文档库 最新最全的文档下载
当前位置:文档库 › 数学建模学习辅导

数学建模学习辅导

数学建模学习辅导
数学建模学习辅导

数学建模学习辅导

第四章 运筹学模型

本章重点:

线性规划基础模型、目标规划模型、运输模型及其应用、图论模型、最小树问题、最短路问题

复习要求:

1.进一步理解基本建模过程,掌握类比法、图示法以及问题分析、合理假设的内涵.

2.进一步理解数学模型的作用与特点.

本章复习重点是线性规划基础模型、运输问题模型和目标规划模型.具体说来,要求大家会建立简单的线性规划模型,把实际问题转化为线性规划模型的方法要掌握,当然比较简单.运输问题模型主要要求善于将非线性规划模型转化为运输规化模型,这种转化后求解相当简单.你至少把一个很实际的问题转化为用表格形式写出的模型,至于求解是另外一回事,一般不要求.目标模型一般是比较简单的线性规模模型在提出新的要求之后转化为目标规划模型.另外,关于图论模型的问题涉及到最短路问题,具体说来用双标号法来求解一个最短路模型.这之前恐怕要善于将一个实际问题转化为图论模型.还有一个最小数的问题,该如何把一个网络中的最小数找到.另外在个别场合可能会涉及一笔划问题. 1.营养配餐问题的数学模型

n n x C x C x C Z ++=211min ?????

??

??=≥≥+++≥+++≥+++??)

,,2,1(0,

,,22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m

n mn m m n n n n

或更简洁地表为

∑==

n

j j

j

x

C Z 1

min

???

????==≥≥??∑=),,2,1,,2,1(01n j m i x b x a t s j

n

j i j ij

其中的常数C j 表示第j 种食品的市场价格,a ij 表示第j 种食品含第i 种营养的数量,b i 表示人或动物对第i 种营养的最低需求量.

2.合理配料问题的数学模型

有m 种资源B 1,B 2,…,B m ,可用于生产n 种代号为A 1,A 2,…,A n 的产品.单位产品A j 需用资源B i 的数量为a ij ,获利为C j 单位,第i 种资源可供给总量为b i 个单位.问如何安排生产,使总利润达到最大?

设生产第j 种产品x j 个单位(j =1,2,…,n ),则有

n n x C x C x C Z +++= 2211max ?????

??

??=≥≤+++≤+++≤+++??)

,,2,1(0,

,,

2211222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m

n mn m m l n n n n

或更简单地写为

∑==

n

j j j

x C

z 1

max

???

???

?????

??==≥≤??∑=n j m i x b x a t s j

n

j i j ij ,,2,1,,2,101

3.运输问题模型

运输问题也是一种线性规划问题,只是决策变量设置为双下标变量.假如问题具有m 个产地和n 个销地,第i 个产地用A i 表示,其产量为a i (i =1,2,…,m ),第j 个销地用B j 表示,其销量为b j (j =1,2,…,n ),从A i 运往B j 的运价为c ij , 而∑∑===

m

i n

j j

i

b

a

1

1

表示产销平衡.那么产

销平衡运输问题的一般模型可以写成为

∑∑===m i n

j ij ij x c Z 11

min

?????

?????????? ??==≥==??∑∑==n j m i x b x a x t s ij m

i j

ij n

j i ij ,,2,1,,2,1011 4.目标规划模型

某工厂生产代号为Ⅰ、Ⅱ的两种产品,这两种产品都要经甲、乙两个车间加工,并经检验与销售两部门处理.已知甲、乙两车间每月可用生产工时分别为120小时和150小时,每

小时费用分别为80元和20元,其它数据如下表

表4-1

工厂领导希望给出一个可行性生产方案,使生产销售及检验等方面都能达标. 问题分析与模型假设

经与工厂总经理交谈,确定下列几条: p 1: 检验和销售费每月不超过4600元; p 2: 每月售出产品I 不少于50件;

p 3: 两车间的生产工时充分利用(重要性权系数按两车间每小时费用比确定); p 4:甲车间加班不超过20小时; p 5:每月售出产品Ⅱ不少于80件;

p 6:两车间加班总时数要有控制(对权系数分配参照第三优先级). 模型建立

设x 1,x 2分别为产品Ⅰ和Ⅱ的月产量,先建立一般约束条件组,依题设

4600305021≤+x x 检验销售费用

501

≥x

802≥x

120221≤+x x

150321≤+x x

设d 1表检验销售费偏差,则希望+1d 达最小,有,11+d p 相应的目标约束为

+--++1121305d d x x = 4600;

2d 表产品I 售量偏差,则希望-2d 达最小,有,22-d p 相应的目标约束

,50221=-++-d d x

以d 3、d 4表两车间生产工时偏差,则由于充分利用,故希望-

-43,d d 达最小,考虑到费用比例为80:20=4:1,有)4(433--+d d p .相应的目标约束应为

12023321=-+++

-d d x x 和+--++44

213d d x x =150, 以d 5表甲车间加班偏差,则有,54+

d p 相应目标约束为

20553=-++

-+d d d ,

以d 6表产品Ⅱ售量偏差,则希望-

6d 达最小,有相应约束为

80662=-++

-d d x .

最后优先级p 6可利用+

++4

3d d 表示,考虑到权系数,有),4(436+++d d p 其目标约束由于利用售出量

两车间总工时

超生产工时,已在工时限制中体现,于是得到该问题的目标规划模型为

-+---++++++=65544332211)4(min d p d p d d p d p d p z )4(436+

+++d d p ????

??

???????=≥≥=-+=-+=-++=-++=-+=-++??+-+-+

-++

-+

-+

-+-)6,,2,1(0,,0,802015031202504600305021662553442133212211121 l d d x x d d x d d d d d x x d d x x d d x d d x x t s l l

5.最小树问题

一个图中若有几个顶点及其边的交替序列形成闭回路,我们就说这个图有圈;若图中所有连顶点间都有边相接,就称该图是连通的;若两个顶点间有不止一条边连接,则称该图具有多重边.

一个图被称为是树.意味着该图是连通的无圈的简单图. 在具有相同顶点的树中,总赋权数最小的树称为最小树. 最小树的求法有两种,一种称为“避圈法”,一种是“破圈法”,两法各具优缺点,它们具有共同的特征——去掉图中的圈并且每次都是去掉圈中边权较大的边.

6.最短路问题的数学模型

最短路问题一般描述如下:在一个图(或者说网络)中,给定一个始点v s 和一个终点v t ,求v s 到v t 的一条路,使路长最短(即路的各边权数之和最小).

狄克斯屈(E.D.Dijkstra )双标号法

该法亦称双标号法,适用于所有权数均为非负(即一切0≥ij w w ij 表示顶点v i 与v j

的边的权数)的网络,能够求出网络的任一点v s 到其它各点的最短路,为目前求这类网络最短路的最好算法.

该法在施行中,对每一个点v j 都要赋予一个标号,并分为固定标号P (v j )和临时标号T (v j )两种,其含义如下:

P (v j )——从始点v s 到v j 的最短路长; T (v j )——从始点v s 到v j 的最短路长上界.

一个点v j 的标号只能是上述两种标号之一.若为T 标号,则需视情况修改,而一旦成为P 标号,就固定不变了.

开始先给始点v s 标上P 标号0,然后检查点v s ,对其一切关联边(v s , v j )的终点v j ,给出v j 的T 标号w ij ;再在网络的已有T 标号中选取最小者,把它改为P 标号.以后每次都检查刚得到P 标号那点,按一定规则修改其一切关联边终点的T 标号,再在网络的所有T 标号中选取最小者并把它改为P 标号.这样,每次都把一个T 标号点改为P 标号点,因为网络中总共有n 个结点,故最多只需n -1次就能把终点v t 改为P 标号.这意味着已求得了v s 到v t 的最短路.

狄克斯屈标号法的计算步骤如下:

1°令S ={v s }为固定标号点集,}{\s v V S =为临时标号点集,再令0)(=i v P ,S v t ∈; 2°检查点v i ,对其一切关联边(v i , v j )的终点S v j ∈,计算并令

)(})(),(min{j ij i j v T w v P v T ?+

3°从一切S v j ∈中选取并令

)()()}(min{r r j v T v T v T ?=

选取相应的弧(v i , v r ).再令

S v S S v S r r ??}{\,}{

4°若?=S ,则停止,)(j v P 即v s 到v j 的最短路长,特别)(t v P 即v s 到v t 的最短路长,而已选出的弧即给出v s 到各点的最短路;否则令i r v v ?,返2°.

注意:若只要求v s 到某一点v t 的最短路,而没要求v s 到其他各点的最短路,则上述步

骤4°可改为

4°若r = t 则结束,)(r v P 即为所求最短路长;否则令i r v v ?,返2°.

典型例题

一、填空题:

1.如图1是一个邮路,邮递员从邮局A 出发走遍所有正方形 街路后再返回邮局.若每个小正方形街路的边长均为1km ,则他至 少要走 km .

解:本题属于图模型中的一笔画问题.由于图中奇点个数为8 个,故不可能一笔画出.相邻奇点间都连上一条边(边长均为1), 图1 便使奇点个数变成零从而可以一笔画出,由此可知邮递员至少要走3?4?2+4 = 28(km ).

应该填写:28(km )

2.设某种物资有两个产地21,A A ,其产量分别为10、20,两个销地21,B B 的销量相等均为15.如果从任意产地到任意销地的单位运价都相等为a ,则最优运输方案与运价具有 两个特点.

解:因为该问题从任意产地到任意销地的单位运价都相等故其具有最优运输方案不惟一;总运费均相等特点.

应该填写: 最优运输方案不惟一;总运费均相等.

二、分析判断题:

1.一家保姆公司专门向顾主提供保姆服务.根据估计,下一年的需求是:春季6000人日,夏季7500人日,秋季5500人日,冬季9000人日.公司新招聘的保姆必须经过5天的培训才能上岗,每个保姆每季度工作(新保姆包括培训)65天,保姆从该公司而不从顾主那里得到报酬,每人每月工作800元.春季开始时公司拥有120名保姆,在每个季度结束后,将有15%的保姆自动离职.

(1)如果公司不允许解雇保姆,请你为公司制定下一年的招聘计划.(建立数学模型) (2)如果在每个季度结束后允许解雇保姆,请为公司制定下一年的招聘计划.(建立数学模型)

解:(1)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为

s .t .???

?????

??

??

???≥+=+=+=+=+≥+≥+≥+≥+++=0

,,,,,,,85.085.085.01205900065555006557500655600065min 432143214343232

12

114

43322114

321S S S S x x x x x S S x S S x

S S x S x S x S x

S x S S S S S Z (2)设4个季度开始时公司新招聘的保姆数量分别为x 1, x 2, x 3, x 4人,4个季度结束时

解雇的保姆数量分别为y 1, y 2, y 3, y 4人,4个季度开始时保姆总数量分别为S 1, S 2, S 3, S 4人.以本年度付出的总报酬最少(即4个季度开始时保姆总数量之和最小)为目标,则模型为

s .t .???

?????

??

??

???≥-+=-+=-+=+=+≥+≥+≥+≥+++=0

,,,,,,,,,,85.085.085.01205900065555006557500655600065min 43213214321343423231

212

1

14

43322114

321S S S S y y y x x x x y x S S y x S S y

x S S x S x S x S x

S x S S S S S Z 2.在文字教材4.1中给出了营养配餐问题的数学模型

min Z=4x 1+3x 2

s .t .??????

?≥≥+≥+≥+0

,)

3(,4256)2(,4085)1(,5051021212

121x x x x x x x x

其中21,x x 表示参与配餐的两种原料食品的采购量,约束条件(1)、(2)、(3)依次表示铁、蛋白质和钙的最低摄入量.并用图解法给出了其最优解T

*

)6,2(=x ,试分析解决下述问题:

(1)假如本题的目标函数不是求最小而是求最大值类型且约束条件不变,会出现什么结果?

(2)本题最后定解时,只用了直线(1)与直线(3),而直线(2)未用上,这件事说明了什么?试从实际问题背景给以解释.

解:(1)因为可行域的右上方无界,故将出现目标函数趋于无穷大的情形,结果是问题具有无界解;

(2)将最优解代入约束条件可知第二个约束条件为严格不等式,而其他为严格等式.这说明,铁和钙的摄入量达标,而蛋白质的摄入量超最低标准18个单位.

3.某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?

表1 单位:元/件

上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由.

解:可以转化为运输模型,具体做法如下:

首先确定总的产销量. 总产量显然为12000件;总需求量中,客户3的需求量在保证已承诺给客户1和2的供给量7000件条件下,最多是5000件,而客户4则最多可得4000件.因此,总需求量按最高需求应为16000件,因而可视问题为供小于求的运输问题其次,为产销平衡,虚设一个工厂4,其产量为4000件

再次,为确定需求量,将有最低需求与额外需求量的客户分别视为两个客户,并确定各自需求量,注意最低需求量不能由虚设工厂供给,从而可设其利润值是-M(M是一个充分大的正数).

综合上述讨论得产销平衡运价表如下:

表2 单位:元/件

三、计算题

1.某医院为病人配制营养餐要使用到两种食品A和B,每种食品A含蛋白质50g,钙400mg, 热量1000单位,价值14元;食品B含蛋白质60g,钙200mg,热量800单位,价值8元.若病人每天需从食物中获取蛋白质,钙及热量分别为55g,800mg和3000单位,问如何选购食品才能在满足营养要求条件下使花费最小?试组建线性规划模型并求解后回答:

(1)问题的最优方案及最优值分别是甚麽?最优方案是否有选择余地?

(2)各种营养要求的满足情况怎样?若限制蛋白质摄入量不超过100单位,会出现甚麽问题?

解:本题属于简单的线性规划模型的建立与求解问题,并要求作出一点模型分析工作.按要求,先来建立模型,根据题设,设购买两种食品分别为21,x x (kg ),则有

总花费数额函数21814x x z +=,自然我们希望求出这样的21,x x 取值,使得函数z 取最小值.可以写为min 21814x x z +=.

又根据营养最低要求,应有

蛋白质需求条件: ,55605021≥+x x 钙的需求条件: 40080020021≥+x x , 热量的需求条件: ,3000800100021≥+x x 非负性条件: .0≥j x

将上述条件合在一起,即可获得本问题的线性规划模型如下: min 21814x x z +=

???

????

..t s ,0,30008001000,800200400,556050212

121≥≥+≥+≥+j x x x x x x x

利用图解法易于得到其最优解为),310,31(*

=X 即食品A 购买31(kg),B 购买3

10(kg),最低

花费=*

z 3

94元.由此可回答所提问题:

(1)最优解与最优目标值如上所述,最优方案无选择余地,因为最优解点是在后两个约束条件直线的交点上,而不是在可行域的某条边界线段上.

(2)钙和热量需求得到满足(最低量),蛋白质需求超最低标准

3

485

个单位.以上结论是将最优解代入各个约束条件得到的.

若限制蛋白质摄入量不超过100单位,则第一个约束条件应修改为 ,55605010021≥+≥x x

在原来的求解图上加上条件,100

605021≤+x x 则可见可行域不存在,故无解.

2.某工厂生产两种产品A 、B 分两班生产,每周生产总时间为80小时,两种产品的预测销售量、生产率和赢利如下表

制定一合理的生产方案,要求依次满足下列目标: (1)充分利用现有能力,避免设备闲置; (2)周加班时间限制在10小时以内;

(3)两种产品周生产品量应满足预测销售,满足程度的权重之比等于它们单位利润之比;

(4)尽量减少加班时间. 解: (1)建立模型

设:①每班上班时间为8小时,在上班时间内只能生产一种产品; ②周末加班时间内生产哪种产品不限;

③生产A 产品用x 班,生产B 产品用y 班,周加班时生产A 产品用x 1小时,生产B 产品用y 1小时.则有

???

??

?

??

???≥≤+=++≤+≤+=+且为整数

0,,,10

1:214

8:9870845

81011111

111y x y x y x x x y y x x y y y x (2)求解

现在求满足(1)中第2,3个方程可看出:8≤x ,5≥y ; 将(1)中的第1个方程代入第4个方程得:1179720128y x y -+= 现在就是在满足5≤y ,1011≤+y x 条件下,使上式两端的取值尽量接近.显然

5=y ,01=x ,101=y

因此 5=x

制定方案为,生产A ,B 两种产品所占总时间各一半,周加班10小时全用于生产产品B . 3. 试求如表4所示运输问题的最优运输方案和最小运输费用:

表4 单位:百元/吨

解:易见,这是一个产销平衡且为最小值类型的运输问题.我们有 (1) 利用最小元素法可得初始方案如表5,

表5

(2)使用闭回路法可得负检验数为12λ= -1,故令12x 进基

(3)使用闭回路法进行调整知11x 出基,便得新的运输方案如表6

(4)再进行检验知,所有检验数0≥ij λ,故得最优运销图如图2:

图2 最小费用为385(百元).

4.从城市s 到城市t 可经城市1-6到达,其间有直达客车的城际乘车费用依次为

1s l = 4,2s l =1,3s l =3,14l =2,25l =6, 36l =1,12l =3, 23l =5,45l =5,t l 4=6,56l =3,t l 5= 4,t l 6=7

单位是拾元.试建立图模型以确定乘直达车从城市s 到各城市间的最小乘车费用及相应的乘车路线.

A 1

B 3 B 2 5 15 A 2 B 2 B 1 10 5 A 3 B 4

B 2 10 15

解:本题属于图模型中较为简单的最短路问题.为使用图理论求解,首先要建立其图模型,然后才能使用相应的解法求解之.根据题设,除去始点和终点,中间点应为6个.分别以t s ,为始点、终点,根据各点之间通车情况(注意下标),从左到右画出其图模型如图3:

再根据Dijkstra 的双标号法可得下图:

再进行逆向搜索即可得到从城市s 到各城市间的最佳乘车路线: 到城市1:?s ①或?s ②?①;40元; 到城市2:?s ②,10元;

到城市3:?s ③,30元;

到城市4:?s ①?④或?s ②?①?④,60元; 到城市5:?s ②?⑤或?s ③?⑥?⑤,70元; 到城市6:?s ③?⑥,40元; 到城市t 的路线有三条:

s ?②?⑤?t ; ?s ③?⑥?t ; ?s ③?⑥?⑤?t 其最小乘车费用均为110元.

注意:要求写出所有路线,每少写一条都要扣除相应的分数.

5. 有一批货物要从厂家A 运往三个销售地B 、C 、D ,中间可经过9个转运站

.,,,,,,,,321321321G G G F F F E E E 从A 到321,,E E E 的运价依次为3、8、7;从1E 到21,F F 的

运价为4、3;从2E 到321,,F F F 的运价为2、8、4;从3E 到32,F F 的运价为7、6;从1F 到

21,G G 的运价为10、12;从2F 到321,,G G G 的运价为13、5、7;从3F 到32,G G 的运价为6、

图4

2 11 2 ① ④ ② ⑤

③ ● t

s ●

3 4

6

5 1 4

3 6 5 7

1 3 图3

8;从1G 到C B ,的运价为9、10;从2G 到D C B ,,的运价为5、10、15;从3G 到D C ,的运价为8、7.试利用图模型协助厂家制定一个总运费最少的运输路线.

图5 利用双标号法计算结果如图6.

图6 再利用逆向搜索法便可得到运输路线有: B G F E A ????221, 16min =l ;

C G F E A ????221 或

,32

1C G F E A ???? ;21min =l ,321D G F E A ???? 20min =l .

(注意,到C 的路线只给出一条者扣2分)

6.某公司自国外A 厂家进口一部分精密机器.由厂家到出口港有三个港口B 1

、B 2、B 3供选择,运费依次为20,40和30;而进口港也有三个可供选择,代号为C 1,C 2和C 3,运费为:B 1到C 1、C 2、C 3依次为70、40、60,B 2到C 1、C 2、C 3依次为30、20、40,B 3到321,,C C C 依次为40、10、50;进口后可经

由两个城市D 1, D 2运抵目的地E , 从C 1、C 2、C 3到D 1、D 2的运费 为10和40,60和30,30和30; 从D 1、D 2到E 的运费则为30和

40. 试利用图模型协助策划一个

运输路线,使总运费最低.

解:首先建立图模型如图7. 图7

利用双标号法求最短路线过程如图8.

图8

利用逆向搜索法可得最优运输方案为

方案1 ,223E D C B A ???? 方案2 ,113E D C B A ????

方案3 .112E D C B A ???? .110min =l

( 注意:少给一个方案扣2分.)

数学建模之减肥问题的数学模型

数学建模之减肥问题的 数学模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

东北大学秦皇岛分校 数学模型课程设计报告 减肥问题的数学建模 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张尚国刘超 成绩 教师评语: 指导教师签字: 2016年01月09日

摘要 肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥. 本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程. 本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式 [()()][()()]t t t D A B R t t ωωω+?-=-+? 再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议. 关键字: 微分方程模型 能量守恒 能量转换系数 1 问题重述 课题的背景 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的

数学建模经验

数学建模经验 我参加了3次“深圳杯”数模,1次全国大学生数模,以及1次全国研究生数模,2016年参加了全国研究生数模的交流会,但没有参加过美赛,应该算是一个江湖老手了吧。下面内容算是得出的一些经验。 如果你是没有太多数模论文书写经历的小白,我觉得你要找一篇优秀论文对照下面的内容好好看一下。如果你是高手的话,就作为交流吧。 一、问题分析 1.假设的必要性。任何理论或者问题都是以必要的假设为前提的。假设可以使你考虑的问题变得简单,降低难度。只要假设是合理的,别人一般都会认同。另外,你的假设也表明你考虑问题比较周全。 2.问题的分析。这个太重要!你需要反复仔细的理解每一个小问题让你考虑什么,解决什么问题。其实,每一个小问题的内容里都对应着评卷的得分点! 3.数据分析。一般,数模给题目的同时也会提供一些数据。有的题目可能也会让你上网查数据。数据的话,首先是看数据元素之间的关联性;然后,数据有没有缺失,缺失数据如何处理,数据里有没有噪声(噪声需不需要处理),数据里的元素需不需要做归一化(这个归一化非常重要)。 二、论文书写 数学建模的论文一般分为以下几个部分:[背景概述](可选)、问题重述、模型假设、符号说明、问题分析、模型建立与求解、模型的总结与改进、参考文献、附录。 举个栗子,可以这样安排结构: 摘要 关键字 一、问题重述 二、模型假设 三、符号说明 四、问题1的分析及模型建立与求解 4.1 问题分析 这里,需要强调,很多人觉得问题分析就是把后面要建立的模型直接说一遍,但不是这样的!这个部分应该是当你刚刚拿到题,你分析问题的切入点是什么,使用哪些信息,大概用什么方法。即是:问题的主要矛盾+大概思路。 4.2 模型建立与求解

当我谈数学建模时我谈些什么——美赛一等奖经验总结

前言:2012年3月28号晚,我知道了美赛成绩,一等奖(Meritorious Winner),没有太多的喜悦,只是感觉释怀,一年以来的努力总算有了回报。从国赛遗憾丢掉国奖,到美赛一等,这一路走来太多的不易,感谢我的家人、队友以及朋友的支持,没有你们,我无以为继。这篇文章在美赛结束后就已经写好了,算是对自己建模心得体会的一个总结。现在成绩尘埃落定,我也有足够的自信把它贴出来,希望能够帮到各位对数模感兴趣的同学。 欢迎大家批评指正,欢迎与我交流,这样我们才都能进步。 个人背景:我2010年入学,所在的学校是广东省一所普通大学,今年大二,学工商管理专业,没学过编程。 学校组织参加过几届美赛,之前唯一的一个一等奖是三年前拿到的,那一队的主力师兄凭借这一奖项去了北卡罗来纳大学教堂山分校,学运筹学。今年再次拿到一等奖,我创了两个校记录:一是第一个在大二拿到数模美赛一等奖,二是第一个在文科专业拿数模美赛一等奖。我的数模历程如下: 2011.4 校内赛三等奖 2011.8 通过选拔参加暑期国赛培训(学校之前不允许大一学生参加) 2011.9 国赛广东省二等奖 2011.11 电工杯三等奖 2012.2 美赛一等奖(Meritorious Winner) 动机:我参加数学建模的动机比较单纯,完全是出于兴趣。我的专业是工商管理,没有学过编程,觉得没必要学。我所感兴趣的是模型本身,它的思想,它的内涵,它的发展过程、它的适用问题等等。我希望通过学习模型,能够更好的去理解一些现象,了解其中蕴含的数学机理。数学模型中包含着一种简洁的哲学,深刻而迷人。 当然获得荣誉方面的动机可定也有,谁不想拿奖呢? 模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,今年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。对于不同功能的模型有不同的方法,例如评价模型方法有层次分析、模糊综合评价、熵值法等;优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等);预测模型方法有灰色预测、神经网络、马尔科夫链等。在数学中国网站上有许多关于这些方法的相关介绍与文献。 关于模型软件与书籍,这方面的文章很多,这里只做简单介绍。关于软件这三款已经足够:Matlab、SPSS、Lingo,学好一个即可(我只会用SPSS,另外两个队友会)。书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够: 《数学模型》姜启源谢金星叶俊高等教育出版社 《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社 《数学建模算法与程序》司守奎国防工业出版社 入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解

减肥问题的数学模型

减肥问题的数学模型 一、 问题的提出 现今社会,随着物质生活水平的提高,肥胖已成为困扰人们身体健康的一大疾病,减肥已日趋大众化。如何有效地,健康地减肥成为一个亟待解决的问题。下面本文从减肥机理的角度出发建立合理的数学模型来解决这个问题。 二、 问题的分析 肥胖困扰着很大一部分人群。如何耗去多余的脂肪,提高身体健康质量,成为人们的共识。本题要求我们从减肥的机理角度出发说明怎样有效地减肥。 根据生物知识,减肥就是要消耗体内多余的脂肪,也即把多余的脂肪转化为能量释放出来。实际上,我们吃的食物都是以能量的形式被人体吸收,当摄入能量为λE 时,减肥效果取决于能量的消耗E 。若E λE ?,他的能量消耗大于摄入,将达到减肥的目的;若E λE =,他的体重将维持原状;若E λE ?,则他不但不能减肥,反而会增胖。 每日摄入能量的来源有:碳水化合物、蛋白质和脂肪,设它们被消化后产生的热量为Q i =i i m λ(i=1,2,3)(其中i i m ,λ分别为上述三种物质的燃烧值和摄入质量)。则摄入的总能量为E λ=∑=3 1i i i m λ 每日消耗的能量E=1.1×(Q 0+Q P ),而Q 0=W Q ω,Q P =Q 0k ,k =∑=4 1 j j j k ω 故E=1.1×WQ ω(1+∑=4 1 j j j k ω) 从而,我们比较λE 与E 的大小,可以得出体重的变化。 三、 问题的假设: (1) 燃烧相同质量的人体各部位脂肪产生的热量相同。 (2) 同一人在一段时间内每天各种强度活动所占比例一定。

(3) 人体健康状况良好,体内的生理活动稳定。 四、 符号说明: E ——— 每天消耗的能量 E λ———正常人体每天摄入的能量 m i ————每天摄入的碳水化合物、蛋白质、脂肪的质量 i λ(I=1,2,3)——单位质量的碳水化合物、蛋白质、脂肪燃烧放出的热量。 W ——减肥前的体重(单位:斤) Q 0——人体基础代谢需要的基本热量 Q p ——体力活动所需要的热量 Q ω——人体单位体重基础代谢需要的基本热量 k j (j=1,2,3,4)——各类型活动的活动强度系数(极轻、轻、中、重) j ω(j=1,2,3,4)——每天各强度活动所占比例(∑=4 1 j j w =1) m ? ——自身脂肪变化的质量 五、 模型的建立与求解 在问题的分析中我们已得出: E λ= ∑=3 1i i i m λ (i=1,2,3) E=1.1×Q ωW (1+∑=4 1j j j k ω) (j=1,2,3,4) 因而我们有 m ? = 3 λλE E -= 3 4 1 3 1 ) 1(1.1λλ∑∑==+-j j j w i i i w k Q m 下面我们分三种情形: (1) 0??m 即E E ?λ时,结果是人体增胖 (2) 0=?m 即E=E λ时,维持原状不变。

数学建模美赛o奖论文

For office use only T1________________ T2________________ T3________________ T4________________ Team Control Number 55069 Problem Chosen A For office use only F1________________ F2________________ F3________________ F4________________ 2017 MCM/ICM Summary Sheet The Rehabilitation of the Kariba Dam Recently, the Institute of Risk Management of South Africa has just warned that the Kariba dam is in desperate need of rehabilitation, otherwise the whole dam would collapse, putting 3.5 million people at risk. Aimed to look for the best strategy with the three options listed to maintain the dam, we employ AHP model to filter factors and determine two most influential criteria, including potential costs and benefits. With the weight of each criterion worked out, our model demonstrates that option 3is the optimal choice. According to our choice, we are required to offer the recommendation as to the number and placement of the new dams. Regarding it as a set covering problem, we develop a multi-objective optimization model to minimize the number of smaller dams while improving the water resources management capacity. Applying TOPSIS evaluation method to get the demand of the electricity and water, we solve this problem with genetic algorithm and get an approximate optimal solution with 12 smaller dams and determine the location of them. Taking the strategy for modulating the water flow into account, we construct a joint operation of dam system to simulate the relationship among the smaller dams with genetic algorithm approach. We define four kinds of year based on the Kariba’s climate data of climate, namely, normal flow year, low flow year, high flow year and differential year. Finally, these statistics could help us simulate the water flow of each month in one year, then we obtain the water resources planning and modulating strategy. The sensitivity analysis of our model has pointed out that small alteration in our constraints (including removing an important city of the countries and changing the measurement of the economic development index etc.) affects the location of some of our dams slightly while the number of dams remains the same. Also we find that the output coefficient is not an important factor for joint operation of the dam system, for the reason that the discharge index and the capacity index would not change a lot with the output coefficient changing.

数学建模美赛参考文献

数学建模美赛参考文献 Since 1982, the official publication of the teaching of mathematical modeling contest, translations and guidance materials, and related with the mathematical modeling of mathematics experiment teaching material ( only according to statistics all told ): E. A. Bender, an introduction to mathematical model, Zhu Yaochen, Xu Weixuan translation, popular science press, 1982 Kondo Jiro, Miya Eiaki, et al, mathematical model, mechanical industry press, 1985 C. L. Daimler, E. S. Ai Wei, mathematical modeling principle, Ocean Press, 1985 Jiang Qiyuan, mathematical model, higher education press, 1987 Ren Shanqiang, mathematical model, Chongqing University press, 1987 M. Braun, C. S. Coleman, D. A. Drew, the differential equation model, Zhu Yumin, Zhou yu-hun translation, National University of Defense Technology press, ( the book for the W. F.Lucas editor of the Modules in Applied Mathematics a book first volume ), 1988 Chen Anqi, mathematical model of scientific and technical engineering, China Railway Publishing House, 1988 Jiang Yuzhao, Xin Peiqing, mathematical model and computer simulation, University of Electronic Science and Technology Press, 1989 Yang Qifan, Bian Fu Ping, mathematical model, Zhejiang University press, 1990 Dong Jiali, Cao Xudong, Shim Hito, mathematical model, Beijing University of Technology press, 1990 Tang Huanwen, Feng Enmin, sun Yuxian, Sun Lihua, an introduction to the mathematics model, Dalian University of Technology press, 1990 Jiang Qiyuan, the mathematical model (the Second Edition ), higher education press, 1991 H. P. Williams, the mathematical model and computer application, National Defence Industry Press, 1991

关于减肥计划的数学模型

2011第一学期数学建模选修课期末作业 名称:减肥计划 学号:1008054311 系别:计算机系 姓名:宛笛 上课时间:周四晚上 是否下学期上课:是

减肥计划 摘要:近年来,随着人们生活水平的提高,肥胖现象也日趋普遍,越来越多的人开始关注和解决肥胖问题,与此同时,各类减肥食品充斥市场,却达不到好的效果,或者不能维持,有的还会对消费者的身体带来一定损害. 本文中,我们建立了节食与运动的模型,通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标. 关键字:肥胖节食运动不伤害减轻体重 1问题重述 当今社会,人们对于健康越来越重视,而肥胖也成为困扰很多人的健康问题,肥胖者通过各种方式减肥,但很多人收效甚微,本文通过制定合理的节食和运动计划科学的直到肥胖者减肥. 2 问题分析 (1) 体重变化由体内能量守恒破坏引起; (2)人体通过饮食(吸收热量)引起体重增加; (3)代谢和运动(消耗热量)引起体重减少 3符号说明 1)K: 表示第几周; 2)ω(k):表示第k周的体重; 3)C(k):表示第k周吸收的热量; 4)α:表示热量转换系数[α =1/8000(kg/kcal)]; 5)β:表示代谢消耗系数(因人而异); 6) β’:表示通过运动代谢消耗系数在原有的基础上增加,即可表为β’=β+β1, β1有运动形式和时间决定. 4模型假设 1)体重增加正比于吸收的热量——每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重——每周每公斤体重消耗200千卡 ~ 320千卡(因人而异),相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。 5 减肥计划 事例:某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。 1)在不运动的情况下安排一个两阶段计划。 第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标 2)若要加快进程,第二阶段增加运动,试安排计划。 3)给出达到目标后维持体重的方案。

2014年数学建模美赛题目原文及翻译

2014年数学建模美赛题目原文及翻译 作者:Ternence Zhang 转载注明出处:https://www.wendangku.net/doc/a22476031.html,/zhangtengyuan23 MCM原题PDF: https://www.wendangku.net/doc/a22476031.html,/detail/zhangty0223/6901271 PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be

数学建模美赛题目及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employ a rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important. In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements

数学建模减肥计划

减肥计划——节食与运动 摘要:肥胖已成为公众日益关注的卫生健康问题。肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。数学模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。 关键词:减肥饮食合理运动 一、问题重述 联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。 在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。肥胖也是身体健康的晴雨表,反映着体内多方面的变化。很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。 情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。 二、模型分析

2014年数学建模美赛ABC_题翻译

问题A:除非超车否则靠右行驶的交通规则 在一些汽车靠右行驶的国家(比如美国,中国等等),多车道的高速公路常常遵循以下原则:司机必须在最右侧驾驶,除非他们正在超车,超车时必须先移到左侧车道在超车后再返回。建立数学模型来分析这条规则在低负荷和高负荷状态下的交通路况的表现。你不妨考察一下流量和安全的权衡问题,车速过高过低的限制,或者这个问题陈述中可能出现的其他因素。这条规则在提升车流量的方面是否有效?如果不是,提出能够提升车流量、安全系数或其他因素的替代品(包括完全没有这种规律)并加以分析。在一些国家,汽车靠左形式是常态,探讨你的解决方案是否稍作修改即可适用,或者需要一些额外的需要。最后,以上规则依赖于人的判断,如果相同规则的交通运输完全在智能系统的控制下,无论是部分网络还是嵌入使用的车辆的设计,在何种程度上会修改你前面的结果? 问题B:大学传奇教练 体育画报是一个为运动爱好者服务的杂志,正在寻找在整个上个世纪的“史上最好的大学教练”。建立数学模型选择大学中在一下体育项目中最好的教练:曲棍球或场地曲棍球,足球,棒球或垒球,篮球,足球。 时间轴在你的分析中是否会有影响?比如1913年的教练和2013年的教练是否会有所不同?清晰的对你的指标进行评估,讨论一下你的模型应用在跨越性别和所有可能对的体育项目中的效果。展示你的模型中的在三种不同体育项目中的前五名教练。 除了传统的MCM格式,准备一个1到2页的文章给体育画报,解释你的结果和包括一个体育迷都明白的数学模型的非技术性解释。 使用网络测量的影响和冲击 学术研究的技术来确定影响之一是构建和引文或合著网络的度量属性。与人合写一手稿通常意味着一个强大的影响力的研究人员之间的联系。最著名的学术合作者是20世纪的数学家保罗鄂尔多斯曾超过500的合作者和超过1400个技术研究论文发表。讽刺的是,或者不是,鄂尔多斯也是影响者在构建网络的新兴交叉学科的基础科学,尤其是,尽管他与Alfred Rényi的出版物“随即图标”在1959年。鄂尔多斯作为合作者的角色非常重要领域的数学,数学家通常衡量他们亲近鄂尔多斯通过分析鄂尔多斯的令人惊讶的是大型和健壮的合著网络网站(见http:// https://www.wendangku.net/doc/a22476031.html,/enp/)。保罗的与众不同、引人入胜的故事鄂尔多斯作为一个天才的数学家,才华横溢的problemsolver,掌握合作者提供了许多书籍和在线网站(如。,https://www.wendangku.net/doc/a22476031.html,/Biographies/Erdos.html)。也许他流动的生活方式,经常住在带着合作者或居住,并给他的钱来解决问题学生奖,使他co-authorships蓬勃发展并帮助构建了惊人的网络在几个数学领域的影响力。为了衡量这种影响asErdos生产,有基于网络的评价工具,使用作者和引文数据来确定影响因素的研究,出版物和期刊。一些科学引文索引,Hfactor、影响因素,特征因子等。谷歌学术搜索也是一个好的数据工具用于网络数据收集和分析影响或影响。ICM 2014你的团队的目标是分析研究网络和其他地区的影响力和影响社会。你这样做的任务包括: 1)构建networkof Erdos1作者合著者(你可以使用我们网站https://files.oak https://www.wendangku.net/doc/a22476031.html,/users/grossman/enp/Erdos1.htmlor的文件包括Erdos1.htm)。你应该建立一个合作者网络Erdos1大约有510名研究人员的文件,与鄂尔多斯的一篇论文的合著者,他但不包括鄂尔多斯。这将需要一些技术数据提取和建模工作获

数学建模经验谈

数学建模个人经验谈 1国赛和美赛 要在全国赛中取得好成绩经验第一,运气第二,实力第三,这种说法是功利了点但是在现在中国这种科研浮躁的大环境中要在全国赛中取得好成绩经验是首要的。不说明美赛中经验不重要,在美赛中经验也是首位的,但是较之全国赛就差的远多这是由于两种比赛的不同性质造成的。全国赛注重\稳",与参考答案越接近,文章就可以有好成绩了,美赛则注重\活",只要有道理,有思想就会有不错的成绩,这体现了两个国家的教育现状,这个就不扯开去了。 在数模竞赛中经验会告诉我们该怎么选题,怎么安排时间,怎么控制进度,知道么是最重要的,该怎么写论文......,或许有人会认为选题也需要经验吗?经过参多次比赛后觉的是有技巧的,选个好题成功的机会就大的多,选题不能一味的根据的兴趣或能力去选,还要和全体参赛队互动下(这个开玩笑了,不大容易做到,只在极小的范围内做到),分析下选这个题的利弊后决定选哪个题,这里面道道也不后面会详细的展开谈谈。 2组队和分工 数学建模竞赛是三个人的活动,参加竞赛首要是要组队,而怎么样组队是有讲究的。此外还需要分工等等。一般的组队情况是和同学组队,很多情况是三个人都是系,同一专业以及一个班的,这样的组队是不合理的。让三人一组参赛一是为了培作精神,其实更为重要的原因是这项工作需要多人合作,因为人不是万能的,掌握不是全面的,当然不排除有这样的牛人存在,事实上也是存在的,什么都会,竞赛一个人独立搞定。但既然允许三个人组队,有人帮忙总是好的,至少不会太累。而人同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那较麻烦的。所以如果是不同专业组队则有利的多。 众所周知,数学建模特别需要数学和计算机的能力,所以在组队的时候需要优先虑队中有这方面才能的人,根据现在的大学专业培养信息与计算科学,应用数学专较为有利,尤其是信息与计算科学可以说是数学和计算机专业的结合,两方面都有顾,虽然说这个专业的出路不是很好,数学和计算机都涉及点但是都没有真正的学两门专业的,但对于弄数学建模来说是再合适不过了。应用数学则偏重于数,但是来讲玩计算机的时间不会太少,尤其是在科学计算和程序设计都会设计到比较多,深厚的数学功底,也是很不错的选择。 有不少的人会认为第一人选是数学方面的那第二人选就应该考虑计算机了,因为计算机的会程序,其实这个概念可以说是对也可以说是不对的。之所以需要计算机

数学建模减肥

数学建模论文 学院:理学院 专业:物理10-1 题目:运动与摄食减肥问题班级:10-1 姓名:黄首亚 2012年03月29日

1.题目:运动与摄食减肥问题 2.摘要 随着社会的进步和发展,人们的生活水平不断提高。由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题。减肥的方法也有很多。如何正确对待减肥是我们必须考虑的问题。于是了解减肥的机理成为关键。背景材料: 根据中国生理科学会修订并建议的我国人民的每日膳食指南可知: (1)每日膳食中,营养素的供给量是作为保证正常人身体健康而提出的膳食质量标准。如果人们在饮食中摄入营养素的数量低于这个数量,将对身体产生不利的影响。 (2)人体的体重是评定膳食能量摄入适当与否的重要标志。 (3)人们热能需要量的多少,主要决定于三个方面:维持人体基本代谢所需的能量、从事劳动和其它活动所消耗的能量以及食物的特殊动力作用(将食物转化为人体所需的能量)所消耗的能量。 (4)一般情况下,成年男子每一千克体重每小时平均消耗热量为4200焦耳。 (5)一般情况下,食用普通的混合膳食,食物的特殊动力作用所需要的额外的能量消耗相当于基础代谢的10%。 3.问题重述 随着人们的生活水平的日渐提高,饮食营养摄入的不断改善和提高“,

肥胖”已成为全社会关注的一个重要问题,肥胖无论从审美或健康的角度,都严重地威胁到人们,各种减肥食品、药物或是健美中心如雨后春笋般出现,现在我们也利用减肥的基本原理以及在减肥过程中应注意的问题利用科学的原理,组建一个减肥的数学模型,从数学的角度对有关的规律做进一步的探讨和分析。所以我们可以通过引入人的体重与时间的函数关系,建立了一个微分方程模型,采用离散化方法,以天为单位,从数学的角度解决了每天的饮食摄入量、运动强度与体重的关系,以探索减肥的科学方法。 4.模型假设 (1) 人体的脂肪是存储和提供能量的主要方式,而且也是减肥的主要目标。对于一个成年人来说体重主要由三部分组成:骨骼、水和脂肪。骨骼和水大体上可以认为是不变的,我们不妨以人体脂肪的重量作为体重的标志。已知脂肪的能量转换率为100%,每千克脂肪可以转换为4.2×107焦耳的能量。记D=4.2×107焦耳/千克,称为脂肪的能量转换系数。 (2)人体的体重仅仅看成是时间t的函数w(t),而与其他因素无关,这意味着在研究减肥的过程中,我们忽略了个体间的差异(年龄、性别、健康状况等)对减肥的影响。 (3)体重随时间是连续变化的,即w(t)是连续函数且充分光滑,因此可以认为能量的摄取和消耗是随时发生的。 (4)不同的活动对能量的消耗是不同的,例如:体重分别为50千克和100千克的人都跑1000米,所消耗的能量显然是不同的。可见,活

数学建模_微分方程之减肥问题

摘要:在研究实际问题时,常常会联系到某些变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型。微分方程模型反映的是变量之间的间接关系,因此,在研究能量与运动之间的关系时,得到直接关系,就得求微分方程。 本文利用了微分方程模型求解实际问题,根据基本规律写出了平衡关系式,再利用一定的转换条件进行转化为简单明了的式子,求解出结果,对于第一问,利用微分方程反解出时间t(天),从而得到每个人达到自己理想目标的天数,同理,对于第二和第三问,利用以上方法,加上运动所消耗的能量,也可得出确切的时间,和所要保持体重所消耗的能量。 【关键字】:微分方程转化能量转换系数 1.问题重述 现有五个人,身高、体重和BMI指数分别入下表一所示,体重长期不变,试为他们按照以下方式制定减肥计划,使其体重减至自己的理想目标,并维持下去: 题目要求如下: (1)在基本不运动的情况下安排计划,,每天吸收的热量保持下限,减肥达到目标; (2)若是加快进程,增加运动,重新安排计划,经过调差资料得到以下各项运动每小时每kg体重的消耗的热量入下表二所示: (3)给出达到目标后维持体重的方案。 2. 问题的背景与分析 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改

善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题,为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在18.5至25为正常,大于25为超重,超过30则为肥胖,据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24.,30改为29。无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现.不少自感肥胖的人加入了减肥的行列,盲目的减肥,使得人们感到不理想,如何对待减肥问题,不妨通过组建模型,从数学的角度,对有关的规律作一些探讨和分析。 根据背景知识,我们知道任何人通过饮食摄取的能量不能低于用于维持人体正常生理功能所需要的能量,因此作为人体体重极限值的减肥效果指标一定存在一个下限1ω,当1*ωω<时表明能量的摄入过低并致使维持他本人正常的生理功能的所需,这是减肥所得到的结果不能认为是有效的,它将危机人的身体健康,是危险的,称1ω为减肥的临界指标,另外,人们认为减肥所采取的各种体力运动对能量的消耗也有一个所能承受的范围,记为0

美赛一等奖经验总结

当我谈数学建模时我谈些什么——美赛一等奖经验总结 作者:彭子未 前言:2012 年3月28号晚,我知道了美赛成绩,一等奖(Meritorus Winner),没有太多的喜悦,只是感觉释怀,一年以来的努力总算有了回报。从国赛遗憾丢掉国奖,到美赛一等,这一路走来太多的不易,感谢我的家人、队友以及朋友的支持,没有你们,我无以为继。 这篇文章在美赛结束后就已经写好了,算是对自己建模心得体会的一个总结。现在成绩尘埃落定,我也有足够的自信把它贴出来,希望能够帮到各位对数模感兴趣的同学。 欢迎大家批评指正,欢迎与我交流,这样我们才都能进步。 个人背景:我2010年入学,所在的学校是广东省一所普通大学,今年大二,学工商管理专业,没学过编程。 学校组织参加过几届美赛,之前唯一的一个一等奖是三年前拿到的,那一队的主力师兄凭借这一奖项去了北卡罗来纳大学教堂山分校,学运筹学。今年再次拿到一等奖,我创了两个校记录:一是第一个在大二拿到数模美赛一等奖,二是第一个在文科专业拿数模美赛一等奖。我的数模历程如下: 2011.4 校内赛三等奖 2011.8 通过选拔参加暑期国赛培训(学校之前不允许大一学生参加) 2011.9 国赛广东省二等奖 2011.11 电工杯三等奖 2012.2 美赛一等奖(Meritorious Winner) 动机:我参加数学建模的动机比较单纯,完全是出于兴趣。我的专业是工商管理,没有学过编程,觉得没必要学。我所感兴趣的是模型本身,它的思想,它的内涵,它的发展过程、它的适用问题等等。我希望通过学习模型,能够更好的去理解一些现象,了解其中蕴含的数学机理。数学模型中包含着一种简洁的哲学,深刻而迷人。 当然获得荣誉方面的动机可定也有,谁不想拿奖呢? 模型:数学模型的功能大致有三种:评价、优化、预测。几乎所有模型都是围绕这三种功能来做的。比如,今年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。 对于不同功能的模型有不同的方法,例如评价模型方法有层次分析、模糊综合评价、熵值法等;优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等);预测模型方法有灰色预测、神经网络、马尔科夫链等。在数学中国网站上有许多关于这些方法的相关介绍与文献。

相关文档