文档库 最新最全的文档下载
当前位置:文档库 › DELMIA可视化装配工艺仿真的研究应用

DELMIA可视化装配工艺仿真的研究应用

DELMIA可视化装配工艺仿真的研究应用
DELMIA可视化装配工艺仿真的研究应用

DELMIA可视化装配工艺仿真的研究应用

1 引言

企业生产能力的强弱主要由所拥有的制造资源数量的多少决定的。当企业在自身制造资源数量不变的情况下,往往只能通过优化生产调度,最大程度地提高设备利用率来实现生产能力的提高[1]。随着数控机床的广泛应用,零件的加工精度已不再仅依赖于工人的技术水平,与此对应的装配时间就成了影响制造周期的主要因素,装配工艺优劣成了提高产品精度的关键环节。提高装配的工作效率和工作质量,利用计算机进行装配工艺流程仿真来优化产品的可装配性是今后研究的主流。

DELMIA是达索公司面向生产过程物流仿真与分析的三维数字化工厂开发软件,可优化现有的或新的系统车间布置、生产成本和工艺流程等。DELMIA分为DELMIA E5(DPE)、DELMIA V5(DPM)和DELMIA D5(QUEST),其中QUEST是用于确认可视化生产工艺流程决策是否满足产品生产要求的强大的仿真开发和分析工具。它为工业设计工程师、制造工程师和管理人员提供了一个单一的协同环境,以在整个产品设计过程中开发和确证最好的生产装配工艺流程。通过QUEST 的仿真可以发现生产装配线布局规划是否合理,是否有阻滞现象或闲置现象发生,并可以预先发现装配物流系统的不足,提前做出修正,改善设计,减少风险与成本,使数字工厂效益最大化。

2 产品装配线的对象建模

根据产品装配线的层次结构关系,从装配线类中派生出物理设备类、工艺类、逻辑控制类。物理设备类对应现实装配线中有形的实体,如装配设备、物流设备等;工艺类在现实装配线中没有有形的实体对应,仅包括诸如循环工艺、装载工艺、卸载工艺、生产计划和任务等工艺容;逻辑控制类描述对象间的逻辑关系,如AGV控制逻辑、Labor控制逻辑、传送带控制逻辑等。

2.1 虚拟装配线系统的物理建模

装配线虚拟物理建模针对装配线上所有设备的三维几何建模,以使虚拟环境中的装配线模型能与现实生产线的有形实体相符或相近,便于可重组装配线的布局优化设计。虚拟物理模型的生产资源包括机床、原料站(Source)、缓冲站(Buffer)、卸料(仓储)站(Sink)、自动导向小车(AGV)、工人(Labor)及装卸机器等生产资源。物理设备类按其层次结构关系将其派生出加工设备类、物流设备类、检测辅助设备类[2]。

加工设备主要是指完成一种或多种加工工艺的设备。加工设备类除了继承物理设备类的物理、过程、功能、状态属性等基本属性外,其物理属性还包括设备标识、设备规格、失效率、修复率等,其过程属性还包括设备利用率等。如图1所示为系统提供的一些加工设备。

物流设备负责设备间工件物料的运输和存储,如AGV、传送带、悬挂链、机器人、仓储设备(Source, Sink, Buffer)等。完成传送工件和搬运物料的工人(Labor)

也可以抽象地看待为物流设备。用物流设备类来描述实现物料和工件运输功能的设备或工人的属性与方法,在重组对象的实现过程中,主要描述物流设备的重组

时间、成本、利用率、工件运送时间等。物流设备又可派生出AGV类、传送带类、机器人类、仓储类。

图1 系统提供的机床模型库

检测辅助设备主要完成检测等工作,以辅助加工工艺的顺利进行。如外圆跳动仪、销孔跳动仪、探伤仪、卡尺等。根据检测项目的不同,辅助设备类派生出量具类、粗糙度测量类、传感器类等类。在装配线上,辅助加工的检测设备比较少,所以检测辅助设备类主要针对那些检测零部件装配质量的设备。比如检测装配螺钉的力度大小,检测零部件的装配误差大小,检测箱体装配气密性等方面的设备。2.2 虚拟装配线系统的工艺建模

为了描述装配过程中工艺方面的知识,用工艺类作为工艺建模的基类,其属性包括标识、名称、工艺容;行为方法有:工时计算、利用率计算等,可派生出工序类、生产计划类、生产安排类、工艺规程类等。

工序类的属性有工序标识、名称、容、工序优先级、装配工件数量、需求工人数量、需求AGV数量、需求加工设备数量、平均循环装配时间、循环装配时间分

布等。其行为方法包括定义工件优先级、定义工艺逻辑顺序、设备选择、工时计算、辅助工序安排等。根据工艺的分类,将工艺类分为初始运行工艺类、装载工艺类、循环装配工艺类、卸载工艺类、维修工艺类等[3,4]。

生产安排类的属性包括标识、名称、生产安排描述、班次数量、换班时间、准备终结时间等。其行为方法有班次安排、单件工件准备终结时间计算、关联班次安排所需的设备等。

生产计划类的属性有标识、名称、容、生产计划描述、产量、交货期、成本。生产计划类的行为方法有生产节拍计算。

工艺规程类的属性包括:标识、名称、装配流程编码、成本、产量、重组时间、可用度。行为方法有设备选择、工艺参数选择、缓冲站选择、工人选择、设备利用率计算等。对于加工工艺参数类的属性包括标识、名称、主轴转速、横向进给速度、纵向进给速度、切削深度[5]。

2.3 虚拟装配线系统的逻辑建模

逻辑控制完成生产资源的选择和调度等功能,用逻辑控制类抽象描述发生在特定时间不同资源对象交互活动的决策行为。逻辑控制类的属性有控制器标识、控制对象数量、逻辑运行优先级。逻辑控制类的行为方法包括定义初始化逻辑、加工逻辑、工件路由逻辑、资源选择逻辑等逻辑模式。各逻辑模式的含义表1所示,逻辑控制类的层次结构关系如图2所示。

其中,加工工艺逻辑主要用于定义加工工艺对象(或装配工艺对象)的先后顺序、工艺对象处理的比例关系等。路由逻辑主要用于定义工件选择路由下端对象的方式。队列逻辑主要用于定义排队方式等。设备逻辑主要用在装配线装载工件、加工(或装配)工件、卸载工件时,设备需要完成的判断与决策。AGV/Labor控制逻辑是生产资源(如设备)在选择AGV/Labor时,AGV/Labor控制器向AGV/Labor 发出的逻辑判断指令。另外,QUEST软件中的悬挂链(POWER AND FREE,简称PNF)系统逻辑模型或逻辑事件同AGV/Labor控制器逻辑模型。

表1 逻辑模式的含义

图2 逻辑控制类层次结构图

3 变速器虚拟装配线仿真环境搭建

3.1 变速器虚拟装配模型的建立与转化

本文以某汽车厂的变速器装配线为原型,对装配线的建模、规划仿真与仿真优化实现过程进行了研究。由于QUEST软件是在全三维环境下进行仿真的,所以对于变速器装配线的虚拟装配仿真中,除了必需的车间装配设备、物流设备、辅助设备之外,必须提供装配中所需的所有零部件的三维模型,即变速器的所有零部件的数字化模型。

图3 变速器箱体模型

变速器模型的建立可以采用多种三维建模软件进行,如PRO/E、UG、CATIA等等均可,但最终仿真是在DELMIA/QUEST软件环境下进行,所以前期所建立的三维模型必须转化到DELMIA/QUEST软件环境下,QUEST提供了多种数据输入的格式,如IGES、VRML、STL、ACAD、VDA、PRO等等,其中它可以直接和PRO/E软件进行数据转化,只要按照规定的参数设置设定好两者的转换通道即

可,这样就可以直接在QUEST软件环境下读取PRO/E的.prt格式文件了,然后保存为QUEST软件下的模型格式即可。如图3、图4所示即为转化到QUEST自定义模型库中的变速器零部件模型库。

图4 变速器部分装配模型

3.2 变速箱虚拟装配线车间的整体规划

要实现一条虚拟装配线的仿真运行,必须按照实际变速器装配线的装配工艺来规划装配线布置和安排虚拟车间环境,首先要做的就是理顺变速器装配线的实际装配工艺流程,严格按照或基本严格按照装配线的装配序列来规划虚拟装配线。如图5所示为变速器装配的基本树形结构图。

图5 变速器总成装配层次结构

变速器箱体零部件中主要由一轴部装总成、二轴部装总成、中间轴部装总成和移动轴部装总成组成,然后在变速器的总装线上实现总装。

实际变速器装配线中的零部件较多,装配工序繁琐,如果完全按照实际变速器装配线工序个数来由下而上规划和安排虚拟装配线流程的话,势必是一个非常庞大的虚拟装配线仿真流程,这样对我们仿真中所需电脑硬件要求将是非常的高,本文以二轴部装的装配线为例来说明变速器虚拟装配线的仿真规划。

3.3 二轴子装配线的虚拟装配环境规划

二轴部装主要完成如下装配:二轴一档齿轮总成、一二档同步器总成和滚针轴承装配、一二档齿毂卡簧和二轴二档齿轮总成、一二三档同步器齿环和三四档同步

器总成装配、三档衬套装配、二轴倒档齿轮总成、五倒档同步器齿环装配、滚针轴承装配、齿毂卡簧装配、五倒档同步器总成、二轴五档齿轮总成装配等。

图6 二轴部装作业区场景

为了实现二轴部装,这里在总体不影响仿真结果情况下,进行简化处理,首先由2个工人(Labor)完成由传送带输送来零件的卸料工作,将零件分类放置在3个缓冲站(Buffer)上,再由另外的装配工人按照装配工艺从缓冲站上拿取零件,同时配上装配所需的另外零件(不需要经过清洗烘干处理的一些零件,如标准件、卡簧等),放置在部装工作台上完成二轴的前期部装,之后由另外工人在专业装配机床上进行压装操作,并完成一轴和二轴的总成,完成后的二轴部装作业区场景规划,如图6所示。

车间中模型元件的连接为:悬挂链卸料关键点——传送带——3个缓冲站——装配工作台——缓冲站——压装机床——下游传送带,其中装配工作台有4个输入连接元件(Input Element),即其上游的4个零件缓冲站,压装机床有2个输入连接元件(Input Element),即其上游的2个零部件的缓冲站。为了保证装配仿真一开始,装配工人就开始同步工作,这里所有缓冲站都分别设置了一定数量的

工件原始库存(Part Initial Stock),并给缓冲站配置了一定的缓冲容量(Part Capaticy),利于后续的装配线平衡的调整。

除了上述物理模型的规划布置外,还有零部件的摆放位姿、工人拿取工件的位姿、工人的行走路径的规划与调整。特别是工人的行走路径,因为有些模型元件同时设置了2个或2个以上的工人站立点,而同一个模型元件又有多个工人参与工作,如传送带输送过来的清洁零件就有2个工人来负责卸料,而每个工人又将各自搬运的工件放置于不同的缓冲站,其中一个工人要同时负责2个缓冲站工件的上料工作,所以类似这样较为复杂的任务分配,工人的行走路径就很可能重叠交叉,这样就可能造成仿真过程中人员模型的重叠交叉,这是不符合现实要求的,所以,这里要特别注意工人路径的布置与调整。

图7 二轴部装作业区车间工人路径规划图

另外,还要对工人站立的每一个起始点的工人方位(lbr_pts)重新设置,使得每一个工人都有正确的站立方位,如工人到传送带搬运工件时必须面对传送带零件才对,工人在缓冲站卸料时必须面对各自的缓冲站等等。图7所示为二轴部装作业区车间工人路径规划图。

4 变速器虚拟装配线的仿真优化

4.1 运用DELMIA/QUEST软件对变速器装配线进行仿真

在搭建好变速器虚拟装配线的所有物理模型后,根据装配工艺要求定义各自的仿真模型参数和逻辑事件(略)。在此基础上进行装配线仿真。仿真的初始参数有:前后箱体的原料站(Source)按照55S节拍供应工件,2个清洗烘干作业区的所有原料站(Source)都按照38S的节拍供应要清洗烘干的工件,变速器总装线旁的其他原料站按照55S速率提供工件,总装线上每个工位工人按照8S的装配节拍进行装配,定义仿真时间为2000S。

图8 变速器装配车间仿真2000S时总装线场景一侧

当仿真2000S结束时,得出了如图8所示的装配线仿真车间的现场截图,从装配线车间的不同作业区来看仿真2000S的结果,可以很直观的看到,几乎每个工件缓冲站(Buffer)都堆积了大量零件,达到了各自缓冲站的缓冲容量,运送

零件的传送带上也有不少零件堆积,物流已经被阻塞,特别是在清洗作业区的传送带和缓冲站上更是严重,工件已经完成充满了传送带,二轴和中间轴部装作业区的工人无法休息,处于繁忙(Busy)状态。

另从装配线系统机床设备利用率直方图也能看到装配线系统中各个机床设备利用率是很不平衡的,是有待优化和调整的。

4.2 对变速器虚拟装配线进行仿真优化

为了更好的发挥装配线的生产能力,消除瓶颈问题和装配线不平衡问题,我们必须对前期搭建的装配线仿真模型进行优化。从前面的仿真数据分析中我们可以看出,装配线系统中的原料站提供各自工件的节拍不一致,二轴部装作业区的装配效率偏低,导致其上游零件供应的大量集压而阻塞了传送带等物料运送系统,并同时导致其对下游总装线供应零部件的速率缓慢,使得总装线上其他零部件的大批积压,阻塞缓冲站和其他物流系统,最终导致变速器装配线系统的不平衡和机床、工人等仿真模型的忙闲度差异过大和利用率差异过大的生产线不平衡现象。

图9 调整后装配线仿真1小时场景

图10 调整后装配线仿真8小时场景

经过反复运行仿真模型与调整,确定把总装线上的生产节拍控制在92S~96S围,生产线可获得比较理想的平衡状态。系统分别对装配线进行了1800S(半小时)、3600S(一小时)、14400S(4小时)和28800S(8小时,一个标准工作日)仿真后均发现装配线上没有了零部件的过渡滞留、阻塞物流运送系统、充满缓冲站等不良现象发生。装配线仿真现场情景分别如图9、图10所示。从虚拟装配线场景中可以看出,在仿真8小时(28800S)结束时,不管是总装线还是部装作业区,在零部件的物料运送系统中没有出现阻塞现象,缓冲站中只有少数零部件处于缓冲状态,即正常工作状态,传送带上也没有出现零部件阻塞现象,即装配线的物流系统处于顺畅状态。

图11 装配线机床设备利用率情况直方图

为了能更好说明装配线状况,系统输出了仿真结果统计数据。用直方图分别表示装配线中机床设备利用率、操作工人利用率和总装线AGV利用率情况。其中图11所示为装配线机床设备利用率情况直方图,对比优化前装配线机床利用率情况,可以清晰的看出装配线优化调整后,机床的利用率基本一致,而优化前的结果则是机床利用率差别很大。同时,改进后的装配线操作工人的忙闲程度有了很大改善,忙闲差别缩小,整体上趋于平衡;变速器总装线上的AGV利用率几乎一样,这也说明了经过调整后的装配线整体上是基本平衡的。

5 结语

以变速器装配线的虚拟装配工艺流程仿真为主线,在三维数字化工厂仿真软件DELMIA/QUEST中就变速器虚拟装配线对象建模方法、装配工艺仿真环境的规划和搭建进行了研究,分析了装配线中存在的瓶颈、不平衡、物流运送不顺畅等装配线问题,并结合实际仿真数据对装配线的规划进行了优化和调整,得出了较优的装配线平衡和优化方案,达到了较为理想的装配线运行状态。

流程工业综合自动化系统的仿真技术及其应用

流程工业综合自动化系统的仿真技术及其应用 作者:章建栋,冯毅萍,荣冈来源:互联网2010-06-29 0人 分享此文 分析了该集成仿真技术面临的关键问题,包括多分辨率建模技术,分布式集成仿真技术标准和集成仿真平台,以及可视化仿真技术等,最后探讨了仿真技术未来的发展方向。 0 引言 面对全球激烈的商业竞争,流程工业企业纷纷通过提高产品质量、降低运营成本和缩短交货期等手段来提升自己的竞争力。在这个过程中,计算机集成制造系统(Computer Integrated Manufacturing System,CIMS)受到高度重视,不少学术机构对此进行了研究,并提出了不同的CIMS体系结构,比较典型的有:欧共体EsPRIT的计算机集成制造开放系统体系结构(Computer Integrated Manufacturing Open System Archltecture,CIM-OSA)、普渡大学的普渡企业参考体系结构(Purdue Enterprise Reference Archltecture,PERA),以及美国先进制造研究中心(Advanced Manufacturing Research,AMR)的企业资源规划(Enterprise Resource Planning,ERP)/制造执行系统(Manufacturing Executive System,MES)/过程控制系统(Process Control system,PCS)三层企业集成体系结构(如图1)。其中,AMR的三层企业集成体系结构已成为当今西方先进工业国家流程工业综合自动化系统理论和产品的主流框架,并在实际应用中取得了显著的效益。 在ERP/MES/PCS三层企业集成体系结构中,PCS层通过可编程逻辑控制器(Programmable Logic controllcr,PLC)、集散控制系统(Dlstributed Control system,DCS)或现场总线控制系统,负责对生产设备进行自动控制,对生产过程实时监控;MES层通过生产调度、生产统计、成本控制、物料平衡和能源管理等应用系统来组织生产,并对PCS 层和ERP层的信息进行采集、传递和加工处理;ERP层主要根据企业的人、财、物的总结状况和产、供、销各环节的信息,对生产进行合理有效的计划和组织,使生产经营协调有序进行,并对企业战略计划进行决策。在对上述各层次应用的研究中,仿真技术发挥了巨大的 作用。 事实上,随着现代流程工业日趋大型化、复杂化和自动化,系统的模型化与仿真已成为过程系统工程领域的重要研究内容,并成为进行设备参数设定、控制系统设计、生产预测分析、决策支持优化,以及员工培训等活动不可或缺的一门技术,而计算机技术的不断发展,更是推动了仿真技术的广泛应用。现在,企业迫切需要通过仿真技术来提高自身的竞争能力,能否有效应用仿真,将成为决定企业成败的关键因素之一。 从AMR对各层次的定义可以看出,每一层的研究对象有着很大的差异,PCS层关注生产设备,MES层着眼于生产过程,而ERP则考虑制造企业的整个产供销过程。这造成了不同层次的应用研究对仿真的需求各不相同,并使得仿真技术在不同层次的表现形式也有所差别。本文以ERP/MES/PCS三层企业集成体系结构为基础,对典型的流程工业企业——石化生产企业在这三个层次中的仿真应用,以及ERP/MES/PCS一层集成仿真技术进行总结和综述,指出流程r业仿真应用的发展方向。 1 过程控制系统层中的仿真

现代仿真技术的发展

现代仿真技术的新发展 摘自:计算机世界 仿真技术是以相似原理、系统技术、信息技术以及仿真应用领域的有关专业技术为基础,以计算机系统、与应用有关的物理效应设备及仿真器为工具,利用模型对系统(已有的或设想的)进行研究的一门多学科的综合性的技术。 仿真本质上是一种知识处理的过程,典型的系统仿真过程包括系统模型建立、仿真模型建立、仿真程序设计、仿真试验和数据分析处理等,它涉及多学科多领域的知识与经验。随着现代信息技术的高速发展以及军用和民用领域对仿真技术的迫切需求,仿真技术也得到了飞速的发展。 仿真技术是模型(物理的、数学的或非数学的)的建立、验证和试验运行技术。现代仿真技术的特点可归纳为以下几点: (1) 仿真技术是一门通用的支撑性技术。在决策者们面对一些重大的、棘手的问题时,能以其他方法无法替代的特殊功能,为其提供关键性的见解和创新的观点。 (2) 仿真技术学科的发展具有相对的独立性,同时又与光、机、电、声,特别是信息等众多专业技术领域的发展互为促进。因此,仿真技术具有学科面广、综合性强、应用领域宽、无破坏性、可多次重复、安全、经济、可控、不受气候条件和场地空间的限制等独特优点,这是其他技术无法比拟的。 (3) 仿真技术的发展与应用紧密相关。应用需求是推动仿真技术发展的原动力,仿真技术应用效益不但与其技术水平的高低有关,还与应用领域的发展密切相关。大量实例表明,仿真技术的有效应用必须依托于先进的仿真系统,只有服务于应用的仿真系统向前发展了,才能带动仿真技术的发展。因此,必须处理好应用需求牵引、系统带技术、技术促系统、系统服务于应用的辩证关系。 (4) 仿真技术应用正向“全系统”、“系统全生命周期”、“系统全方位管理”发展。这些都基于仿真技术的发展。 仿真技术可以有多种分类方法。按模型的类型,可分为连续系统仿真、离散系统仿真、连续/离散(事件)混合系统仿真和定性系统仿真;按仿真的实现方法和手段,可分为物理仿真、计算机仿真、硬件在回路中的仿真(半实物仿真)和人在回路中的仿真;根据人和设备的真实程度,可分为实况仿真、虚拟仿真和构造仿真。 现代仿真技术 1.建模与仿真方法学 模型的建立是要确定模型的结构和参数,一般有三种途径: (1) 对内部结构和特性清楚的系统,利用已知的一些基本定律,经过分析和演绎推导出系统模型; (2) 对那些内部结构和特性不清楚的系统,可假设模型并通过试验验证和修正建立模型,也可以用辨识的方法建立模型; (3) 对于内部结构和特性有部分了解,但又不甚了解的,则采用以上两种方法相结合的方式。 随着仿真应用范围的不断拓宽,近年来,系统建模理论与方法的研究范围逐渐从定量系统向定性系统拓宽,其中典型的定性系统建模方法有Kuiper 法以及各类基于模糊理论的方法等。此外,在离散事件系统及各类并发分布系统的建模方法中,Petri 网及Bond图方法及其应用也有较快的发展。从建模的方法学来看,除了典型的机理建模及系统辨识方法外,近年来正积极发展模糊优化法、人工智能辅助建模方法学及混合模式(multi-paradigm)

计算机仿真技术的应用与发展趋势1

计算机仿真技术的应用与发展趋势 摘要 在制造企业产品设计和制造的过程中,计算机仿真一直是不可缺少的工具,它在减少损失、节约经费、缩短开发周期、提高产品质量等方面发挥了巨大作用。从发展的历程来看,仿真技术应用的领域空前的扩大,已从传统的制造领域(生产计划制定、加工、装配、测试)扩展到产品设计开发和销售领域。而与网络技术结合所带来的仿真的分布性、与图形和传感器技术相结合所带来的仿真的交互性、以及仿真技术应用的集成化,是仿真技术在制造业中应用的新趋势。按照仿真技术应用的对象不同,可将制造业中应用的仿真分为四类:面向产品的仿真;面向制造工艺和装备的仿真;面向生产管理的仿真;面向企业其它环节的仿真。本文将从以上四个方面,介绍计算机仿真在制造业中的具体应用。本文最后说明了虚拟现实和拟实制造的概念,作为计算机仿真在制造业中应用的展望。 绪论 计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。其原理可追溯到1773年法国自然学家G.L.L.Buffon为估计圆周率值所进行的物理实验。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-

数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中,但难以满足航天、化工等大规模复杂系统对仿真时限的要求;到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 1. 制造技术的发展历程 制造业(包括机械制造、电子制造、非金属制品制造、成衣制造以及各种型材制造等部类)是国民经济的支柱产业,其生产总值一般占各国国内生产总值的 20%~55% 。在各国的企业生产力构成中,制造技术的作用一般占 60% 左右。所以有的专家认为,世界上各个国家经济的竞争,主要是制造技术的竞争。随着经济技术的高速发展以及顾客需求和市场环境的不断变化,这种竞争日趋激烈,各国政府都非常重视对制造业的研究。 为了改进以 T (开发周期)、 Q (产品质量)、 C (开发成本)、 S (售后服务)、 E (环境污染程度)为主要衡量指标的产品及产品开发过程,美国在 80 年代末提出了包括系统总体技术、管理技术、设计制造一体化技术、制造工艺与装备技术、支撑技术五大技术群在内的先进制造技术( AMT : Advanced Manufacturing

基于DELMIA_Robotics的白车身焊接机器人仿真应用

收稿日期:2011-09-27 基金项目:安徽省工业机器人成套技术开发与应用资助项目;2009年安徽省立项课题:工业机器人成套技术开发与应用作者简介:秦基伟(1983-),男,安徽芜湖人,工程师,本科,研究方向为工业机器人控制与应用。 0 引言 多年以来,白车身焊装领域,国内的绝大多数主机厂还停留在一个较低的技术水平上。焊装、总装工艺工程师最为主要的工作内容就是Excel 填表和截图,文本性的工作占据了大量时间,工艺工程师很难有时间去考虑制造工艺本身的问题,如节拍、生产线布局合理性以及工位仿真等。DELMIA 就是应运而生的全3D 数字化制造解决方案。它能使在真实工厂或者生产过程还没有开始前,在虚拟空间中对真实工厂进行数字化仿真,并提供优化的结果。为前期项目方案制定,项目竞标,以及方案实施提供有利帮助,同时为后期示教、维护提供直观的指导。本文以奇瑞-哈工大联合开发的大负载六自由度QH-165型机器人,为应用对像,仿真S11白车身侧围的点焊过程,通过DELMIA 软件中的Robotics 模块对其进行焊接路径的仿真。结果表明,利用DELMIA/Robotics 实现机器人仿真是方便、准确和有效的。 1 机器人结构及技术指标 QH-165型机器人为六轴串联机器人,其本体结构如图1所示,整个系统由机械本体和电控系 统两大部分组成。实际焊接应用时需增加焊接控制器、焊枪以及水、气控制检测等外部设备。机器人技术参数见表1。 图1 QH-165机器人模型表1 机器人技术指标 技 术 参 数 产品型号QH-165控制轴数6手腕最大负载(Kg ) 165运动半径 (m) 2.66 基于DELMIA /Robotics 的白车身焊接机器人 仿真应用 The simulation based on DELMIA/Robotics for body-in-white welding robot 秦基伟,章敏凤,杨 宁 QIN Ji-wei, ZHANG Min-feng, YANG Ning (奇瑞汽车股份有限公司,芜湖 241006) 摘 要: 针对汽车焊接机器人工位缺乏精确可靠的焊接过程分析,作者应用DELMIA/Robotics软件以 奇瑞自主研发的QH-165型机器人为仿真对像,结合S11车身侧围工艺,实现汽车侧围的机器人 焊接工位仿真。结果表明,运用DELMIA/Robotics可以有效降低项目设计成本、大大缩短项目完成时间和高效、准确的数字化仿真。 关键词: DELMIA;机器人;仿真;焊接 中图分类号 :TP242 文献标识码:A 文章编号:1009-0134(2012)06(上)-0001-03Doi: 10.3969/j.issn.1009-0134.2012.6(上).01

计算机仿真技术及其应用_张锋

本栏目责任编辑:李桂瑾人工智能及识别技术 1引言 随着计算机技术和网络技术的飞速发展,计算机仿真技术和虚拟现实仿真在各行各业得到了广泛应用,使用计算机进行仿真的研究和应用也是如火如荼。计算机仿真[1](ComputerSimulation)又称计算机模拟[2](ComputerAnalogy),它是分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法,是系统仿真[3]的一个重要分支。系统仿真就是建立系统的模型,并在模型上进行实验的过程。系统仿真技术实质上就是建立仿真模型并进行仿真实验的技术。因此,通俗的说,计算机仿真就是指在实体尚不存在、或者不易在实体上进行实验的情况下,对考察对象进行建模,然后通过计算机编程考察对象在系统参数以及内外环境条件改变的情况,达到全面了解和掌握考察对象特性的目的。 本文主要在介绍计算机仿真技术的基础上,谈谈计算机仿真技术的应用。 2计算机仿真技术 计算机仿真技术是一门利用计算机软件模拟实际环境进行科学实验的技术。它具有经济、可靠、实用、安全、灵活、可多次重复使用的优点,已经成为对许多复杂系统(工程的、非工程的)进行分析、设计、试验、评估的必不可少的手段。它是以数学理论为基础,以计算机和各种物理设施为设备工具,利用系统模型对实际的或设想的系统进行试验仿真研究的一门综合技术。 2.1计算机仿真的发展 计算机仿真技术主要是随着计算机技术、计算技术、图形图像技术、复杂系统建模技术和专业建模技术的发展而发展的。从历史上看,计算机仿真大致经历了四个发展阶段: (1)模型试验。最原始的仿真思想,其模型试验是基于物理模型进行的,缺乏柔性和精度。 (2)数字化仿真。采用计算机进行分析计算,但是计算结果表达局限于记录文件和图表上,缺乏直观形象。 (3)图像化仿真。大量采用丰富的图形图像技术来表达仿真结果,如三维图形。 (4)虚拟现实技术。不光采用三维图形技术表达计算结果,而 且采用特殊装置,如戴上三维数据头盔,触摸仪器等,使人有身临其境的效果。 2.2计算机仿真的步骤及技术核心一般计算机仿真的步骤为: (1)建立数据模型。建立数据模型主要是通过演绎法、 归纳法、综合集成法等分析方法,建立一个特定对象的有限边界的数学模型。要建立好数学模型,通常要考虑到特定对象仿真研究的预定目标和边界、先验知识(包括已被验证的定理、定律、理论和模型)、观测数据、特定领域专家的经验等因素。 (2)数学模型的实现,也称的数据模型的程序化。数学模型的实现包括两个方面的内容,即设计仿真算法及编制仿真程序。传统的模型程序化活动是一个十分繁琐和复杂的工作。由于大量算法的研究成果及软件技术的进步,目前对于某些特定领域,已能提供面向对象、可交互操作、具有自动编程能力和算法库的商品化产品,如:CSSL、CSMP、ACSL、SLMCRIPT、GPSS、SIMULA、SLAM、GASP、DYNAMO等。 (3)仿真实验。仿真实验(包括分析)是系统仿真另一个十分重要的活动,它主要是按照预先设置的实验方案来运行仿真模型,得到一系列的仿真结果。 目前,计算机仿真计算的关键技术主要包括: (1)面向对象的仿真[4](object-OrientedSimulation-OOS)。 其主要是将整个系统的功能设计和实现归属为对对象的操作及对象信息的彼此综合利用来实现,对象间信息的传送引起了系统的活动。 (2)分布交互仿真(DistributedInteractiveSimulation-DIS)。主要是通过计算机网络将分散在各地的仿真设备互连,构成时间与空间互相耦合的虚拟仿真环境。 (3)智能仿真(IntelligenceSimulation-IS)。主要是以知识为核心和人类思维行为作背景的智能技术,引入整个建模与仿真过程,构造各处基本知识的开发途径。是人工智能(如专家系统、知识工程、模式识别、神经网络等)与仿真技术(如仿真模型、仿真算法、仿真语言、仿真软件等)的集成化。(下转第238页) 收稿日期:2007-09-10 作者简介:张峰(1968-),男,甘肃省庆阳市人,上海铁道学院,工程师,研究方向:计算机应用。 计算机仿真技术及其应用 张锋 (烟台市芝罘区经济信息中心,山东烟台264000) 摘要:近年来,随着控制理论、计算技术、计算机科学与技术的发展,系统科学研究的深入,计算机仿真技术已经发展成为一门新的学 科。信息处理技术的突飞猛进,更使得仿真技术得到了迅速发展。 计算机仿真技术是分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法。本文主要在介绍计算机仿真技术的发展、计算机仿真的仿真步骤以及仿真的核心技术的基础上谈谈计算机仿真技术的应用。 关键词:计算机仿真技术;仿真步骤;仿真应用中图分类号:TP391文献标识码:A文章编号:1009-3044(2007)19-40233-01 ComputerSimulationTechnologyandItsApplications ZHANGFeng (YantaiZhifuEconomicInformationCenter,Yantai264000,China) Abstract:Inrecentyears,withcontroltheory,technology,computerscienceandtechnologydevelopment,thesystemofin-depthscientificresearch,computersimulationtechnologyhasbecomeanewdiscipline.Therapiddevelopmentofinformationprocessingtechnology,butalsomakessimulationtechnologyforfastdevelopment.Computersimulationtechnologyisanalyzedandstudiedthesystem'soperation,revealedthedynamicmovementoftheprocessandanimportantmeansandmethods.Thispaperintroducedcomputersimulationtechnologyinthedevelop-mentofcomputersimulationandthesimulationstepsimulationofthecoretechnologyonthebasisofcomputersimulationtechnologyapplica-tions. Keywords:ComputerSimulationTechnology;SimulationSteps;SimulationApplication 233

液压机械系统建模仿真软件AMESim及其应用

液压机械系统建模仿真软件AMESim及其应用

液压仿真软件AMESim及其应用 在现代工业中,随着对液压机械设备的性能要求以及机电液一体化程度的不断提高,对液压传动与控制系统的性能和控制精度等提出了更高的要求,传统的以完成设备工作循环和满足静态特性为目的的液压系统设计方法已不能适应现代产品的设计和性能要求。如果要对液压机械系统进行动态特性分析和采用动态设计方法,就需要运用计算机仿真技术,它是利用计算机技术研究液压机械系统动态特性的一种新方法。计算机仿真技术不仅可以在设计中预测系统性能,缩短设计周期,降低成本,还可以通过仿真对所涉及的系统进行整体分析和评估,从而达到优化设计,提高系统稳定性及可靠性的目的。 仿真首要任务就是建立数学模型,重点和难点也是进行建模,然后才可能进行计算机仿真研究,而建模是一件相当复杂的工作。目前常用的建模方法有传递函数法、状态空间法、功率键合图法等。模型建立的好坏直接关系到仿真的结果,不恰当的模型有可能得出相反的结论。目前

绝大多数软件采用状态方程建模,这些对一般的液压工作者来说,要求较高,有相当的难度。 1建模仿真软件——AMESim 基于建模过程的复杂性以及给仿真研究带来的不便,近几年来国外尤其是欧洲陆续研制出一些更为实用的液压机械仿真软件,并获得了成功的应用。AMESim就是其中杰出的代表。它是法国IMAGINE公司于1995年推出基于键合图的液压/机械系统建模仿真及动力学分析软件。它由一系列软件构成,其中包括AMESim、AMESet、A MECustom和AMERun。这4部分有其各自的用途和特性。 (1)AMESim——图形化工程系统建模、仿真和动态性能分析工具 AMESim是一个图形化的开发环境,用于工程系统建模、仿真和动态性能分析。使用者完全可以应用集成的一整套AMESim应用库来设计一个系统,所有的模型都经过严格的测试和实验验证。AMESim不仅可以令使用者迅速达到建模仿真的最终目标,而且还可以分析和优化设计。A MESim使得工程师从繁琐的数学建模中解放出

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝(技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CA E 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NASTRAN 、ADI N A 、ANSYS 、 ABAQUS 、MARC 、MAGSOFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内C AE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、AB AQUS 、MARC 的应用领域进行分析。 M SC So ft w are 公司创建于1963年,总部设在美国洛杉矶,M SC M arc 是M SC Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着M arc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁 道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业M SC N astran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 13

计算机仿真技术的应用

一、为什么要进行仿真 ?什么叫系统? ◆系统:相互关联又相互作用着的对象的有机组合,该有机组合能够完成某项任务或实现某个预定的目标。 通常研究的系统有工程系统和非工程系统。 ◆工程系统(电气、机电、化工) ◆非工程系统(经济、交通、管理) 建立系统概念的目的在于深入认识并掌握系统的运动规律,以便分析和综合自然、社会和工程系统中的种种复杂问题。 ?对系统进行研究、分析与设计的方法; (1)直接在系统上进行实验 在要设计的系统上进行实验 (2)在模型上进行实验 对要设计的系统进行处理,根据其中内含的各种自然规律(包括欧姆定律、比例环节和惯性环节等)得到相关的控制规律,即系统的数学模型来进行研究。 对要设计的系统进行一定比例的缩放得到缩小或放大的物理模型。(古时的建筑)选择在模型上进行实验的原因 ◆系统尚未设计出来 ◆某些实验会对系统造成伤害 ◆难以保证实验条件的一致性;如果存在人的因素,则更难保证条件的一致性。 ◆费用高 ◆无法复原 二、仿真的定义 ?仿真的定义在不同的领域或范畴中有不同的描述,可以概括为:“仿真是指用模型(物理模型或数学模型)代替实际系统进行实验和研究。” ?仿真遵循的原则:原理抽象 相似原理。 相似原理:几何相似、性能相似、环境相似。 几何相似:根据相似原理把原来的实际系统放大可缩小。如把12000吨水压机可用1200吨或120吨水压机作其模型。万吨轮船也要用缩小的模型来研究。 性能相似:构成模型的元素和原系统的不同,但其性能相似。如:可用一个电气系统来模拟热传导系统。在这个电气系统中电容代表热容量,电阻代表热阻,电压代表温差,电流代表热流。 三、仿真的目的或作用 ?优化设计 ◆预测系统的性能和参数 ?经济性 ◆采用物理模型或实物实验,花费巨大。 ◆采用数学模型即计算机数学仿真可大幅度的降低成本并可重复使用。 ?安全性 ◆载人飞行器和核电站的危险性不允许。 ?预测性 ◆对于非工程系统,直接实验不可能,只能采用预测的方法。(天气预报) ?复原性

现代仿真技术的应用及其发展

东华理工大学信息工程学院 课程论文 课程:计算机仿真技术基础 题目:仿真技术的应用与发展 学生姓名: 学号: 班级:10204102 专业:计算机科学与技术 指导教师:谢小林 二零一三年六月四日

摘要 作为信息技术核心的计算机技术自其诞生之日起经历了60多年的发展,已广泛应用于国民经济和社会生活中。并与仿真技术相结合,形成了计算机仿真技术这一新的研究方法。计算机仿真作为分析和研究系统运行行为、揭示系统动态过程和运动规律的一种重要手段和方法, 随着系统科学研究的深入、控制理论、计算技术、计算机科学与技术的发展而形成的一门新兴学科。近年来, 随着信息处理技术的突飞猛进, 使仿真技术得到迅速发展。 本文系统全面地介绍了计算机仿真技术,阐述了计算机仿真技术的概念、原理、优点,简要介绍了计算机仿真技术的发展历程,文章最后重点探讨了现代仿真技术的研究热点,即计算机仿真技术在社会各个领域中的应用:面向对象仿真、定性仿真、智能仿真、分布交互仿真、可视化仿真、多媒体仿真、虚拟现实仿真等。 关键词:计算机仿真、发展、应用、模拟

目录 摘要 (2) 第一章前言 (4) 第二章计算机仿真技术概述 (4) 2.1计算机仿真技术简介 (4) 2.2计算机仿真技术原理 (5) 2.2.1模型的建立 (6) 2.2.2模型的转换 (6) 2.2.3模型的仿真实验 (6) 第三章计算机仿真技术发展 (6) 3.1发展趋势 (7) 3.2 现代仿真技术 (8) 3.3计算机仿真技术发展方向 (10) 3.3.1.网络化仿真 (10) 3.3.2.虚拟制造技术 (10) 第四章计算机仿真技术的应用 (11) 4.1.交通领域 (11) 4.2.制造领域 (11) 4.3.教育领域 (12) 结语 (13) 参考文献 (14)

计算机仿真技术的发展概述及认识

学院 专业 届别 课程 班级 姓名 学号 联系方式 指导老师2012年5月

计算机仿真技术的发展概述及认识 摘要:随着经济的发展和社会的进步,计算机技术高速发展,使人类社会进入了信息时代,计算机作为后期新秀渗入到人们生活中的每一个领域,给人们的生活带来了前所未有的变化。作为新兴的技术,计算机技术在人类研究的各个领域起到了只管至关重要的作用,帮助人类解决了许多技术难题。在科研领域,计算机技术与仿真技术相结合,形成了计算机仿真技术,作为人们科学研究的一种新型方法,被人们应用到各个领域,用来解决人们用纯数学方法或者现实实验无法解决的问题,对科研领域技术成果的形成有着积极地促进作用。 本文在计算机仿真技术的理论思想基础上,分析了计算机仿真技术产生的基本原因,也就是人们用计算机模拟解决问题的优点所在,讨论了模拟、仿真、实验、计算机仿真之间的联系和区别,介绍了计算机仿真技术的发展历程,并查阅相关资料介绍了计算机仿真技术在不同领域的应用,分析并预测了计算机仿真的未来发展趋势。经过查阅大量数据资料并加以分析对比,这对于初步认识计算机仿真技术具有重要意义。 关键词:计算机仿真;模拟;仿真技术;发展 Discussionand understanding of the development of computer simulation technology Abstract:In the field of scientific research, computer technology and simulation technology is the combination of computer simulation technology as a new method of scientific research applied to various fields, used to solve the problems of pure mathematical methods or practical experiments can not be solved, has a positive role in promoting the formation of scientific research and technological achievements. In the theory of computer simulation technology based on the idea of computer simulation technology to produce the basic reason people use computer simulation to solve the problem of the advantages of where to discuss the links and

DELMIA 简介

DELMIA 简介 DELMIA Corp., USA. 提供了当今业界可用的最全面、集成和协同的数字制造解决方案。通过以工艺为中心的技术来定义、监测和控制各类生产系统。从单个的设备单元、生产线、工厂物流直到整个企业的生产过程。 DELMIA针对客户的关键性生产工艺,提供端到端的解决方案,推进企业的关键工艺创新和优化。DELMIA涵盖了诸多工业领域,包括汽车、航空、结构组装、电力电子、家用消费品、造船等行业。 DELMIA 建立了数字化制造的核心,服务于整个产品生命周期。 DELMIA可与主要的CAD、PDM 和ERP系统集成。 DELMIA Corp., USA. 是Dassault Systemes (NASDAQ:DASTY)旗下的子公司,专业从事数字化制造研发。 Dassault Systemes是全球首要的产品全生命周期(Product Lifecycle Management, PLM)软件生产商,提供给企业e-business 解决方案,帮助客户建立他们的数字化企业,创建、仿真从概念设计直到产品维护的整个产品生命周期过程。CATIA?, ENOVIA 和 DELMIA 解决方案促进了企业技术的改革与创新,减少了产品开发时间,提高了产品质量,增强了产品的竞争力,维护了投资者的利益。CATIA提供产品的解决方案;DELMIA提供工艺与资源的解决方案;ENOVIA提供数据与工作流程的管理功能。三者的整合可以创建数字化产品生命周期管道,支持企业的知识和经验重用。SolidWorks 和Smart Solutions也是Dassault Systemes的子公司,分别提供基于 windows的3D设计与TeamPDM 软件。 DELMIA解决方案涵盖汽车领域的发动机、总装和白车身(Body-in-White),航空领域的机身装配、维修维护,以及一般制造业的制造工艺。使用户利用数字实体模型完成产品生产制造工艺的全面设计和校验。DELMIA数字制造解决方案建立于一个开放式结构的产品、工艺与资源组合模型(PPR)上,此模型使得在整个研发过程中可以持续不断地进行产品的工艺生成和验证。通过3D协同工作,PPR能够有效地支持设计变更,让参与制造设计的多个人能的每一个人能随时随地掌握目前的产品(生产什么)、工艺与资源(如何生产)。基于PPR集成中枢的所有产品紧密无缝地集成在一起,涵盖了各种工艺的各个方面,使基于制造的专业知识能被提取出来,并让最佳的产业经验得以重复利用。DELMIA在提供给用户技术与协同工作环境两方面,不断创新进步,以更好地数字化地定义产品的制造过程。随着产品的持续改善,客户通过使用DELMIA解决方案,能够大大地提高生产力、效率,在安全性和品质方面得到最大的效益,并同时降低成本。 DELMIA产品分类 PROCESS PLANNING SOLUTIONS 工艺规划解决方案 提供全面的工艺和资源规划支持环境。在初始设计产品的基础上根据不同的规划前提条件,定义制造所需要的工艺和资源。得到的工艺流程图使在产品设计的早期阶段就能提供随后各个工艺和资源(设备、刀具、工人、场地等)的顺序和链接。 · DELMIA PROCESS ENGINEER

MATLAB仿真技术与应用

例2-1 已知一个系统的微分方程为: ???????-==1221 5x u dt dx x dt dx 其中,状态变量初始条件0)0()0(21==x x ,输入u 为阶跃函数,要求利用SIMULINK 对系统建立仿真模型,并绘制时域响应曲线。 在利用SIMULINK 创建模型之前,先把微分方程进行拉普拉斯变换,得到每个微分方程的传递函数,即用传递函数的形式表示系统。 x1 x2 Step Scope 1s Integrator1 1 s Integrator 5Gain 连接信号之后的系统模型图 exam2_1 系统时域响应曲线

例7-9 一个控制系统由5个子系统组成,组成结构如下图 G 1(s) G 2(s) G 3(s)G 4(s) H(s) R(s) Y(s) 各子系统的传递函数分别为: 6 15215)(2 21++++=s s s s s G ,)20)(2() 6(4)(2+++=s s s s G ,1010)(3+=s s G ,631)(24+++=s s s s G ,1.0)(=s H 试在MATLAB 中分别用仿真模块建模和仿真命令编程两种方法进行仿真,并绘制系统的阶跃响应曲线图。 首先在Simulink 环境下将所需要的仿真模块连接起来,并将各模块的参数设置好。 s+1 s +3s+62Transfer Fcn3 4s+24s +22s+402Transfer Fcn2 10s+10Transfer Fcn1 s+52s +15s+62Transfer Fcn Step Scope 0.1Add 系统的仿真模型图 exam7_9

虚拟仿真技术及其军事应用

虚拟仿真技术及其军事应用 作者 摘要:虚拟仿真技术是近年来系统仿真领域研究的热.氛问题,而且在军事领域有了广泛的应用。本文以庄拟现实技术为基础,具体讨论了虚拟现实技术在作战仿真中的应用,对虚拟作战仿真的研究进行了探讨。 关键词:虚拟仿真技术虚拟现实技术虚拟作战仿真 1. 引言 自从世界上出现第一台训练仿真系统(以1929 年美国空军飞机练习器-林克机为代表)以来,经过了以机电解算装置为主的仿真系统,以模拟计算机为主的仿真系统,以数字计算机为主的仿真系统等几个阶段,系统仿真技术得到逐步发展。特别是近十几年来,随着计算机技术的发展,系统仿真技术的发展也更加迅猛,而且在军事领域中的应用也越来越广泛。 虚拟现实(Virtual Reality 简记VR)技术是近年来系统仿真领域研究的热点,并且在很多行业开始有了实际应用。在军事领域,美国最早将虚拟现实技术应用于作战仿真。其研究人员在虚拟现实技术构造的数字化地形、地貌和敌情数据库上进行作战仿真和武器装备性能的评估。由于虚拟现实技术在军事领域有着广泛的应用前景,因此,美国军方始终把虚拟现实技术的研究与应用列于《国防部关键技术计划》中,并将虚拟现实技术视为建设21 世纪军队和培训21世纪人才以及发展新一代信息化战争武器装备的“革命性”手段。 目前,我军对作战仿真的研究日趋深人,但与先进的军事大国相比,仍存在不少差距。由于虚拟现实技术的出现极有可能为未来军事领域带来革命性的影响,因此我军应积极研究虚拟现实技术在作战仿真中的应用。本文以虚拟现实技术为基础,具体讨论虚拟作战仿真及其军事应用。2. 虚拟现实技术简介 2.1 虚拟现实技术的内涵 虚拟现实技术是80年代提出的一种新兴技术,它是将计算机技术、自动控制技术、系统工程方法、人工智能、仿真技术、多媒体技术、信息融合技术、立体影像技术、光电技术以及神经生物学、心理学和行为科学等诸多科学技术成果融合一体的崭新的人工合成的“虚拟环境”。 2.2虚拟现实技术的特征 虚拟现实技术创造的人机和谐仿真环境具有“沉浸-交互-构思”的基本特征。它利用并集成高性能的计算机系统和各类传感器,在多维信息空间创造一个使研究者处于具有身临其境的沉浸感,具有完善的交互作用能力,能帮助和启发构思的仿真信息环境。VR 的主要特征为: (1)多媒体感知性 在虚拟现实系统中,用户将感觉不到身体所处的外部环境而“融合”到虚拟世界中去,即指用户感到作为主角存在于模拟环境中的真实程度。 (2)交互性 用户可以通过三维交互设备直接控制虚拟世界中的对象,并从虚拟环境中得到反馈信息。 (3)自主性 指虚拟现实系统中的物体可按各自的模型和规则自主运动,即指虚拟环境中物体依据客观规律动作的程度。 2.3 虚拟现实系统的分类 依据交互界面的不同,可将VR 系统分为下几种类型: (1)世界之窗(Window on World

计算机仿真技术的发展概述及认识

计算机仿真技术的发展概述及认识 摘要:随着经济的发展和社会的进步,计算机技术高速发展,使人类社会进入了信息时代,计算机作为后期新秀渗入到人们生活中的每一个领域,给人们的生活带来了前所未有的变化。作为新兴的技术,计算机技术在人类研究的各个领域起到了只管至关重要的作用,帮助人类解决了许多技术难题。在科研领域,计算机技术与仿真技术相结合,形成了计算机仿真技术,作为人们科学研究的一种新型方法,被人们应用到各个领域,用来解决人们用纯数学方法或者现实实验无法解决的问题,对科研领域技术成果的形成有着积极地促进作用。 本文在计算机仿真技术的理论思想基础上,分析了计算机仿真技术产生的基本原因,也就是人们用计算机模拟解决问题的优点所在,讨论了模拟、仿真、实验、计算机仿真之间的联系和区别,介绍了计算机仿真技术的发展历程,并查阅相关资料介绍了计算机仿真技术在不同领域的应用,分析并预测了计算机仿真的未来发展趋势。经过查阅大量数据资料并加以分析对比,这对于初步认识计算机仿真技术具有重要意义。 关键词:计算机仿真;模拟;仿真技术;发展 一、引言 计算机仿真技术是以多种学科和理论为基础,以计算机及其相应的软件为工具,通过虚拟试验的方法来分析和解决问题的一门综合性技术。计算机仿真(模拟)早期称为蒙特卡罗方法,是一门利用随机数实验求解随机问题的方法。其原理可追溯到1773年法国自然学家G.L.L.Buffon为估计圆周率值所进行的物理实验。根据仿真过程中所采用计算机类型的不同,计算机仿真大致经历了模拟机仿真、模拟-数字混合机仿真和数字机仿真三个大的阶段。20世纪50年代计算机仿真主要采用模拟机;60年代后串行处理数字机逐渐应用到仿真之中,但难以满足航天、化工等大规模复杂系统对仿真时限的要求;到了70年代模拟-数字混合机曾一度应用于飞行仿真、卫星仿真和核反应堆仿真等众多高技术研究领域;80年代后由于并行处理技术的发展,数字机才最终成为计算机仿真的主流。现在,计算机仿真技术已经在机械制造、航空航天、交通运输、船舶工程、经济管理、工程建设、军事模拟以及医疗卫生等领域得到了广泛的应用。 二、基本概念 模拟:(Simulation)应用模型和计算机开展地理过程数值和非数值分析。不是去求系统方程的解析解,而是从系统某初始状态出发,去计算短暂时间之后接着发生的状态,再以此为初始状态不断的重复,就能展示系统的行为模式。模拟是对真实事物或者过程的虚拟。模拟要表现出选定的物理系统或抽象系统的关键特性。模拟的关键问题包括有效信息的获取、关键特性和表现的选定、近似简化和假设的应用,以及模拟的重现度和有效性。可以认为仿真是一种重现系统外在表现的特殊的模拟。 仿真:(Emulation)利用模型复现实际系统中发生的本质过程,并通过对系统模型的实验来研究存在的或设计中的系统,又称模拟。即使用项目模型将特定于某一具体层次的不确定性转化为它们对目标的影响,该影响是在项目仿真项目

仿真技术及其应用

仿真技术及其应用 第一章仿真技术概述 仿真技术的泛化定义:是一门多学科的综合性技术,它以控制论、系统论、相似原理和信息技术为基础,以计算机和专用设备为工具,利用系统模型对实际的或设想的系统进行动态试验。 电力系统仿真是通过建立适当的数学模型来模拟实际系统的一种研究方法。为了保证电力系统安全、优质、经济的运行,在规划、分析和研究电力系统时必须确切完整地考察实际电力系统的特性。由于电力系统仿真不受原有系统规模和结构复杂性的限制,现已成为分析、研究电力系统必不可少的工具。为了对电力系统仿真工具有一个系统的了解,下面以电力系统应用比较广泛的几个仿真工具为例,介绍其历史、主要功能以及各自特点。 1.1仿真工具介绍 1.1.1离线仿真软件 电力系统离线仿真是指在数字计算机上为电力系统的物理过程建立数学模型,用数学方法求解,以进行仿真过程研究,其仿真速度与实际系统的动态过程不同。电力系统的离线仿真分析,主要有电磁暂态过程仿真、机电暂态过程仿真,中长期动态过程仿真及发电机组的轴系扭振等。 当今比较流行的电力系统仿真软件¨。有:加拿大H.W.Dommel教授创立的电力系统电磁暂态计算程序(EMTP)、德国西门子公司开发的NETOMAC软件、美国电力技术公司(PTI)开发的由西门子公司收购了的PSS/E、Mathworks公司开发的MATLAB中所包含的(PSB)工具箱、中国电力科学研究院开发的电力系统分析综合程序(PSASP)等。 2,1 EM rP/ATP EMTP(Electromagnetic Transients Program)是加拿大H.W.Dommel教授首创的电磁暂态分析软件,具有分析功能多、元件模型全等优点。对于电网的稳态和暂态都可作仿真分析,它的典型应用是预测电力系统在某个扰动(如开关投切或故障)之后感兴趣的变量随时间变化的规律,将EMTP的稳态分析和暂态分析相结合,可以作为电力系统谐波分析的有力工具。EMTP是世界范围内通用的电力系统仿真软件,其计算速度快、结果准确度高、功能强大,几乎可以为任意复杂电力网络进行模拟,ATP(The AhemativeTransients Program)是EMTP的免费独立版本,是目前世界上电磁暂态分析程序最广泛使用的一个版本,它可以模拟复杂网络和任意结构的控制系统,数学模型广泛,除用于暂态计算,还有许多其它重要的特性。ATP 程序正式诞生于1984年,主要由Drs.W.ScottMeyer和Tsu—huei Liu完成的。ATP还配备有灵活、功能强的通用描述语言MODELS及图形输入程序ATP.Draw。获得ATP,表面上不要费用,但必须买他们的使用手册及相关资料并要写保证书(不做商业目的),才能给你口令,从网上下载。 主要功能:雷电过电压研究;操作过电压和故障;系统过电压研究;接地等现象的快速暂态分析;设备建模;电机启动过程动态仿真;轴系扭振分析;铁磁共振现象的研究;电力电子设备的研究;STATCOM、SVC、UPFC、TCSC模型谐波分析等。 2.2 PSAPAC PSAPAC由美国EPRI开发,是一个全面分析电力系统静态和动态性能的软件工具。 主要功能:网络化简与系统的动态等值,保留需要的节点;模拟静态负荷模型和动态负荷模型;快速计算电力潮流和各种负荷、事故及发电调度的输电线的传输极限;直接法稳定分析提供了计算稳定裕度的方法;时域仿真用来模拟大型电力系统受到扰动后的长期动态过程;评价大型复杂电力系统的电压稳定性,给出接近于电压不稳定的信息和不稳定机理;分析大型电力系统暂态和中期稳定性时域仿真;局部电厂模式振荡和站间模式振荡的分析等。2.3 EMTDC/PSCAD Dennis Woodford博士于1976年在加拿大曼尼托巴水电局开发完成了EMTDC的初版,是一种世界各国广泛使用的电力系统仿真软件,PSCAD是其用户界面,PSCAD的开发成功,使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能,而且软件可以作为实时数字仿真器的前置端,可模拟任意大小的交直流系统。 主要功能:研究系统中断路器操作、故障及雷击时出现的过电压;研究包含复杂非线性元件的大型电力系统进行三相的精确模拟;进行电力系统时域或频域计算仿真;电力系统谐波分

相关文档
相关文档 最新文档