文档库 最新最全的文档下载
当前位置:文档库 › 专题17 三次函数的图像与性质(解析版)

专题17 三次函数的图像与性质(解析版)

专题17 三次函数的图像与性质(解析版)
专题17 三次函数的图像与性质(解析版)

专题17 三次函数的图像与性质

一、例题选讲

题型一 运用三次函数的图像研究零点问题

遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.

例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-

≥,

,,若函数()2()g x f x ax =-恰

有2个不同的零点,则实数a 的取值范围是 .

例2、(2017南京学情调研)已知函数f (x )=?????

12x -x 3,

x ≤0,

-2x ,

x >0.

)当x ∈(-∞,m ]时,f (x )的取值范围为[-16,

+∞),则实数m 的取值范围是________.

题型二 三次函数的单调性问题

研究三次函数的单调性,往往通过导数进行研究。要特别注意含参的讨论。

例3、已知函数32

()3f x x x ax =-+()a ∈R ,()|()|g x f x =.

(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点; (2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式; (3)设0a >,求()y g x =的单调增区间.

例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

例5、(2018苏州期末)已知函数f(x)=?

????-x 3+x 2,

x<0,e x

-ax ,x ≥0,

其中常数a ∈R .

(1) 当a =2时,求函数f (x )的单调区间;

(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

题型三 三次函数的极值与最值问题

①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.

函数、方程和不等式的综合题,常以研究函数的零点、方程的根、不等式的解集的形式出现,大多数情况下会用到等价转化、数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.

例6、(2018苏锡常镇调研)已知函数3

2

()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,

① 当0a >时,求函数()f x 的极值(用a 表示);

② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;

例7、(2017?江苏)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >;

(3)若(),'()f x f x 这两个函数的所有极值之和不小于72

-,求a 的取值范围.

例8、(2018南京学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;

(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;

(3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

二、达标训练

1、(2017苏州暑假测试) 已知函数f (x )=????

?

1

x

,x >1,

x 3

,-1≤x ≤1,

)若关于x 的方程f (x )=k (x +1)有两个不同

的实数根,则实数k 的取值范围是________.

2、(2017苏北四市期末) 已知函数f (x )=?????

sin x ,x <1,

x 3

-9x 2

+25x +a ,

x ≥1,

)若函数f (x )的图像与直线y =x 有三个

不同的公共点,则实数a 的取值集合为________.

3、(2019南京、盐城二模)已知函数f(x)=?????>+-≤+0

,3120

,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的

图像经过四个象限,则实数k 的取值范围为________.

4、(2018苏中三市、苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤??=?-+->??

, ,

,的图象恰好经过三个象

限,则实数a 的取值范围是 .

5、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ). (1) 当a =b =1时,求f (x )的单调增区间;

(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b

a

的值;

(3) 当a =0时,若f (x )

6、(2019南京、盐城一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.

设函数f(x)=x 3-tx 2+1(t ∈R ).

(1) 若函数f (x )在(0,1)上无极值点,求t 的取值范围;

(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;

(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组.

7、(2018南通、泰州一调)已知函数g(x)=x 3+ax 2+bx(a ,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值) (1) 求b 关于a 的函数关系式;

(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-7

3.

专题17 三次函数的图像与性质

三、例题选讲

题型一 运用三次函数的图像研究零点问题

遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的.

例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-

≥,

,,若函数()2()g x f x ax =-恰

有2个不同的零点,则实数a 的取值范围是 . 【答案】3(2)2

-,

【解析】:函数()2()g x f x ax =-恰有2个不同的零点,即方程2()0f x ax -=恰有2个不相等的根,亦即

方程(Ⅰ)20x a

x ax ≥??

-=?和(Ⅱ)3260

x a x x ax

首先(Ⅰ)中20x ax -=,即(2)0a x -=,若2a =,则2x ≥都是方程20x ax -=的根,不符合题意,所以2a ≠,因此(Ⅰ)中由20x ax -=解得0x =,下面分情况讨论

(1)若0x =是方程(Ⅰ)的唯一根,则必须满足0a ≥,即0a ≤,此时方程(Ⅱ)必须再有唯一的一

个根,即30

260

x a x x ax <≤??--=?有唯一根,因为0x ≠,由3260x x ax --=,得226x a =+必须有满足

0x a <≤的唯一根,首先60a +>

,其次解得的负根需满足0a <≤,从而解得3

02

a -<≤, (2)若0x =不是方程(Ⅰ)的唯一根,则必须满足0a <,即0a >,此时方程(Ⅱ)必须有两个不相

等的根,即30

260a x a x x ax ?>?

有两个不相等的根,由3260x x ax --=,得0x a =<适合,另外226x a

=+还有必须一满足,0x a a <>的非零实根,首先60a +>

,解得的正根需满足

a ≥,从而解得02a <≤,但前面已经指出2a ≠,故02a <<,

综合(1)、(2),得实数a 的取值范围为3

(,2)2

-.

例2、(2017南京学情调研)已知函数f (x )=?????

12x -x 3,

x ≤0,

-2x ,

x >0.

)当x ∈(-∞,m ]时,f (x )的取值范围为[-16,

+∞),则实数m 的取值范围是________. 【答案】 [-2,8]

【解析】思路分析 由于f (x )的解析式是已知的,因此,可以首先研究出函数f (x )在R 上的单调性及相关的性质,然后根据f (x )的取值范围为[-16,+∞),求出它的值等于-16时的x 的值,借助于函数f (x )的图像来对m 的取值范围进行确定.

当x ≤0时,f (x )=12x -x 3,所以f ′(x )=12-3x 2.令f ′(x )=0,则x =-2(正值舍去),所以当x ∈(-∞,-2)时,f ′(x )<0,此时f (x )单调递减;当x ∈(-2,0]时,f ′(x )>0,此时f (x )单调递增,故函数f (x )在x ≤0时的极小值为f (-2)=-16.当x >0时,f (x )=-2x 单调递减,f (0)=0,f (8)=-16,因此,根据f (x )的图像可得m ∈[-2,8].

解后反思 根据函数的解析式来得到函数的相关性质,然后由此画出函数的图像,借助于函数的图像可以有效地进行解题,这就是数形结合的魅力.

题型二 三次函数的单调性问题

研究三次函数的单调性,往往通过导数进行研究。要特别注意含参的讨论。

例3、已知函数32

()3f x x x ax =-+()a ∈R ,()|()|g x f x =.

(1)求以(2,(2))P f 为切点的切线方程,并证明此切线恒过一个定点; (2)若()g x kx ≤对一切[0,2]x ∈恒成立,求k 的最小值()h a 的表达式; (3)设0a >,求()y g x =的单调增区间.

解析 (1)2()36f x x x a '=-+,(2)f a '=,过点P 的切线方程为()224y a x a =-+-,即4y ax =-,它恒过点(0,- 4);

(2)()g x kx ≤即32|3|x x ax kx -+≤. 当0x =时,上式恒成立;

当(0,2]x ∈时,即2|3|x x a k -+≤对一切(0,2]x ∈恒成立,设2max ()|3|,[0,2]h a x x a x ∈=-+, ①当9

4

a ≥时,2max |3|x x a -+在0x =时取得,∴()h a a =;

②当94a <时,2

max 9

9(),984|3|max{,}994()48a a x x a a a a a ?<

由①②,得9(),8

()99()4

8a a g a a a ?

>??=??-??≤;

(3)32()3f x x x ax =-+,22()363(1)3f x x x a x a '=-+=-+-, 令()0f x =,得0x =或230x x a -+=,

当9

4

a <

时,由230x x a -+=,解得132x =232x = 令()0f x '=,得23(1)30x a -+-=,

当3a <时,由23(1)30x a -+-=,解得31x =-41x =+ 1)当3a ≥时,()y g x =的单调增区间为(0,)+∞;

2)当9

34

a <≤时,()y g x =的单调增区间为3(0,)x 和4(,)x +∞; 3)当9

04

a <<

时,()y g x =的单调增区间为3(0,)x 和14(,)x x 和2(,)x +∞. 例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

【答案】 (-∞,-1]∪???

?7

2,+∞ 思路分析 由于条件中函数的解析式比较复杂,可以先通过代数变形,将其化为熟悉的形式,进而利用导数研究函数的性质及图像,再根据图像变换的知识得到函数f(x)的图像进行求解. 函数f(x)=(x +1)2|x -a|=|(x +1)2(x -a)|=|x 3+(2-a)x 2+(1-2a)x -a|. 令g(x)=x 3+(2-a)x 2+(1-2a)x -a ,则

g ′(x)=3x 2+(4-2a)x +1-2a =(x +1)(3x +1-2a). 令g′(x)=0得x 1=-1,x 2=

2a -1

3

. ①当2a -13

<-1,即a<-1时,

令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<2a -13或x>-1;令g′(x)<0,解得2a -1

3

所以g(x)的单调增区间是????-∞,2a -13,(-1,+∞),单调减区间是???

?2a -1

3,-1.

又因为g(a)=g(-1)=0,所以f(x)的单调增区间是?

???

a ,2a -13,(-1,+∞),单调减区间是(-∞,a),

???

?2a -13,-1,满足条件,故a<-1(此种情况函数f(x)图像如图1).

,图1)

②当2a -13=-1,即a =-1时,f(x)=|(x +1)3|,函数f(x)图像如图2,则f(x)的单调增区间是(-1,+∞),

单调减区间是(-∞,-1),满足条件,故a =-1.

,图2)

③当2a -13

>-1,即a>-1时,

令g′(x)>0,即(x +1)(3x +1-2a)>0,解得x<-1或x>2a -13;令g′(x)<0,解得-1

3.

所以g(x)的单调增区间是(-∞,-1),??

??2a -13,+∞,单调减区间是?

???

-1,

2a -13. 又因为g(a)=g(-1)=0,所以f(x)的单调增区间是?

???

-1,2a -13,(a ,+∞),单调减区间是(-∞,-1),

???

?2a -13,a ,要使f(x)在[-1,2]上单调递增,必须满足2≤2a -13,即a ≥72,又因为a>-1,故a ≥72(此种情况函数f(x)图像如图3).

综上,实数a 的取值范围是(-∞,-1]∪???

?7

2,+∞. ,图3)

例5、(2018苏州期末)已知函数f(x)=?

????-x 3+x 2,

x<0,e x

-ax ,x ≥0,

其中常数a ∈R .

(1) 当a =2时,求函数f (x )的单调区间;

(2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

规范解答 (1) 当a =2时,f(x)=?????-x 3+x 2,

x<0,e x

-2x ,

x ≥0.

①当x<0时,f ′(x)=-3x 2+2x<0恒成立,所以f(x)在(-∞,0)上递减;(2分) ②当x ≥0时,f ′(x)=e x -2,可得f(x)在[0,ln 2]上递减,在[ln 2,+∞)上递增.(4分)

因为f(0)=1>0,所以f(x)的单调递减区间是(-∞,0)和[0,ln 2],单调递增区间是[ln 2,+∞).(5分) (2) 当x>0时,f(x)=e x -ax ,此时-x<0,f(-x)=-(-x)3+(-x)2=x 3+x 2. 所以可化为a =x 2+x +3

x

在区间(0,+∞)上有实数解.(6分)

记g(x)=x 2

+x +3x ,x ∈(0,+∞),则g′(x)=2x +1-3x 2=(x -1)(2x 2+3x +3)

x 2

.(7分)

可得g(x)在(0,1]上递减,在[1,+∞)上递增,且g(1)=5,当x →+∞时,g(x)→+∞.(9分) 所以g(x)的值域是[5,+∞),即实数a 的取值范围是[5,+∞).(10分)

题型三 三次函数的极值与最值问题

①利用导数刻画函数的单调性,确定函数的极值;② 通过分类讨论,结合图象,实现函数的极值与零点问题的转化.

函数、方程和不等式的综合题,常以研究函数的零点、方程的根、不等式的解集的形式出现,大多数情况下会用到等价转化、数形结合的数学思想解决问题,而这里的解法是通过严谨的等价转化,运用纯代数的手段来解决问题的,对抽象思维和逻辑推理的能力要求较高,此题也可通过数形结合的思想来解决问题,可以一试.

例6、(2018苏锡常镇调研)已知函数3

2

()1f x x ax bx a b =+++∈,,R . (1)若20a b +=,

① 当0a >时,求函数()f x 的极值(用a 表示);

② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由;

规范解答 (1)①由2()32f x x ax b '=++及02=+b a , 得22()32f x x ax a '=+-, 令()0f x '=,解得3

a

x =

或a x -=. 由0>a 知,(,)()0x a f x '∈-∞->,,)(x f 单调递增,

(,)()03a x a f x '∈-<,,)(x f 单调递减,(,)()03a

x f x '∈+∞>,,)(x f 单调递增,

因此,)(x f 的极大值为3

()1f a a -=+,)(x f 的极小值为3

5()1327

a a f =-.

② 当0a =时,0b =,此时3()1f x x =+不存在三个相异零点;

当0a <时,与①同理可得)(x f 的极小值为3

()1f a a -=+,)(x f 的极大值为3

5()1327

a a f =-.

要使)(x f 有三个不同零点,则必须有33

5(1)(1)027

a a +-

<,

即3327

15

a a <->

或. 不妨设)(x f 的三个零点为321,,x x x ,且321x x x <<, 则123()()()0f x f x f x ===,

3

221111()10f x x ax a x =+-+=, ① 3222222()10f x x ax a x =+-+=, ② 3223333()10f x x ax a x =+-+=, ③

②-①得2

22212

121212121()()()()()0x x x x x x a x x x x a x x -+++-+--=, 因为210x x ->,所以2

222

12121()0x x x x a x x a ++++-=, ④ 同理22

23

32232()0x x x x a x x a ++++-=, ⑤ ⑤-④得231313131()()()()0x x x x x x x a x x -+-++-=, 因为310x x ->,所以2310x x x a +++=, 又1322x x x +=,所以23

a

x =-

. 所以()03

a

f -=,即22239a a a +=-,即327111a =-<-,

因此,存在这样实数

a =满足条件.

例7、(2017?江苏)已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >;

(3)若(),'()f x f x 这两个函数的所有极值之和不小于7

2

-,求a 的取值范围.

解析(1)2'()32f x x ax b =++有零点,24120a b ?=->,即23a b >,又''()620f x x a =+=,解

得3a x =-,根据题意,()03a f -=,即32

10333a a a a b ??????

-+-+-+= ? ? ???????,化简得2239b a a =+,又

2

03a a b

>??>?,所以3a >,即223

(3)9b a a a =+>; (2)设243322

4591

()3(427)(27)81381g a b a a a a a a a

=-=

-+=--,而3a >,故()0g a >,即23b a >;

(3)设12,x x 为()f x 的两个极值点,令'()0f x =得12122,33

b a x x x x =+=-

, 法一:332212121212()()()()2f x f x x x a x x b x x +=++++++

22121212121212()[()3][()2]()2x x x x x x a x x x x b x x =++-++-+++

332424223

2()202732739a ab a a a a

=

-+=-++=. 记()f x ,()f x '所有极值之和为()S a ,12()()0f x f x +=,2

'()33

a a f

b -=-,

则221237

()()()'()3392

a a a S a f x f x f

b a =++-=-=--≥,

而23()()3a S a a =-在(3,)a ∈+∞上单调递减且7

(6)2

S =-,故36a <≤.

法二:下面证明()f x 的图像关于(,())33a a

f --中心对称,

2332

32()1()()()1333327

a a a a

b a f x x ax bx x b x =+++=++-++-+

23()()()()3333a a a a x b x f =++-++-, 所以()()2()0333

a a a

f x f x f --+-+=-=,所以12()()0f x f x +=,下同法一.

例8、(2018南京学情调研)已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;

(2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围;

(3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

思路分析 第(3)问,欲求函数f(x)在区间[1,2]上的最值M(a),m(a),可从函数f(x)在区间[1,2]上的单调性入手,由于f′(x)=6(x -1)(x -a),且a >1,故只需分为两大类:a ≥2,1<a <2.当1<a <2时,函数f(x)在区间[1,2]上先减后增,进而比较f(1)和f(2)的大小确定函数最大值,由f(1)=f(2)得到分类的节点a =5

3.

规范解答 (1) 因为f(x)=2x 3-3(a +1)x 2+6ax ,所以f′(x)=6x 2-6(a +1)x +6a ,所以曲线y =f(x)在x =0处的切线的斜率k =f′(0)=6a ,所以6a =3,所以a =1

2

.(2分)

(2) f(x)+f(-x)=-6(a +1)x 2≥12ln x 对任意x ∈(0,+∞)恒成立,所以-(a +1)≥2ln x

x 2.(4分)

令g(x)=2ln x

x 2,x >0,则g′(x)=2(1-2ln x )x 3.

令g′(x)=0,解得x =e .

当x ∈(0,e )时,g ′(x)>0,所以g(x)在(0,e )上单调递增; 当x ∈(e ,+∞)时,g ′(x)<0,所以g(x)在(e ,+∞)上单调递减. 所以g(x)max =g(e )=1

e ,(6分)

所以-(a +1)≥1e ,即a ≤-1-1

e ,

所以a 的取值范围为?

???-∞,-1-1

e .(8分) (3) 因为f(x)=2x 3-3(a +1)x 2+6ax ,所以f′(x)=6x 2-6(a +1)x +6a =6(x -1)(x -a),令f′(x)=0,则x =1或x =a.(10分)

f(1)=3a -1,f(2)=4.由f(1)=f(2)得到分类的节点a =5

3.

①当1<a ≤5

3

时,

当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减; 当x ∈(a ,2)时,f ′(x)>0,所以f(x)在(a ,2)上单调递增.

又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=4-(-a 3+3a 2)=a 3-3a 2+4.

因为h′(a)=3a 2-6a =3a(a -2)<0,所以h(a)在????1,5

3上单调递减, 所以当a ∈????1,53时,h(a)的最小值为h ????53=8

27.(12分) ②当5

3

<a <2时,

当x ∈(1,a)时,f ′(x)<0,所以f(x)在(1,a)上单调递减; 当x ∈(a ,2)时,f ′(x)>0,所以f(x)在(a ,2)上单调递增.

又因为f(1)>f(2),所以M(a)=f(1)=3a -1,m(a)=f(a)=-a 3+3a 2,所以h(a)=M(a)-m(a)=3a -1-(-a 3+3a 2)=a 3-3a 2+3a -1.

因为h′(a)=3a 2-6a +3=3(a -1)2>0.所以h(a)在????

53,2上单调递增, 所以当a ∈????53,2时,h(a)>h ????53=8

27.(14分) ③当a ≥2时,

当x ∈(1,2)时,f ′(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a -1,m(a)=f(2)=4, 所以h(a)=M(a)-m(a)=3a -1-4=3a -5, 所以h(a)在[2,+∞)上的最小值为h(2)=1.

综上,h(a)的最小值为8

27.(16分)

四、达标训练

1、(2017苏州暑假测试) 已知函数f (x )=????

?

1

x

,x >1,

x 3

,-1≤x ≤1,

)若关于x 的方程f (x )=k (x +1)有两个不同

的实数根,则实数k 的取值范围是________. 【答案】 ???

?0,12 【解析】思路分析 方程f (x )=k (x +1)的实数根的个数可以理解为函数y =f (x )与函数y =k (x +1)交点的个数,因此,在同一个坐标系中作出它们的图像,由图像来观察它们的交点的个数.

在同一个直角坐标系中,分别作出函数y =f (x )及y =k (x +1)的图像,则函数f (x )max =f (1)=1,设A (1,1),B (-1,0),函数y =k (x +1)过点B ,则由图可知要使关于x 的方程f (x )=k (x +1)有两个不同的实数根,则0<k <k AB =1

2

.

2、(2017苏北四市期末) 已知函数f (x )=?????

sin x ,x <1,

x 3

-9x 2

+25x +a ,

x ≥1,

)若函数f (x )的图像与直线y =x 有三个

不同的公共点,则实数a 的取值集合为________. 【答案】 {-20,-16}

【解析】当x <1时,f(x)=sin x ,联立?

????

y =sin x ,

y =x ,得x -sin x =0,令u(x)=x -sin x(x <1),则u ′(x)=1

-cos x ≥0,所以函数u(x)=x -sin x(x <1)为单调增函数,且u(0)=0,所以u(x)=x -sin x(x <1)只有唯一的解x =0,这表明当x <1时,函数f(x)的图像与直线y =x 只有1个公共点.因为函数f(x)的图像与直线y =x 有3个不同的公共点,从而当x ≥1时,函数f(x)的图像与直线y =x 只有2个公共点.当x ≥1时,f(x)=

x 3-9x 2+25x +a ,联立?

????

y =x 3-9x 2+25x +a ,

y =x ,得a =-x 3+9x 2-24x ,令h(x)=-x 3+9x 2-24x(x ≥1),则

h ′(x)=-3x 2+18x -24=-3(x -2)(x -4).

令h ′(x)=0得x =2或x =4,列表如下:

数a =-20或a =-16.综上所述,实数a 的取值集合为{-20,-16}.

3、(2019南京、盐城二模)已知函数f(x)=?????>+-≤+0

,3120

,33x x x x x 设g(x)=kx +1,且函数y =f(x)-g(x)的

图像经过四个象限,则实数k 的取值范围为________. 【答案】 ?

???-9,1

3 【解析】解法1 y =?

??

??|x +3|-(kx +1),

x ≤0,x 3-(k +12)x +2,

x>0,若其图像经过四个象限.

①当x>0时,y =x 3-(k +12)x +2,当x =0时,y =2>0,故它要经过第一象限和第四象限,则存在x>0,使y =x 3-(k +12)x +2<0,则k +12>x 2+2x ,即k +12>????x 2+2x min .令h(x)=x 2+2x (x>0),h ′(x)=2x -2

x 2=2(x 3-1)

x 2,当x>1时,h ′(x)>0,h(x)在(1,+∞)上递增;当03,即k>-9.

②当x ≤0时,y =|x +3|-(kx +1),当x =0时,y =2>0,故它要经过第二象限和第三象限,则存在x<0,使y =|x +3|-(kx +1)<0,则k<

|x +3|-1x ,即k

?

|x +3|-1x max .

令φ(x)=

|x +3|-1

x

=?????-1-4x ,x ≤-3,1+2x ,

-3

易知φ(x)在(-∞,-3]上单调递增,在(-3,0)上单调递减,当x =-3时取得极大值,也是最大值,φ(x)max =φ(-3)=13,故k<13.

综上,由①②得实数k 的取值范围为?

???-9,13. 解法2 可根据函数解析式画出函数图像,当x>0时,f(x)=x 3-12x +3,f ′(x)=3x 2-12=3(x +2)(x -2),可知f(x)在区间(0,2)上单调递减,在区间(2,+∞)上单调递增,且 f(2)=-13<0,当x ≤0时,f(x)=|x +3|.

g(x)=kx +1恒过(0,1),若要使y =f(x)-g(x)经过四个象限,由图可知只需f(x)与g(x)在(-∞,0)和(0,+∞)上分别有交点即可(交点不可为(-3,0)和切点).

①当k>0时,在(0,+∞)必有交点,在(-∞,0)区间内,需满足

0

3

.

②当k<0时,在(-∞,0)必有交点,在(0,+∞)内,只需求过定点(0,1)与函数f(x)=x 3-12x +3(x>0)图像的切线即可,设切点为(x 0,x 30-12x 0+3),由k =3x 20-12=x 30-12x 0+3-1x 0

,解得

x 0=1,切线斜率k

=-9,所以k ∈(-9,0). ③当k =0也符合题意.

综上可知实数k 的取值范围为?

???-9,1

3. 4、(2018苏中三市、苏北四市三调)已知函数310() 2 0ax x f x x ax x x -≤??=?-+->??

, ,

,的图象恰好经过三个象

限,则实数a 的取值范围是 ▲ . 【答案】a <0或a >2

10y ax x =-,≤的图象经过两个象限,3|2|0y x ax x =-+->在 a <0时显然满足题意; 10y ax x =-,≤的图象仅经过第三象限,

|2|0x x ->,的图象需经过第一、二象限. 3|2|y x x =+-与y ax =在y 轴右侧的图象有公 共点(且不相切).

l 0

O

x

y P

如图,3|2|y x x =+-=

332,02

2,2

x x x x x

x

设切点坐标为3

00

0(,2)x x x ,2

31y

x

,则有32

000

231

x x x x ,

解得01x ,所以临界直线0l 的斜率为2,所以a >2时,符合.综上,a <0或a >2.

【解法2】(函数最值法)由三次函数的性质知,函数图象过第一象限,则存()g x 在0x

,使得

3

|2|0,y x

ax x

2

|2|

x a x x 设函数22

2

2

1,02

|2|

()2

1,2x x x x g x

x x

x x x

当02x

,32

2222()2x g x x

x x

()g x 在(0,1)单调递减,在(1,2)单调递增,又2x

时,函数为增函数,所以函数的最小值为2,所

以a >2,则实数a 的取值范围为a <0或a >2.

5、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ). (1) 当a =b =1时,求f (x )的单调增区间;

(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求b

a

的值;

(3) 当a =0时,若f (x )

x

2-x 恰有两个不同的实数解.

另外,由g(x)=x 3+kx 2-4恰有两个不同的零点,可设g(x)=(x -s)(x -t)2.展开,得x 3-(s +2t)x 2+(2st +t 2)x -st 2=x 3+kx 2-4,所以?????-(s +2t )=k ,2st +t 2=0,-st 2=-4,解得????

?s =1,t =-2,k =3.

解:(1)当a =b =1时,f(x)=x 3+x 2-4,f ′(x)=3x 2+2x.(2分) 令f′(x)>0,解得x>0或x<-2

3

所以f(x)的单调增区间是?

???-∞,-2

3和(0,+∞).(4分)

(2)法一:f′(x)=3ax 2+2bx ,令f′(x)=0,得x =0或x =-2b

3a ,(6分)

因为函数f(x)有两个不同的零点,所以f(0)=0或f ????-2b

3a =0. 当f(0)=0时,得a =0,不合题意,舍去;(8分) 当f ????-2b 3a =0时,代入得a ????-2b 3a +b ????-2b

3a 2

-4a =0, 即-827????b a 3+49????b a 3-4=0,所以b

a =3.(10分)

法二:由于a ≠0,所以f(0)≠0,

由f(x)=0得,b a =4-x 3x 2=4

x

2-x(x ≠0).(6分)

设h(x)=4x 2-x ,h ′(x)=-8

x

3-1,令h′(x)=0,得x =-2,

当x ∈(-∞,-2)时,h ′(x)<0,h(x)递减;当x ∈(-2,0)时,h ′(x)>0,h(x)递增, 当x ∈(0,+∞)时,h ′(x)>0,h(x)单调递增, 当x>0时,h(x)的值域为R ,

故不论b a 取何值,方程b a =4-x 3x 2=4

x 2-x 恰有一个根-2,

此时函数f (x )=a (x +2)2(x -1)恰有两个零点-2和1.(10分) (3)当a =0时,因为f (x )

g (x )=ln x -bx 2,则

g ′(x )=1

x -2bx =1-2bx 2x

(x >0),

当b ≤0时,因为g ′(x )>0,所以g (x )在(0,+∞)上递增,且g (1)=-b ≥0, 所以在(1,+∞)上,g (x )=ln x -bx 2≥0,不合题意;(11分) 当b >0时,令g ′(x )=1-2bx 2

x =0,得x =

12b

, 所以g (x )在?

???

0,

12b 递增,在???

?12b ,+∞递减, 所以g (x )max =g ?

?

?

?12b =ln 12b -12

, 要使g (x )>0有解,首先要满足ln

12b -12>0,解得b <1

2e

. ①(13分) 又因为g (1)=-b <0,g (e 12)=1

2

-b e>0,

要使f (x )

???

?g (2)>0,g (3)≤0,

即?????ln2-4b >0,ln3-9b ≤0,解得ln39≤b

设h (x )=ln x

x ,则h ′(x )=1-ln x x

2,

当x ∈(0,e)时,h ′(x )>0,h (x )递增;当x ∈(e ,+∞)时,h ′(x )<0,h (x )递减. 所以h (x )max =h (e)=1e >h (2)=ln22,所以12e >ln2

4,

所以由①和②得,ln39≤b <ln2

4.(16分)

(注:用数形结合方法做只给2分)

6、(2019南京、盐城一模)若函数y =f(x)在x =x 0处取得极大值或极小值,则称x 0为函数y =f(x)的极值点.

设函数f(x)=x 3-tx 2+1(t ∈R ).

(1) 若函数f (x )在(0,1)上无极值点,求t 的取值范围;

(2) 求证:对任意实数t ,函数f (x )的图像总存在两条切线相互平行;

(3) 当t =3时,函数f (x )的图像存在的两条平行切线之间的距离为4,求满足此条件的平行线共有几组. 规范解答 (1)由函数f(x)=x 3-tx 2+1,得f′(x)=3x 2-2tx.由f ′(x)=0,得x =0,或x =2

3t.

因为函数f(x)在(0,1)上无极值点,所以23t ≤0或23t ≥1,解得t ≤0或t ≥3

2.(4分)

(2)令f′(x)=3x 2-2tx =p ,即3x 2-2tx -p =0,Δ=4t 2+12p.

当p >-t 2

3

时,Δ>0,此时3x 2-2tx -p =0存在不同的两个解x 1,x 2.(8分)

设这两条切线方程为分别为y =(3x 21-2tx 1)x -2x 31+tx 21+1和y =(3x 22-2tx 2)x -2x 32+tx 2

2+1. 若两切线重合,则-2x 31+tx 21+1=-2x 32+tx 22+1, 即2(x 21+x 1x 2+x 22)=t(x 1+x 2),即2=t(x 1+x 2

). 而x 1+x 2=2t 3,化简得x 1·x 2=t 29,此时(x 1-x 2)2=(x 1+x 2)2

-4x 1x 2=4t 29-4t 2

9=0,

与x 1≠x 2矛盾,所以,这两条切线不重合.

综上,对任意实数t ,函数f(x)的图像总存在两条切线相互平行.(10分) (3)当t =3时f(x)=x 3-3x 2+1,f ′(x)=3x 2-6x. 由(2)知x 1+x 2=2时,两切线平行.

设A(x 1,x 31-3x 21+1),B(x 2,x 32-3x 2

2+1),

不妨设x 1>x 2,则x 1>1.

过点A 的切线方程为y =(3x 21-6x 1)x -2x 31+3x 21+1.(11分)

所以,两条平行线间的距离

d =|2x 32-2x 31-3(x 22-x 21)|

1+9(x 21-2x 1

)2 =|(x 2-x 1)|1+9(x 21-2x 1

)2

=4, 化简得(x 1-1)6=1+92,(13分)

令(x 1-1)2=λ(λ>0),则λ3-1=9(λ-1)2,

即(λ-1)( λ2+λ+1)=9(λ-1)2,即(λ-1)( λ2-8λ+10)=0.

显然λ=1为一解,λ2-8λ+10=0有两个异于1的正根,所以这样的λ有3解. 因为x 1-1>0,所以x 1有3解,

所以满足此条件的平行切线共有3组.(16分)

7、(2018南通、泰州一调)已知函数g(x)=x 3+ax 2+bx(a ,b ∈R )有极值,且函数f (x )=(x +a )e x 的极值点是g (x )的极值点,其中e 是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值) (1) 求b 关于a 的函数关系式;

(2) 当a >0时,若函数F (x )=f (x )-g (x )的最小值为M (a ),证明:M (a )<-73

.

思路分析 (1) 易求得f(x)的极值点为-a -1,则g′(-a -1)=0且g′(x)=0有两个不等的实数解,解之得b 与a 的关系.

(2) 求导得F′(x)=(x +a +1)(e x -3x +a +3),解方程F′(x)=0时,无法解方程e x -3x +a +3=0,构造函数h(x)=e x -3x +a +3,证得h(x)>0,所以-a -1为极小值点,而且得出M(a),利用导数法证明即可. 规范解答 (1) 因为f′(x)=e x +(x +a)e x =(x +a +1)e x ,令f′(x)=0,解得x =-a -1. 列表如下:

所以x =-a -1时,f(x)取得极小值.(2分) 因为g′(x)=3x 2+2ax +b ,

由题意可知g′(-a -1)=0,且Δ=4a 2-12b>0, 所以3(-a -1)2+2a(-a -1)+b =0,

高考数学专题17 三次函数的图像与性质(原卷版)

专题17 三次函数的图像与性质 一、例题选讲 题型一 运用三次函数的图像研究零点问题 遇到函数零点个数问题,通常转化为两个函数图象交点问题,进而借助数形结合思想解决问题;也可转化为方程解的个数问题,通过具体的解方程达到解决问题的目的.前者由于是通过图形解决问题,故对绘制的函数图象准确度和细节处要求较高,后者对问题转化的等价性和逻辑推理的严谨性要求较高.下面的解法是从解方程的角度考虑的. 例1、(2017南通、扬州、泰州、淮安三调)已知函数3()3 .x x a f x x x x a ?=?-,求()y g x =的单调增区间. 例4、(2018无锡期末) 若函数f(x)=(x +1)2|x -a|在区间[-1,2]上单调递增,则实数a 的取值范围是________.

一次函数的图象与性质

一次函数图象和性质 【知识梳理】 1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(k b -,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质 【思想方法】数形结合 【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式; (2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积. 例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限; (3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方. 例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式; (2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0? k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0,b <0 图像的大致位 置 经过象限 第 象限 第 象限 第 象限 第 象限 性质 y 随x 的增大 而 y 随x 的增大而而 y 随x 的增大 而 y 随x 的增大 而

x y O 3 2y x a =+ 1y kx b =+ y x O B A 【当堂检测】 1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______; 2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( ) A .0 B .1 C .2 D .3 3.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >- B . 1m <- C .1m =- D .1m < 4.一次函数23y x =-的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( ) 6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-9 7.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.( 22,2 2-) C.(-21,-2 1 ) D.(-22,-22) 8.一次函数y =2x -2的图象不经过... 的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上两点,则下列判断正确的是 ( ) A .y 1>y 2 B .y 1y 2 D .当x 1

一次函数概念图像及性质

一次函数概念、图像及性质 【教学目标】 1. 了解认识一次函数定义、图像,并能根据函数解析式画出图像 2. 理解一次函数的截距概念,会根据直线的表达式指出它在y 轴上的截距 3. 理解、掌握一次函数性质,熟悉图像所经过的象限及y 随x 变化而变化的情况 4. 能运用一次函数的图像及性质解综合型问题 【教学重难点】 1. 根据一次函数的图像确定解析式 2. 掌握一次函数性质,并能灵活运用于解题 3. 能结合一次函数知识点灵活求解综合型问题 【教学内容】 ★ 知识梳理 一、概念 定义:解析式形如)0( ≠+=k b kx y 的函数叫做一次函数 二、图像 一次函数的图象满足:(1)形状是一条直线;(2)始终经过(0 , b )和(k b - , 0)两点 三、截距 定义:直线)0( ≠+=k b kx y 与y 轴的交点坐标是) , 0 (b ,截距是b 四、性质 1. 一次函数)0( ≠+=k b kx y ,当0>k 时,函数值y 随自变量x 的值增大而增大;当0k ,且0>b 时,直线)0( ≠+=k b kx y 经过第一、二、三象限 (2)当0>k ,且0b 时,直线)0( ≠+=k b kx y 经过第一、二、四象限 (4)当0

一、概念 例1. 下列关于x 的函数中,是一次函数的是( ) (A )1)1(32+-=x y (B )x x y 1+ = (C )x y 3-= (D )x y 5-= 例2. 下列各式中,y 与x 成正比例关系的是 ;成一次函数关系的是 (1)x y 43= (2)x y 2 2-= (3)x y 29-= (4)x y 4= (5)52=+xy (6)765=+y x 例3. 下列说法中,不正确的是( ) (A )一次函数不一定是正比例函数 (B )不是一次函数就一定不是正比例函数 (C )正比例函数是特殊的一次函数 (D )不是正比例函数不一定不是一次函数 例4. 下列说法不正确的是( ) (A )在32--=x y 中,y 是x 的正比例函数 (B )在x y 21-=中,y 与x 成正比例 (C )在1=xy 中,y 与x 1成正比例 (D )在圆的面积公式2r S π=中,S 与2r 成正比例 例5. 已知b kx y +=,当3-=x 时,0=y ;当1=x 时,4=y ,求k 、b 的值

高三数学三次函数图象和性质与四次函数问题

三次函数与四次函数 大连市红旗高中王金泽 wjz9589@https://www.wendangku.net/doc/9f6228853.html, 在初中,已经初步学习了二次函数,到了高中又系统的学习和深化了二次函数,三次函数是继二次函数后接触的新的多项式函数类型,它是二次函数的发展,和二次函数类似也有“与x轴交点个数”等类似问题。三次函数是目前高考尤其是文科高考的热点,不仅仅如此,通过深化对三次函数的学习,可以解决四次函数问题。2008年高考有多个省份出现了四次函数高考题,本文的目的就是,对三次函数做个重点的归纳,并且阐述在四次函数中的应用 第一部分:三次函数的图象特征、以及与x轴的交点个数(根的个数)、极值情况 三次函数图象说明 a对图象 的影响 可以根据极限的思想去分析 当a>0时,在x→+∞右向上 伸展,x→-∞左向下伸展。 当a<0时,在x→+∞右向下 伸展,x→-∞左向上伸展。 (可以联系二次函数a对开口的影 响去联想三次函数右侧伸展情况) 与x轴有三 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 < ?x f x f,既两个极 值异号;图象与x轴有三个交点 与x轴有二 个交点 若0 3 2> -ac b,且 ) ( ) ( 2 1 = ?x f x f,既有一 个极值为0,图象与x轴有两个 交点 与x轴有一 个交点 1。存在极值时即0 3 2> -ac b, 且0 ) ( ) ( 2 1 > ?x f x f,既两个 极值同号,图象与x轴有一个交点。 2。不存在极值,函数是单调函数 时图象也与x轴有一个交点。

1.()0f x =根的个数 三次函数d cx bx ax x f +++=23)( 导函数为二次函数:)0(23)(2/≠++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则0)(=x f 恰有一个实根; (2) 若032>-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032>-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032>-ac b ,且0)()(21-ac b ,且0)()(21>?x f x f ). (3)0)(=x f 有两个相异实根的充要条件是曲线)(x f y =与X 轴有两个公共点且其中之一为切点,所以 032>-ac b ,且0)()(21=?x f x f . (4)0)(=x f 有三个不相等的实根的充要条件是曲线)(x f y =与X 轴有三个公共点,即)(x f 有一个极大值,一个极小值,且两极值异号.所以032 >-ac b 且0)()(21++=a c bx ax x f , 二次函数的判别式化简为:△=)3(412422ac b ac b -=-, (1) 若032 ≤-ac b ,则)(x f 在),(+∞-∞上为增函数; (2) 若032>-ac b ,则)(x f 在),(1x -∞和),(2+∞x 上为增函数,)(x f 在),(21x x 上为减函数,其中 a ac b b x a a c b b x 33,332221-+-= ---=. 证明:c bx ax x f ++=23)('2, △=)3(41242 2ac b ac b -=-, (1) 当0≤? 即032 ≤-ac b 时,0)('≥x f 在 R 上恒成立, 即)(x f 在),(+∞-∞为增函数.

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

一次函数的图象和性质知识点和典型例题讲解

一次函数的图象和性质 一、知识要点: 1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正比例函数。 2、图象:一次函数的图象是一条直线, (1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0) (2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。 3、性质: (1)图象的位置: (2)增减性 k>0时,y随x增大而增大 k<0时,y随x增大而减小 4.求一次函数解析式的方法 求函数解析式的方法主要有三种 (1)由已知函数推导或推证 (2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。 (3)用待定系数法求函数解析式。

“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况: ①利用一次函数的定义 构造方程组。 ②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b平行于y=kx,即由k来定方向。 ③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。 ④利用题目已知条件直接构造方程。 二、例题举例: 例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。 证明:∵与成正比例, 设=a(a≠0的常数), ∵y=, =(k≠0的常数), ∴y=·a=akx, 其中ak≠0的常数, ∴y与x也成正比例。 例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断 =(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。 解:依题意,得 解得 n=-1, ∴=-3x-1,

高中数学三次函数的图象和性质精品教案教学设计

“三次函数的图象与性质”教学设计 一、教学内容解析: 三次函数是高中数学人教版选修2-2第一章第三节的内容。三次函数是中学数学利用导数研究函数的一个重要载体,有着重要的地位,围绕三次函数命制的试题,近几年来在全国各地高考及模拟试题中频繁出现,已成为高考数学的一大亮点,特别是文科数学。因此学习和掌握三次函数的基本性质很有必要。但教材也没提及三次函数的这一概念,题型也局限在只是解决系数为常数的极值和单调区间问题,各种教辅资料中也往往只从求导、求极值、求单调区间等角度进行一些零碎的、浅表的探索,而很少对它作出比较系统地、实质性地阐述。 本节课是高三复习探究课,具体内容是:借助信息技术、通过几何画板的操作生成关于三次函数的动态效果,从而以三次函数的图像的形状特征为主线,探究三次函数的单调性和极值问题,加强学生对三次函数图像与性质的感性认识、引发学生的理性思考,形成经验。同时在此过程中体会数形结合、分类讨论、化归与类比等思想方法。基于对教材的认识和分析,本节课的教学重点和难点分别确定为: 重点: (1)探究系数a,b,c,d的大小的变化与三次函数图像之间的变化规律; (2)根据图像探究三次函数的性质:单调性和极值。 难点: 根据图像分析出三次函数的性质:单调性和极值。 二、教学目标设置: 根据本节课的内容和地位,让学生通过这节课的教学达到下列三个目标: 1、知识与能力: ①加深对三次函数图像和性质的认识,学会利用三次函数解决问题;增强分析问题,解决问题的能力。

②培养自主学习的能力和利用计算机软件《几何画板》探求新知识的能力。 ③掌握一定的多媒体环境下研究性学习的方法和手段,提高现代教育技术素养。 2、过程与方法: 通过对函数)0(,)(23≠+++=a d cx bx ax x f 性质的研究,引导学生建立讨论函数性质的基本框架,知道函数性质的基本内容及其作用,掌握研究函数性质的基本过程和方法。 3、情感态度与价值观: 通过直观的图形和抽象的函数性质的统一,培养学生的辨证唯物主义思想观;在研究的过程中,通过同学之间的讨论与协作,培养合作精神。 三、学生学情分析: 本节课,学生已初步搭建起研究函数的基本平台,借助导数的工具和图形技术(几何画板)来研究三次函数的图象和性质,符合学生的认知规律。三次函数的导数是二次函数,二次函数是重要的且具有广泛应用的基本初等函数,学生对此已有较为全面、系统、深刻的认识,并在某些方面具备了把握规律的能力。三次函数虽同样是初等函数,学生能通过导数解决一些三次函数性质相关的题型,但利用几何画板探究三次函数的性质仍显力不从心。首先学生对《几何画板》不够熟悉。其次三次函数的图像与性质本身就有一定的难度。对于观察图像探究系数的变化对图像的影响,学生通过自己的努力基本能够解决。但由此归纳总结性质就存在问题,因为函数的图像与性质本身就很复杂,对学生能力方面的要求较高,不仅需要调动广泛的知识,而且需要有比较清晰的思路。因此这方面教师要通过设置问题、追问、恰当提示等方法加强引导,从而达到突破教学难点。 四、教学策略分析: 根据这节课内容的特点,本节课设计强调学生主动探究式的学习方式,这也是新课程所倡导的教学理念。为突破难点,紧紧围绕教学重点,结合学生已有的基础:会用导数研究三次函数的性质,通过创设问题情境,搭设台阶,并以追问或问题串的形式引导学生积极参与

一次函数的图像与性质

一次函数的性质和图像

目录一、函数的定义 (一)、一次函数的定义函数。

(二)、正比例函数的定义 二、函数的性质 (一)、一次函数的性质 (二)、正比例函数的性质 三、函数的图像 (一)、一次函数和正比例函数图像在坐标上的位置 (二)、一次函数的图像 1、一次函数图像的形状 2、一次函数图像的画法 (三)、正比例函数的图像 1、正比例函数图像的形状 2、正比例函数图像的画法 3、举例说明正比例函数图像的画法 四、k、b两个字母对图像位置的影响 K、b两个字母的具体分工是: (一次项系数)k决定图象的倾斜度。 (常数项)b决定图象与y轴交点位置。 五、解析式的确定 (一)一个点坐标决定正比,两个点坐标决定一次 (二)用待定系数法确定解析式

六、两条函数直线的四种位置关系 两直线平行,k1= k2,b1≠b2 两直线重合,k1= k2,b1=b2 两直线相交,k1≠k2 两直线垂直,k1×k2=-1 (一)两条函数直线的平行 (二)两条函数直线的相交 (三)两条函数直线的垂直 一次函数、反比例函数中自变量x前面的字母k称为比例系数 这一节我们要学习正比例函数和一次函数。一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。因此,正比例函数是一次函数当b=0时的特殊情况。正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。 在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

二次函数的图像和性质第二课时教案

22.1 二次函数(第二课时) 教学目标: 1.会用描点法画出形如y = ax 2 的二次函数图象,了解抛物线的有关概念; 2.通过观察图象,能说出二次函数y = ax 2 的图象特征和性质; 3.在类比探究二次函数y = ax 2 的图象和性质的过程中,进一步体会研究函数图象和性质的基本方法和数形结合的思想 教学重点:会用描点法画出二次函数y=ax2的图象,观察图象,得出二次函数y = ax 2 的图 象特征和性质。 教学难点:抛物线的图像特征。 教学过程: 一、问题引新 1,同学们可以回想一下,一次函数的性质是什么? 2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢? 3.一次函数的图象是什么?二次函数的图象是什么? 二、学习新知 1、例1、画二次函数y=2x2与y=2x2的图象。(有学生自己完成) 解:(1)列表:在x的取值范围内列出函数对应值表: (2)描点(3)连线 x …-3 -2 -1 0 1 2 3 … y …9 4 1 0 1 4 9 … 找一名学生板演画图 提问:观察这个函数的图象,它有什么特点? (让学生观察,思考、讨论、交流,) 2、归纳: 抛物线概念:像这样的曲线通常叫做抛物线。抛物线与它的对称轴的交点叫做抛物线的 顶点.顶点坐标(0,0) 3、运用新知 (1).观察并比较两个图象,你发现有什么共同点?又有什么区别? (2).课件出示:在同一直角坐标系中,y=2x2与y=-2x2的图象,观察并比较 (3).将所画的四个函数的图象作比较,你又能发现什么?(课件出示) 让学生观察y=x2、y=2x2的图象,填空; 当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称 轴的右边,曲线自左向右______,______是抛物线上位置最低的点。 当X<0时,函数值y随着x的增大而______,当X>O时,函数值y随X的增大而______; 当X=______时,函数值y=ax2 (a>0)取得最小值,最小值y=______

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

二次函数的图像和性质知识点与练习

第二节 二次函数的图像与性质 1.能够利用描点法做出函数y =ax 2 ,y=a(x-h)2,y =a(x-h)2 +k 和c bx ax y ++=2 图象, 能根据图象认识和理解二次函数的性质; 2.理解二次函数c bx ax y ++=2 中a 、b 、c 对函数图象的影响。 一、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 例1. 在同一平面坐标系中分别画出二次函数y =x 2 ,y =-x 2 ,y =2x 2 ,y =-2x 2 ,y =2(x-1)2 的图像。 一、二次函数的基本形式 1. y =ax 2 的性质: x y O

2. y=ax2+k的性质:(k上加下减) 3. y=a(x-h)2的性质:(h左加右减) 4. y=a (x-h)2+k的性质: 5. y=ax2+bx+c的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式() 2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字 “左加右减,上加下减”. 方法二:

一次函数的图象与性质

一次函数的图象与性质(基础篇) 知识要点 1.一次函数的定义: ①已知y=(m+1)x2-|m|+n+4,当m= ,y是x的一次函数;当m= ,n= 时,y是x 的正比例函数. ②已知函数y=(k+2)x+k2-2,当k时,它为一次函数;当k= 时,它为正比例函数. 2.一次函数y=kx+b(k≠0)的图象特征: 一次函数的图象是一条直线,因为两点确定一条直线,所以画一次函数图象时,描点时常选图象与x轴的交点和y轴的交点. ①当k>0,b>0时,直线过第象限. ②当k>0,b<0时,直线过第象限. ③当k<0,b>0时,直线过第象限. ④当k<0,b<0时,直线过第象限. ⑤若正比例函数y=-(k+1)x+k2-4的图象只经过第一、三象限,则k = . ⑥一次函数y=-3x必过第象限. ⑦一次函数y=πx+3必过第象限. ⑧正比例函数y=(3k2+1)x必过第象限. 3.直线y=kx+b与y=kx(k≠0)的关系: 直线y=kx+b与y=kx(k≠0)的关系是平行关系. ①当b>0时,直线y= kx+b可以由直线y=kx向上平移个单位而得到. ②当b<0时,直线y= kx+b可以由直线y=kx向下平移个单位而得到. ③将直线y=3x沿y轴向平移个单位长度可得直线y=3x+6; ④将直线y=-5x+6沿y轴向平移个单位长度可得直线y=-x. 4.直线与坐标轴交点的求法: 求函数图象与x轴的交点坐标,令y=0,解方程kx+b=0得x的值,就是相应的横坐标x的值; 求函数图象与y轴的交点坐标,令x=0得y=b,就是相应的横坐标y的值; ①已知函数y=2x-6,与x轴的交点坐标为;与y轴的交点坐标为. ②函数y=2x+1的图象是不经过第象限的直线,它与x轴的交点坐标是,与y轴的交点坐标是. 5.一次函数y=kx+b(k≠0)的增减性: 当k>0时,y随x的增大而增大,函数图象从左到右呈上升趋势. 当k<0时,y随x的增大而减小,函数图象从左到右呈下降趋势. ①已知一次函数y=(1-2k)x+2k-1,当k时,y随x的增大而增大,此时图象经过第象限. ②已知一次函数y=(6+3m)x+(n-4). 当m时,y随x的增大而减小;当m,n时,函数图象与y轴的交点在x 轴下方;当m,n时,函数图象经过原点.

二次函数图像与性质总结

二次函数图像与性质总 结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

二次函数的图像与性质 一、二次函数的基本形式 1.二次函数基本形式:2 =的性质: y ax 2.2 =+的性质: y ax c 上加下减。Array 3.()2 =-的性质: y a x h 左加右减。

4.()2 y a x h k =-+的性质: 二、二次函数图象的平移 1.平移步骤: 方法一:⑴将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标 ()h k ,; ⑵保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2.平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx ax y +++=2(或m c bx ax y -++=2)

⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后 者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ??? ,其中 2 424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般 我们选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴 对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 五、二次函数2y ax bx c =++的性质 1.当0a >时,抛物线开口向上,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <- 时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2.当0a <时,抛物线开口向下,对称轴为2b x a =- ,顶点坐标为2424b ac b a a ??-- ???,.当2 b x a <- 时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. 六、二次函数解析式的表示方法 1.一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2.顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3.两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

(整理)二次函数图像与性质总结(含答案)

二次函数的图像与性质 一、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质: 2. 2y ax c =+的性质: 上加下减。 3. ()2 y a x h =-的性质: 左加右减。 4. ()2 y a x h k =-+的性质:

二、二次函数图象的平移 1. 平移步骤: 方法一:⑴ 将抛物线解析式转化成顶点式()2 y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k , 处,具体平移方法如下: 【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位 2. 平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二: ⑴c bx ax y ++=2 沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2 变成 m c bx ax y +++=2(或m c bx ax y -++=2) ⑵c bx ax y ++=2 沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2 变成 c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2) 三、二次函数()2 y a x h k =-+与2y ax bx c =++的比较 从解析式上看,()2 y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即2 2424b ac b y a x a a -? ?=++ ?? ?,其中2424b ac b h k a a -=-= ,. 四、二次函数2y ax bx c =++图象的画法 五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定 其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们 选取的五点为:顶点、与y 轴的交点()0c , 、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x , ,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.

培优一次函数图像及性质

培优: 一次函数图像及性质 【基础知识概述】 一、函数的图象: 把—个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象. 二、正比例函数的图象及性质: 1.正比例函数y=kx(k 是常数,k≠0)的图象是过(0,0),(1,k)两点的一条直线. 2.当k ﹥0时,y 值随x 的值的增大而增大;(图象经过一、三象限) 当k ﹤0时,y 值随x 的值的增大而减小。(图象经过二、四象限) 3.|k|越大直线越靠近y 轴,|k|越小直线越靠近x 轴。 三、一次函数的图象及性质: 1.一次函数y=kx+b(k ,b 为常数,k ≠0)的图象是过(0,b),(k b - ,0)两点的一条直线. 2.当k >0时,y 随x 的增大而增大,这时函数的图象从左到右上升。 ① 当k>0,b>0时,一次函数图象过一、二、三象限, ② 当k>0,b <0时,一次函数图象过一、三、四象限, 3.当k<0时,y 随x 的增大而减小,这时函数的图象从左到右下降。 ① 当k<0,b>0时,一次函数图象过一、二、四象限, ② 当k<0,b<0时,一次函数图象过二、三、四象限, 【例题巧解点拨】 例1、① 函数25+-=x y 与x 轴的交点是 ,与y 轴的交点是 ; ② 已知一次函数y= ax+4与y = bx-2的图象在x 轴上相交于同一点, 则b a 的值是__________. 变式训练:1.已知函数y= -x+m 与y= mx-4的图象的交点在x 轴的负半轴上,那么m 的值___. 2.若函数y=-x-4与x 轴交于点A ,直线上有一点M ,若△AOM 的面积为8,则点M 的坐标 . 3.(2011衡阳)如图,一次函数y=kx+ b 的图象与x 轴的交点坐标为(2,0), 则下列说法:①y 随x 的增大而减小; ②b>0; ③关于x 的方程kx+b=0的解为x=2. 其中说法正确的有 . 例2、已知函数y= -2x-6。 ① 求当x= -4时,y 的值,当y= -2时,x 的值。 ② 画出函数图象; ③ 求出函数图象与坐标轴的两个交点之间的距离; ④ 如果y 的取值范围-4≤y ≤2,求x 的取值

三次函数图象与性质

课题三次函数图像和性质 商城二高孙明 【命题趋势】 在高中课程中,用导数知识研究初等函数是一种重要的方法。将三次函数作为载体,考查导数的知识是一类常见题型。以三次函数为载体的试题,可综合考查函数,导数,不等式等知识,是近年高考的一个亮点。 【重点,难点】 三次函数的图象三次函数的性质(单调性,最值,极值,对称性) 【教学过程】 由f(x)=ax3+bx2+cx+d可得f/(x)=3ax2+2bx+c,令△=4(b2-3ac),当△=4(b2-3ac)>0时,设方程f/(x)=0的两个根是x1,x2,且x1< x2,那么三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象与性质可以归纳如下。(对于任意两个函数y=f(x)与y= -f(x)的图象都是关于x轴对称的,其性质也就能够轻易互相推知。)于是不妨设a>0. 【高考链接】 例1.已知函数f(x)=x3-3x2+6x-7的图象是中心对称图象,其对称中心为---------------------。

例2.(2013,Ⅱ,理10)已知f(x)=x 3+ax+bx+c ,下列结论错误的是 ( ) A .?x 0∈R,f(x 0)=0 B.函数y=f(x)的图象是中心对称图形 C. 若x 0是f(x)的极小值,则f(x)在区间(- ∞,x 0)单调递减 D .若x 0是f(x)的极值,则f / (x 0)=0 例3.(2014,Ⅰ,理11)已知f(x)=ax 3-3x 2+1,若f(x)存在唯一零点x 0,且x 0>0,则a 的取值范围是 ( ) A .(2,+∞) B 。(- ∞,-2) C 。(1,+∞) D 。(-∞,-1) 【拓展训练】 1.函数f(x)=x 3 -3x+a 有3个不同零点,则实数a 的取值范围 ( ) A .(-2,2) B 。[-2,2] C.(-∞,-1) D.(1,+∞) 2.(2014,浙江理6)已知函数f(x)=x 3+ax 2+bx+c ,且09 3.已知函数f(x)=x 3 -ax-1,若f(x)在(-1,1)上单调递减,则a 的取值范围为 ( ) A .a ≥3 B.a>3 C.a ≤3 D.a<3 【课堂作业】 1.函数f(x)=x 3-3x 2 +2在区间[-1,1]上的最大值是 ( ) A .-2 B.0 C.2 D.4 2.如图是函数f(x)=x 3+bx 2 +cx+d 的大致图象,则x 12+x 22 等于 ( ) A.8 9 B.10 9 C. 169 D.289 3.已知函数y=x 3- 3x+c 的图象与x 轴恰有两个公共 点,则c=--------------。 4.函数f(x)=x 3 +ax-2在(1,+∞)上是增函数,则实数a 的取值范围是-----------------。 5.设函数f(x)= 13 x 3-(1+a)x 2 +4ax+24a,其中常数a>1,则f(x)的单调减区间为 ---------------- 。 6.已知函数f(x)= -x 3+ax 2-4在x=2处取得极值,若m,n ∈[-1,1],则f(m)+f / (n)的最小值是------------------。 表格填空答案:R R (- ∞,x 1)及(x 2 ,+∞) (- ∞, +∞) (x 1, x 2) 没有 f(x 1) 没有 f(x 2) 没有 在点x 0处取极值的充要条件是 ???4(b 2 -3ac)>0f /(x 0 )=0 三次函数是 奇函数的充要条件是b=d=0. 三次函数不可能是偶函数 (- b 3a ,f(- b 3a )) 2015年4月8日

人教版八年级数学一次函数的图像与性质教案

一次函数的图像和性质教案 怀安城中学李文高 一、教学目标 知识与技能目标: 1. 掌握一次函数y= kx + b(k工0)的性质. 2. 能利用一次函数的有关性质解决有关问题。 过程与方法目标: 1. 经历探索一次函数图象性质的过程,感受一次函数中k与b的值对函数性质 的影响;培养学生合作交流探究意识。 2. 观察图象,体会一次函数k、b的取值和直线位置的关系,提高学生数形结合能力. 情感态度价值观目标: 通过数学实验、自主探究和合作交流,增强团队意识和大胆猜想、乐于探究的良好品质,体验成功的喜悦。 二、教学重点和难点 教学重点:掌握一次函数y = kx + b(k工0)的性质. 教学难点:由一次函数的图像实验归纳出一次函数的性质及对性质的理解。 三、教学方法:观察法,数形结合发、自主探究式教学方法 四、教学过程 (一)知识回顾: 1 、画函数图像的步骤:______________________________ 2、一次函数y=kx+b(k丰0)的图像是:________ 取两点即可画出图像,方法为: 画y=kx(k丰0)的图像常选取两点为(),(). 3 、正比例函数y=kx(k丰0)的图像和性质: 二、探究一: 请大家用描点法在同一坐标系中画出函数函数y=—2x, y= —2x+3,y= —2x —3的图象。 思考:这三个函数的图象形状都是 ________ ,并且倾斜程度_______ ,函数y=-2x的图象经 过_________ ,函数y=-2x+3的图象与y轴交于点_________ ,即函数y=-2x+3的图象可以看作 由直线y=-2x向—平移—个单位长度而得到.函数y=-2x-3的图象与y轴交于点________________ ,即函数y=-2x-3的图象可以看作由直线y=-2x向—平移 ____________ 个单位长度而得到.

相关文档
相关文档 最新文档