层设计总结初稿

喷淋层设计总结 喷淋层又称液体分布器,由喷淋管与喷嘴组成,将液体通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,在空塔喷淋中与逆向流动的烟气充分接触,二氧化硫在此吸收区吸收。鼓泡塔喷淋与空塔喷淋层在作用与结构上有区别,鼓泡塔喷淋层作用是完成对烟气初步脱硫,还有一个重要的作用是对进口烟气进行降温到有利于化学反应的温度。下面就喷淋层设计分2部分进行说明,第一是喷淋管网的设计,第二是喷嘴的设计。 一、喷淋管网的设计:管网材质目前市场上使用大多是全玻璃钢(FRP)材质,根据玻璃钢材质的特性,需要在底部设置支撑梁,支撑梁一般采用空心矩形钢管,矩形钢管的强度应满足支撑整个喷淋层带浆液重量,端部设置排气孔,主管与支管管径的确定按照循环浆液流量与流速,流量为已知条件,流速按照经验一般设计流速取2-3m/s。喷淋层一般布置3-4层,间距1.2-2.5米。最低喷淋层离入口顶端高度2-4m,除雾器离最近喷淋层距离应≥1.2m,当最高喷淋层采用双向喷嘴时,该距离应≥3m。 2、喷嘴的设计与布置:喷淋塔的脱硫效率主要取决于液滴大小和数量,喷嘴形成的颗粒越小,越有利于增加烟气与液滴的接触面积,有利于加快传质的过程,理想液滴一般在500-1000μm,直径小于500μm的液滴会被烟气夹带进入除雾器,通常直径小于500μm的液滴数量不应超过总量的5%。目前市场上使用的喷嘴类型有,空心锥切线型、双空心锥切线型、实心锥切线型、实心锥、螺旋型5种喷嘴,常用的有螺旋型与空心锥切线型喷嘴,螺旋型实心锥喷嘴的特点是喷淋量大,所以喷嘴个数少,缺点是结构易碎,且液滴均匀性也有待提高。在湿法脱硫吸收塔上,空心锥切线型喷嘴是螺旋型实心喷嘴的替代产品。喷嘴的选型主要考虑喷射角度和流量,喷射角度有90°、60°、120 ° 等,通常脱硫用90°喷角, 喷嘴的布置,喷嘴喷出的空心圆锥的锥底直径是一个很重要的参数,是喷嘴布置的重要数据,对于大流量的喷嘴,锥底直径一般取距喷嘴中心1m高度的截面圆的直径。对于90°喷嘴,1m高度截面圆直径为2米。喷嘴材料通常为碳化硅材质,布置方式有两种,一种是同心圆布置,另外一种是矩形阵布置,目前大多数公司采用矩阵式布置,矩阵式布置从主观到支管设计以及支撑梁布置都更方面一些,由于吸收塔的截面是圆形的,所以要对离塔壁最近的一圈或二圈喷嘴采用圆形布置,以减少对塔壁的冲蚀,为提高抗浆液冲刷的能力,冲刷塔壁的涂玻璃鳞片的基础

脱硫塔喷淋

2.7.2 喷淋层 喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接污染气体即在此吸收。 触,SO 2 1 喷淋层中喷淋管及管网的设计 ①喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。(2)主管用碳钢,内外衬胶,支管用FRP管,主管和支管之间用法兰连接,主采用等径钢管,管径大、壁厚,自身起到支撑梁的作用,FRP支管底部可以不设支撑梁。据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg,支管呈悬臂梁状态工作而且浆液流动也没有柔性连接畅通)。欧洲大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。而日本、台湾则有用钢管内外衬橡胶的,质量较重。签于国内制造厂商不能保证欧洲国家那样制作的FRP管的质量,而国内引进的这些装置在我国刚运行不久,还需经过较长时间的观察、考核。国内初次设计,为了保证安全起见,暂按钢管内外衬橡胶设计,但用FRP管肯定是今后国内发展的方向。在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。为避免由此带来的隐患,本工程喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。吸收塔喷淋区域塔径,喷淋FRP支管较长,要求喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。最上层喷浆管至第一段除雾器高差。根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。 ②喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。喷头的数量根据液/气比需要的浆液量而定。为保证浆液与烟气的接触充分,一般喷浆管分成3~4层(极个别厂有用2层的,但用的是锥尾式单向喷头),喷淋层间距通常为lm~2m,一般按1.5~1.7m计。

电石炉炉气烟气冷却方案-河北普阳钢铁集团

河北普阳120T转炉一次除尘净化系统改造工程设备订货技术要求 河北普阳钢铁有限公司 二钢2x120T转炉一次除尘净化系统 改造工程 喷枪和喷嘴设备 订货技术要求 2016年9月5日

河北普阳120T转炉一次除尘净化系统改造工程设备订货技术要求 一、技术要求 1.蒸发冷却器外混双介质喷枪技术条件 1.1外混喷枪基本技术数据 系统烟气量: max 120000Nm3/h 入口烟气温度:~1000℃ 出口烟气温度:~300℃ 蒸发冷却器筒体直径:¢5024mm 蒸发冷却器筒体高度:~19m 喷嘴数量:10个 结构形式:立式 气体流向:从顶部向底部 喷嘴安装位置:汽化冷却烟道和蒸发冷却器间的高温过渡管段上。 1.2 双流外混喷枪技术参数及功能描述: 1.2.1设备技术参数及要求 供水水质:净环水 喷枪数量:2套(每套10个喷嘴) 喷雾角度:20°~25° 水额定压力:0.45MPa(喷嘴处) 水额定流量: 3.5 m3/h(每支) 氮气压力: ~0.68MPa 氮气流量: ~400Nm3/h(每支) 蒸汽压力: ~0.8MPa 蒸汽流量: 0.35t/h(每支) 冷却介质:转炉一次烟气 气流方向:从上往下 水路接口形式:螺纹连接 氮气接口形式:法兰连接(可与蒸汽切换使用) 蒸汽接口形式:法兰连接(可与氮气切换使用)

1.2.2 喷枪结构数据 两相流喷枪:同心三层管设计 枪杆材质不锈钢(304ss) 喷嘴:喷嘴切面为三管设计 材质:不锈钢(316L) 1.2.3功能说明 外混双介质雾化喷嘴的工作原理:氮气(或蒸汽)和水的混合在喷嘴外部进行,产生非常均匀的实心锥形的喷雾效果,喷雾角度约为250左右。氮气和水的压力可以任意调节,相互之间不会产生干涉,控制简单,喷雾粒径非常细小,要求在冷却器直筒内完全雾化。雾化后的细小水雾颗粒与高温烟气结合后,迅速蒸发并且带走热量。 喷雾控制系统要根据烟气流量、温度控制喷水量,保证蒸发冷却器出口全部雾化,不产生水滴。 2. 降温塔喷嘴技术条件 2.1 喷嘴技术参数 2.1.1技术要求 1)采用螺旋喷嘴,介质为转炉煤气。 2)喷嘴满足以下性能: 流量偏差:±5% 喷射角偏差:±5% 液滴分布密度:波动限制在±10% 允许最大的畅通通道:>7mm; 2.1.2 喷嘴设备参数 喷嘴参数见下表 1

喷淋系统中喷头选型那点事儿

1、易熔合金喷头:不怕冻,不怕碰,比玻璃球喷头稍贵; 玻璃球喷头:怕冻,怕碰,但其为最普通与常用型,因其自身怕冻怕碰的弱点,因此临街面的玻璃橱窗内的喷头选用易熔合金;寒冷地区地下车库一层、地下车库二层入口30m范围内采用易熔合金喷头; 2、直立型喷头:向上喷 下垂型喷头:向下喷,也叫吊顶型喷头 边墙型喷头:侧喷 边墙扩展型喷头:侧喷,由于室内空间距离加大,因此要求喷头流量与扬程也要加大,喷淋泵的流量与扬程会因其加大也可能不受影响,例如以最高处来定压力的喷淋系统选用为扩展型喷头,则喷淋水泵扬程必加大,反之不需要;普通喷头或边墙型喷头最不利点压力要求大概7-10m,扩展型则为20m。 3、温级:易熔合金的温级为72°c,玻璃球喷头温级为68°c,当选用哪种喷头 时温级就已经确定,而对于一些特殊场所,温级会有特殊要求,如厨房灶台上部选用玻璃球喷头(温级为93°),厨房其他部位选用玻璃球喷头(温级为79°),热交换站选用玻璃球喷头(温级为79°),其他无特殊温度处选用玻璃球喷头(温级为68°), 4、流量系数K值:除扩展型喷头K=115外其他正常喷头为K=80。 5、喷头的选用原则 ⑴闭式喷头的安装高度,要求满足“使喷头及时受热开放、并使开放喷头的 洒水有效覆盖起火范围”的条件。超过上述高度,喷头将不能及时受热开放,而且喷头开放后的洒水可能达不到覆盖起火范围的预期目的,出现火灾在喷

水范围之外蔓延的现象,使系统不能有效发挥控灭火的作用。 ⑵不同使用条件下对喷头选型的规定。实际工程中,由于喷头的选型不当而造成失误的现象比较突出。不同用途和型号的喷头,分别具有不同的使用条件和安装方式。喷头的选型、安装方式、方位合理与否,将直接影响喷头的动作时间和布水效果。当设置场所不设吊顶,且配水管道沿梁下布置时,火灾热气流将在上升至顶板后水平蔓延。此时只有向上安装直立型喷头,才能使热气流尽早接触和加热喷头热敏元件。室内设有吊顶时,喷头将紧贴在吊顶下布置,或埋设在吊顶内,因此适合采用下垂型或吊顶型喷头,否则吊顶将阻挡洒水分布。 边墙型扩展覆盖喷头的配水管道易于布置,颇受国内设计、施工及使用单位欢迎。 ⑶为便于系统在灭火或维修后恢复戒备状态之前排尽管道中的积水,同时有利于在系统启动时排气,要求干式、预作用系统的喷头采用直立型喷头,或干式下垂型喷头。 ⑷水幕系统的喷头选型要求。防火分隔水幕的作用,是阻断烟和火的蔓延。当使水幕形成密集喷洒的水墙时,要求采用洒水喷头;当使水幕形成密集喷洒的水帘时,要求采用开口向下的水幕喷头。防火分隔水幕也可以同时采用上述两种喷头并分排布置。防护冷却水幕则要求采用将水喷向保护对象的水幕喷头。 ⑸快速响应喷头的使用条件。大量装饰材料、家电等现代化日用品和办公用品的使用,使火灾出现蔓延速度快、有害气体生成量大、财产损失的价值增长等新特点,对自动喷水灭火系统的工作效能提出了更高的要求,采用快速

相关文档