文档库 最新最全的文档下载
当前位置:文档库 › 非线性动力学

非线性动力学

非线性动力学
非线性动力学

即non-linear 是指输出输入既不是正比例也不是反比例的情形。如宇宙形成初的混沌状态。

自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系。

“线性”与“非线性”,常用于区别函数y = f (x)对自变量x的依赖关系。线性函数即一次函数,其图像为一条直线。其它函数则为非线性函数,其图像不是直线。

线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。

非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。

线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。

激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。

迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。

线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。

在明确了线性的含义后,相应地非线性概念就易于界定:

其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(aφ+bψ)=aL(φ)+bL(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(aφ+bψ)的*作,等于分别对φ和ψ*作外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。

其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。

对非线性概念的这两种表述实际上是等价的,其—叠加原理不成立必将导致其二物理变量关系不对称;反之,如果物理变量关系不对称,那么叠加原理将不成立。之所以采用了两种表述,是因为在不同的场合,对于不同的对象,两种表述有各自的方便之处,如前者对于考察系统中整体与部分的关系、微分方程的性质是方便的,后者对于考察特定的变量间的关系(包括变量的时间行为)将是方便的。

非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”确实如此。

非线性动力学随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生. 非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象. 经过

多年的发展,非线性动力学已发展出了许多分支,如分叉.混沌.孤立子和符号动力学等.然而,不同的分支之间又不是完全孤立的.非线性动力学问题的解析解是很难求出的.因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段. Non-linear Dynamics

随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生.

非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象.

经过多年的发展,非线性动力学已发展出了许多分支,如分叉.混沌.孤立子和符号动力学等.然而,不同的分支之间又不是完全孤立的.非线性动力学问题的解析解是很难求出的.因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段. 真实的动力系统几乎都含有各种各样的非线性因素,诸如机械系统中的间隙、干摩擦,结构系统中的材料弹塑性、构件大变形,控制系统中的元器件饱和特性、变结构控制策略等。实践中,人们经常试图用线性模型来替代实际的非线性系统,以求方便地获得其动力学行为的某种逼近.然而,被忽略的非线性因素常常会在分析和计算中引起无法接受的误差,使得线性逼近徒劳无功.特别对于系统的长时间历程动力学问题,有时即使略去很微弱的非线性因素,也会在分析和计算中出现本质性的错误.

因此,人们很早就开始关注非线性系统的动力学问题.早期研究可追溯到1673年Huygens对单摆大幅摆动非等时性的观察,从19世纪末起,Poincar6,Lyapunov,Birkhoff,Andronov,Arnold和Smale等数学家和力学家相继对非线性动力系统的理论进行了奠基性研究,Duffing,van der Pol,Lorenz,Ueda等物理学家和工程师则在实验和数值模拟中获得了许多启示性发现.他们的杰出贡献相辅相成,形成了分岔、混沌、分形的理论框架,使非线性动力学在20世纪70年代成为一门重要的前沿学科,并促进了非线性科学的形成和发展.

近20年来,非线性动力学在理论和应用两个方面均取得了很大进展.这促使越来越多的学者基于非线性动力学观点来思考问题,采用非线性动力学理论和方法,对工程科学、生命科学、社会科学等领域中的非线性系统建立数学模型,预测其长期的动力学行为,揭示内在的规律性,提出改善系统品质的控制策略,一系列成功的实践使人们认识到:许多过去无法解决的难题源于系统的非线性,而解决难题的关键在于对问题所呈现的分岔、混沌、分形、孤立子等复杂非线性动力学现象具有正确的认识和理解.

近年来,非线性动力学理论和方法正从低维向高维乃至无穷维发展.伴随着计算机代数、数值模拟和图形技术的进步,非线性动力学所处理的问题规模和难度不断提高,已逐步接近一些实际系统.在工程科学界,以往研究人员对于非线性问题绕道而行的现象正在发生变化.人们不仅力求深入分析非线性对系统动力学的影响,使系统和产品的动态设计、加工、运行与控制满足日益提高的运行速度和精度需求,而且开始探索利用分岔、混沌等非线性现象造福人类。《非线性动力学理论与应用的新进展》主要研究工程系统中的非线性动力学、分叉和混沌理论、控制理论及其应用,重点介绍近几年来国内外的最新进展,包括高维非线性系统的多脉冲全局分叉、时滞动力系统、非光滑动力系统等变非线性动力系统、C-L方法、规范形的计算、非线性随机优化控制、后绝对稳定性、网络结构与动力学、非线性色散波、非线性系统大范围运动动力学、碰撞振动系统、微转子系统、轴向运动弦线和梁的非线性动力

学。

《非线性动力学理论与应用的新进展》可供高等院校力学、机械、数学、物理、航空航天、土木工程等专业的高年级本科生、研究生阅读学习,也可作为教师和科研人员的参考书。

非线性动力学系统的数学称为混沌理论。一个混沌系统可以产生看上去随机实际上却并非真正随机的结果。长期预报是不可能的。混沌理论说:市场不是有效的,但它们也是不可预报的。

对于非线性动力学系统的研究和对于复杂理论的研究就是对于紊乱的研究。更准确地说,它是对于从稳定到紊乱的过渡的研究。牛顿物理学能够预测三个世纪后火星在哪,却不能预测后天的天气。这是因为:

牛顿物理学是建立在变量之间的线性关系上的。它假定:

对于每个因,都有一个直接的果。

所有系统都寻求系统在哪里可以安静下来的均衡点。

自然是有序的。

时钟是牛顿物理学的最好象征。精确地组合到一起的零件,以完美的和谐走向一个可预测的结果。然而,局限性是存在的。牛顿物理学能够解释两个物体如何相互作用,却不能预测三个物体的相互作用。在19世纪的大部分时间里,科学家们都为三体问题所困扰。最后庞加莱说,因为系统内在的非线性性质,这个问题无法求得单一解。庞加莱解释了为什么这些非线性性质是重要的:

一个我们根本注意不到的非常小的因可以决定一个我们不可能注意不到的果,而那时我们会说这个果是处于偶然。。。。初始条件的很小差异产生出最终现象的极大不同的这种情况是会发生的。前者的很小的误差导致后者的极大的误差预测变得不可能。。。。。

这个效应现在被称为“对于初始条件的敏感依赖”,并且已变成动力学系统的重要特征。一个动力学系统的内在地不可作长期预测。不可预测性是由于两个原因出现的。动力学系统是反馈系统。出来的东西会回去,经过变换,再出来,没完没了。出来变换是指数外,反馈系统非常像复利,他有一个高于1的幂。任何初始值的差别又都会按指数增长。

复杂系统的另一个特征牵涉到临界水平的概念。一个经典的例子就是压断了骆驼背的最后一根稻草。骆驼突然垮下来是一个非线性反应,因为在骆驼垮掉和那根特定的稻草之间没有直接的关系。所有的重量的累计效应最后超过了骆驼站直的能力,使骆驼垮下来。

动力学系统是反馈系统。混沌动力学系统的关键要素包括:

1.对于初始条件的敏感依赖。

2.临界水平。

3.分形维。

经典计量经济学倾向于把经济系统看成是均衡系统(点吸引子),或以周期方式围绕均衡点变动的系统(极限环)。经验证据对这两种看法都不支持。经济学的时间序列的特征是非周期性循环(没有特征长度或时间标度的循环)。非周期循环容易在非线性动力学系统中出现。

对于混沌,计算机变成了一个实验室。用不同的吸引子试验,改变参数和检查结果,设计你自己的吸引子,计算机使得你能够用眼睛去看那些庞加莱只能在脑子里想象的东西。

埃农映射:

埃农的吸引子是二维迭代映射,当a=1.4 b=0.3时,我们获得了混沌运动。方程如下:

x(t+1) =1+y(t) -a*pow(x(t),2)

y(t+1) = bx(t)

无规则运动在两个序列中都很明显。但结果不是随机的,根据初始点的不同,次序也不同,但结果总是一个:埃农吸引子。改变初始值,所有的值都改变了,看看平面图上的二维空间上的点形成的图形,它看上去一点也没变。无论你选择什么初始值图总是一样的。系统被吸引到这个形状。这个形状是系统的奇异吸引子。

它也具有对初始条件的依赖的敏感性。

放大埃农映射的一部分,会看到更多的细节;放的越大,显示的细节就越多。就像大多数混沌吸引子一样,这个映射是分形。分形维数是1.26,就像股票收益率的时间序列一样。

罗吉斯蒂克延滞方程:

x(t) = a*x(t-1)*(1-x(t-2)) 其中a是常数

这个方程之所以令人感兴趣是因为它表现出一种叫做霍普夫分叉的行为。一个点吸引子到极限环的变化。当a增加到2.58时,螺旋变得越来越大最终变成了一个闭合的卵形。它的重要性在于它显示了一个非线性动力学系统的行为如何因其控制参数常量a而改变。在经济学和投资金融学中,我们不能固定住控制参数不变,并进行受控试验,如果上涨和下跌的价值的比率是驱动股票市场的“热量”,我们是不能进行试验并在不同的水平上观测其行为的。只能考察历史数据,其中各个时刻的控制参数可能有所变化。因此,在考察经济学和投资学的时间序列时,必须意识到数据可能包含了混在一起的所有可能状态;点吸引子,极限环,奇异吸引子。

李雅普诺夫指数

对于混沌系统的重要特征——“对于初始条件的敏感依赖”存在两种观点:

.第一种观点认为,这个概念描述了确定问题的困难。模型建立者知道运动的正确方程,但由于模型生成的预测的准确性依赖于输入的质量。我们在时间上走的越远,预测就变得越不

准确。第二种观点是,系统自身通过混合过程生成随机性,并且在过了某一点之后,丢失了所有关于初始条件的知识。这一解释是“向后看”的。我们现在在哪里依赖于我们曾经在哪里。然而,由于被非线性性质放大的缘故,进化过程可以是如此之复杂,以至于我们不可能回溯其步骤和对系统“消除混合”。关于这种类型的行为有一个常见比喻就是一架拉太妃糖的机器。一滴染料滴到太妃糖中燃料会被拉伸和折叠,直到复杂的条纹出现在太妃糖中,然而,由于对于初始条件的敏感依赖,我们永远不可能消除太妃糖的混合去找回催出的那一滴燃料。这是历史学家有关初始条件的敏感依赖的观点,我们永远不可能以足够的精确性去展开一个系统来找出我们是从哪里来的。

这两种观点可以被结合成一个统一体。我们现在在哪依赖于我们曾经在哪,而我们能够多么精确的预报未来依赖于我们对于现在在哪知道多少。一个事件可以无限的影响未来,虽然系统可能只在有限的时间长度内基础这一事件。

系统对对于初始条件的依赖的敏感性可以用李雅普诺夫指数来度量。它们度量相空间中临近的轨道发散的有多么快。相空间中的每一个维度都有一个李雅普诺夫指数。

一个正的李雅普诺夫指数度量相空间中的伸展;也就是,它度量邻近的点相互之间发散得有多么快。一个负的李雅普诺夫指数度量收缩——一个系统在受到扰动之后需要多长时间才能恢复自己。度量相图回到他的吸引子——在这里是极限环所需的轨道数,或时间量。

李雅普诺夫指数提供了一种给吸引子分类的方法。点吸引子总是收敛到一个固定点。因此,一个三维的点吸引子的特征是三个负的李雅普诺夫指数,所有三个维度都收缩进一个点。三维极限环有两个负指数和一个等于零的指数(0,-,-)极限环有两个相互收敛到对方的维度和一个其中的点的相对位置不发生变化的维度。这导致闭合的轨道。最后,三维奇异引子有一个正整数,一个负指数,和一个等于零的指数(+,0,-)正指数显示对于初始条件的敏感依赖,或初始条件的小变化改变预报的倾向。负指数保持发散的点留在吸引子的区域内。对于一个奇异吸引子均衡是有树枝在被带回到一个合理的区域内之前能够发散的多远所定义的。例如对于资本市场的奇异吸引子的一个可能的解释是:情绪和技术因素导致伸展,但基本价值把价格带回到一个合理的区域内。

知道最大的李雅普诺夫指数是多少可以告诉我们,我们对于未来时间期间的预报的可靠性如何。我们只能对于一个我们知道其运动方程的系统度量其可靠性。在实际生活中,我们永远不可能知道牵涉到不确定性的所有变量,更不用说运动方程了。

非线性动力学研究所成立于1994年。研究方向:高维非线性动力系统的定性理论和全局分析、生物神经放电非线性动力学行为和神经信息编码、航天工程中柔性多体系统动力学及控制、自适应结构理论与应用研究、微纳制造非线性动力学问题。现有研究人员教授5人、副教授1人、讲师1人,其中具有博士学位5人。主持国家自然科学基金面上项目11项,国家自然科学基金重大、重点项目的分课题2项,国家“863”计划、“973”计划、“七五”、“八五”攻关项目等分课题5项,陕西自然科学基金面上项目1项,教育部优秀青年教师资助计划项目1项,横向研究课题4项,外国国家研究课题3项,参加国家自然科学基金重大、重点项目5项。在国际学术刊物发表论文73篇,中国学术刊物发表论文170篇,国际会议论文63篇,出版著作3部。论文被SCI收录102篇,SCI引用210次,其他国际国内刊物索引303次。获得国家自然科学二等奖、国家科技进步三等奖、国家科学大会奖,省部直辖市自然科学奖和科技进步奖6项,3项成果部级鉴定为达到国际先进水平。培养博士、硕士

45人,其中1人获“全国百篇优秀博士论文”、1人获“全国百篇优秀博士论文提名”。多位教授担任学会兼职、学术期刊编委和国际学术期刊的审稿人。所长:徐健学(航天学院)

维复杂系统的非线性动力学问题研究进展

随着社会经济和科学技术的发展,人们越来越重视非线性科学和技术,而非线性力学则是其中的一个重要方面。本文主要对于高维复杂系统的非线性动力学问题相关研究内容进行分析,对于提高相关工程技术应用具有一定帮助。

目前,非线性动力学已从以经典的摄动和渐近分析方法为基础对低维、弱非线性、弱耦合进行研究的阶段,进入到用近代的动力系统方法对高维、复杂系统开展深入研究的阶段[1]。根据上面所提及的对非线性的国内外研究现状和发展趋势,下面从三个方面展望非线性动力学在本世纪的动向,探讨一下在理……

大气非线性动力学取得新突破

自80年代起,“非线性科学”的研究已经成为当今科学的前沿课题。北京大学地球物理系刘式达、刘式适从1986年到1988年获得国家自然科学基金两项资助,项目名称分别是“大气非线性动力过程”和“波和湍流的相互作用、混沌和大气湍流”(批准号:485077,4860217) 。在国内首先系统地研究了非线性大气波动、波动和大气湍流的非线性相互作用,取得了许多创新的理论成果,有较大的应用价值。例如:

1.自有天气图以来,大气长波的移动被认为是天气形势预报的主要因子,1939年著名气象学家Rossby用线性理论导得长波移动公式为:

C=u-β/k

其中u为西风风速,k是波数,β是Rossby参数,显然,波长越长的波(k越小)移动越慢,这是附合实际的,这个公式的导得被认为是气象学的一巨大成果。不过,它是线性的结果,公式中不含有振幅。刘氏兄弟用了一个简单的非线性模式,导出了非线性大气长波的移动公式为: C=u-β(1+a)/k

这个公式中包含了波的相对振幅a,这样,就说明了振幅越大的波移动越慢的事实,a→0就是 Rossby公式,所以,该公式具有普遍性,更附合实际,为更准确的天气预报提供了重要的理论基础。

2.大气是温度和密度随高变变化的分层流体,位温的垂直梯度θ/ Z和速度的垂直梯度 θ/ Z是控制大气运动状态的基本参数。1962年miles用线性稳定性理论说明:当Richard son数(Ri)大于1/4时,分层流是稳定的,这是著名的Miles定理。我国研究者用

非线性分岔理论分析Burgers方程,将运动分成四类:定常状态0,对流状态C,周期状态(重力波)P及湍流状态T 在参数平面(Ri,Re)(Re称为Reynolds数)上得到的图像如下图所示。

这是国际上首次得到的曲线,它说明形成湍流的临界线关不是Ri=1/4,而是Ri=π(Re- π)/Rc当Rc=2π时就是Miles定理的结果,从图上还可看出,在Ri>0时也可以以生湍流。而且在临界曲线处,波和湍流相互作用将产生间隙湍流,这些结果将大气科学的难题—大气湍流的研究向前推进了一大步,使我国在非线性大气动力学和大气湍流的研究达到国际先进水平。

3.采用相图分析法,用最简洁的模式求得了大气各种非线性波长的解析解,并找到了这些非线性大气波动的共同特征。

上述结果发表论文36篇,并写出了《特殊函数》、《非线性动力学的复杂现象》、《地球流体力学的数学方法》等专著。这些著作和论文在国内外有较大的影响,获得1991年国家自然科学奖三等奖。

郑哲敏 著名力学家、爆炸力学专家。早期在水弹性力学研究中取得成就。长期从事固体力学研究,开拓和发展了我国的爆炸力学事业。擅长运用力学理论解决工程实际问题,提出了流体弹塑性体模型和理论,并在爆炸加工、岩土爆破、核爆炸效应、穿甲破甲、材料动态破坏、瓦斯突出等方面取得重要成果。倡导海洋工程力学、材料力学性能、环境灾害力学的研究,创建了中国科学院力学研究所非线性连续介质力学实验室,为推动我国力学事业的发展作出了贡献。

1980年当选为中科院院士,1993年被选为美国国家工程科学院外籍院士,1994年被选聘为中国工程院院士。

非线性力学国家重点实验室(LNM)的前身是成立于1988年的中国科学院力学研究所非线性连续介质力学开放实验室。LNM于1999年10月被科技部批准建设,2001年4月通过科技部专家组的验收,正式晋升为国家重点实验室。2005年3月在重点实验室评估中LNM获得良好的成绩。现任学术委员会名誉主任为中科院院士郑哲敏研究员,学术委员会主任为中科院院士白以龙研究员,实验室主任为何国威研究员。

LNM的中、长期学科方向为(1)固体变形、损伤、破坏的非线性力学性质,(2)流体运动的非线性规律,(3)材料和环境系统中非线性问题的基本理论和方法。近年来,LNM确定以多尺度力学为研究主题,它包括材料强度及灾变的跨尺度关联和复杂流动的多过程耦合现

象。它的创新学科方向为(1)纳米/微米尺度力学和跨尺度关联,具体包括纳米/微米尺度力学的理论、实验及计算;分子(原子)—细观—宏观的跨尺度力学;跨物质层次的本构、强度、破坏理论与实验;固体微结构演化动力学大型计算模拟与材料的微结构设计。(2)纳/微电子机械系统力学,具体包括力—热—电—磁—光等耦合的尺度效应与表面效应;纳/微系统运动规律、控制与失效机理;纳/微系统的计算机辅助设计与虚拟实验。(3)多尺度复杂流动的动力学理论与控制原理,具体包括复杂流动的非线性演化过程及其动力学理论;转捩与湍流的大规模科学计算与流动结构研究;微尺度和多尺度复杂流动规律与控制的精细实验研究;多相流动的基本规律研究与应用。

LNM在非线性力学领域的研究工作取得了显著的进展:(1)在剪切变形局部化(剪切带)方面建立了材料热塑剪切变形的控制方程,得到了剪切带形成的失稳判据,并从理论上预测了剪切带特征宽度,揭示了剪切带的形成和演化机制。针对微损伤演化导致的材料失效问题,提出了跨尺度的统计细观损伤力学理论框架,建立了微损伤密度的演化方程和相应的解,揭示并实验验证了损伤破坏非线性行为的重要普适性特征,为非均匀脆性材料的灾变预测开辟了新的途径。(2)在国际上严格建立了可压缩塑性应变梯度理论和不含高阶应力的应变梯度理论,独创地建立了适合应变梯度理论的有限元方法,提出了预测固体理论强度的严格算法等。对表征固体在微尺度层次的强度、韧性及断裂等力学行为建立了基础,对应变梯度理论的发展和广泛应用起了核心推动作用。(3)在湍流的统计理论和数值模拟方面,建立了湍流的时空关联的椭圆模型,发展了大涡模拟的运动学亚格子模型,建立了大涡模拟的时空关联方法,并应用于湍流噪声和湍流扩散的数值模拟和预测,为非平衡湍流的研究提供了新的方法。

LNM拥有学术造诣较高的学术带头人,形成了老、中、青相结合的结构比较合理的研究队伍。现有固定人员41名,其中中科院院士2名(其中一人同时为中国工程院院士),国家杰出青年科学基金获得者5人,中国科学院“百人计划” 5人,获得海外青年学者合作研究基金3人,国家人事部等七部委批准的“新世纪百千万人才工程国家级人选” 3人。LNM制定有35岁以下《青年工作条例》,并设立青年研究基金,其强度相当于国家自然科学基金委青年基金。

LNM坚持贯彻“开放、流动、联合、竞争”的方针,不断开拓高层次的国内外学术合作和交流。围绕战略目标和学科方向,自1988年来,实验室共资助21批开放课题。同时完善访问学者制度,邀请国外著名教授以中科院“爱因斯坦”讲座教授和力学所郭永怀访问教授访问LNM,并把LNM年轻科研人员送到国外著名大学及研究所进行学术访问,促进LNM的发展,提升了LNM的学术交流力度和国际知名度。

实验室经过20年的建设,逐步形成了自己的研究特点:(1)实验室注意科学研究的原始创新,不盲目跟踪国际热点,做有特色的工作;(2)坚持从实验出发,理论必须通过实验的验证;(3)给青年科技工作人员自由发展的空间,创造宽松和自由讨论的工作环境。在依托单位中国科学院力学研究所的大力支持下,LNM的目标为在非线性力学研究领域成为具有国际影响的、国内领先的、研究条件最好的研究基地之一。

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性的概念; 2、掌握线性稳定性的分析方法; 3、掌握奇点的分类及判别条件; 4、理解结构稳定性及分支现象; 5、能分析简单动力系统的奇点类型及分支现象。 二、教学重点 1、线性稳定性的分析方法; 2、奇点的判别。 三、教学难点 线性稳定性的分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 学习本章内容之前,学生要复习常微分方程的内容。 六、教学过程

本章只介绍一些非常初步的动力学分析方法,但这些方法在应用上是十分有效的。 1.1相空间和稳定性 一、动力系统 在物理学中,首先根据我们面对要解决的问题划定系统,即系统由哪些要素组成。再根据研究对象和研究目的,按一定原则从众多的要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量的微分方程,这些微分方程构成的方程组通常称为动力系统。研究这些微分方程的解及其稳定性以及其他性质的学问称为动力学。 假定一个系统由n 个状态变量1x ,2x ,…n x 来描述。有时,每个状态变量不但是时间t 的函数而且也是空间位置r 的函数。如果状态变量与时空变量都有关,那么控制它们变化的方程组称为偏微分方程组。这里假定状态变量只与时间t 有关,即X i =X i (t),则控制它们的方程组为常微分方程组。 ),,,(2111 n X X X f dt dX ???=λ ),,,(2122 n X X X f dt dX ???=λ (1.1.1) … ),,,(21n n n X X X f dt dX ???=λ 其中λ代表某一控制参数。对于较复杂的问题来说,i f (i =l ,2,…n)一般是{}i X 的非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于{}i f 不明显地依赖时间t ,故称方程组(1.1.1)为自治动力系统。若{}i f 明显地依赖时间t ,则称方程组(1.1.1)为非自治动力系统。非自治动力系统可化为自治动力系统。 对于非自治动力系统,总可以化成自治动力系统。 例如:)cos(t A x x ω=+

非线性动力学之一瞥_Lorenz系统

非线性动力学 非线性系统之一瞥——Lorenz系统 2013-01-30

0 前言 0.1非线性系统动力学 线性系统是状态变量和输出变量对于所有可能的输入变量和初始状态都满足叠加原理的系统;非线性系统就是这些量不满足叠加原理的系统。非线性系统在日常生活和自然界中不胜枚举,也远远多于线性系统。 非线性动力学是研究非线性系统的各种运动状态的定性和定量变化规律,尤其是系统的长时期行为。研究的对象主要有分叉、混沌和孤立子等。 0.2洛伦兹方程 洛伦兹方程是美国气象学家洛伦兹在模拟天气这一非周期性现象时确定,这个方程的三个变量分别模拟温度、湿度和压力。可以得出结论,初期微小的差别随着时间推移差别会越来越大,洛伦兹基于此提出长期的天气预报是不可能的。这也被视为研究非线性混沌理论的开始,所以洛伦兹系统在研究非线性系统中具有举足轻重的地位。本文借助洛伦兹系统对非线性进行简单的介绍。洛伦兹方程如下。 方程中,、和都为实参数。实参不同,系统的奇点及数目也是不同的。

1 奇点和稳定性 1.1 奇点 洛伦兹系统含有三个实参数,当参数变化,奇点的数目可能不同。首先,一定是系统的奇点。时,当时,系统仅有一个奇点;当时,系统还有另外两个奇点。 下面仅解时的两个非原点奇点。令 方程第一式得,第三式可得,将两式代入第二式得 即,。 1.2 奇点稳定性判别 下面根据Liapunov稳定性判别方法,找出系统在原点处大围渐进稳定的条件,取Liapunov函数。考虑,的情况。则有 将洛伦兹方程 代入上式,可得 变换为二次型,系数矩阵为

已知,,则系数矩阵负定的条件是。所以该系统是大围渐进稳定的条件是,前提是,。 Liapunov函数V总是存在的,只要构造出合适的Liapunov函数,就可以通过Liapunov稳定性定理直接判断奇点的稳定性,而不需要求解非线性方程组。有的Liapunov函数不易构造,则可以通过奇点处导算子的特征值来判断:若所有的特征值实部都小于0,则方程组在该奇点是局部渐进稳定的;若特征值实部至少有一个为正,该奇点是不稳定的。仍以洛伦兹系统为例,求出导算子的特征值。 特征矩阵的行列式(特征方程)为 特征值 显然,当,时,,,要使方程在原点处渐进稳定,必须小于0,因此 两边同时平方可得 因此

非线性动力学数据分析

时间序列分析读书报告与数据分析 刘愉 200921210001 时间序列分析是利用观测数据建模,揭示系统规律,预测系统演化的方法。根据系统是否线性,时间序列分析的方法可分为线性时间序列分析和非线性时间序列分析。 一、 时间序列分析涉及的基本概念 1、 测量 对于一个动力系统,我们可以用方程表示其对应的模型,如有限差分方程、微分方程等。如果用t X 或)(t X 表示所关心系统变量的列向量,则系统的变化规律可表示成 )(1t t X f X =+或)(X F dt dX = 其中X 可以是单变量,也可以是向量,F 是函数向量。通过这类方程,我们可以研究系统的演化,如固定点、周期、混沌等。 在实际研究中,很多时候并不确定研究对象数据何种模型,我们得到的是某类模型(用t X 或)(t X 表示)的若干观测值(用t D 或)(t D 表示),构成观测的某个时间序列,我们要做的是根据一系列观测的数据,探索系统的演化规律,预测未来时间的数据或系统状态。 2、 噪声 测量值和系统真实值之间不可避免的存在一些误差,称为测量误差。其来源主要有三个方面:系统偏差(测量过程中的偏差,如指标定义是否准确反映了关心的变量)、测量误差(测量过程中数据的随机波动)和动态噪音(外界的干扰等)。 高斯白噪声是一类非常常见且经典的噪声。所谓白噪声是指任意时刻的噪声水平完全独立于其他时刻噪声。高斯白噪声即分布服从高斯分布的白噪声。这类噪声实际体现了观测数据在理论值(或真实值)周围的随机游走,它可以被如下概率分布刻画: dx M x dx x p 2222)(exp 21 )(σπσ--= (1) 其中M 和σ均为常数,分别代表均值和标准差。 3、 均值和标准差 最简单常用的描述时间序列的方法是用均值和标准差表示序列的整体水平和波动情况。 (1)均值 如果M 是系统真实的平均水平,我们用观测的时间序列估计M 的真实水平方法是:认为N 个采样值的水平是系统水平的真实反映,那么最能代表这些观测值(离所有观测值最近)的est M 即可作为M 的估计。于是定义t D 与est M 的偏离为2 )(est t M D -,所以,使下面E 最小的M 的估计值即为所求: 21)(∑=-=N t est t M D E (2)

分数阶非线性系统动力学特性及其图像处理应用研究

分数阶非线性系统动力学特性及其图像处理应用研究 非线性动力学在自然学科、社会学科、工程技术等诸多领域有着广泛的应用。而将非线性动力学理论引入图像处理领域,是非线性动力学理论应用的新思路,也是图像处理的新手段。 本文以分数阶非线性动力学和同步控制为理论基础,研究分析了新的非线性动力学特性,探索其与图像处理领域的契合点,在此基础上构建基于非线性动力学特性的图像处理模型。新模型的构建拓宽了非线性理论的应用领域,可为人脑感知系统的内部机制提供新的解释和预测,在图像处理领域和神经动力学方面都具有较好的理论意义和应用前景。 本文的主要工作及创新点包括以下几个方面:(1)基于分数阶蔡氏系统和变形蔡氏系统,构建了复分数阶(时滞)蔡氏系统和分数阶复变形蔡氏系统,利用相图、分岔图、最大Lyapunov指数等定性和定量的手段对两类复系统的动力学行为进行了分析讨论。首先将分数阶微积分定义扩展到复数阶,得到复数阶微积分定义的计算方法,并将其用于复分数阶(时滞)蔡氏系统的仿真。 对于分数阶复变形蔡氏电路系统的研究是将复系统转化为6变量的实系统实现的。在对两类系统的动力学行为分析中,通过改变系统阶次,观察到不同周期窗口、分岔、单涡卷等丰富的动力学行为。 最后讨论了两类复系统动力学行为的异同点及分数阶系统的动力学行为与构建图像处理模型之间的关系。(2)基于分数阶系统稳定性分析理论,研究了分数阶Relaxation振子对于不同外部刺激的稳定域和振荡域,结合相图、分岔图分析得到其产生的振荡为节律振荡;利用节律振荡特性构建图像增强模型,并用实验验证了新模型在图像增强方面的有效性。

首先利用分数阶稳定性理论分析分数阶Relaxation振子在不同外部刺激时其平衡点的稳定性,进而分析其对应的相图、分岔图,确定使分数阶Relaxation 振子产生节律振荡的外部刺激的范围。根据不同外部刺激使系统产生节律振荡的特性,构建了类Gamma曲线(QGC)。 将QGC和其相近模型进行比较,量化指标和直观效果均验证了我们所提模型在图像增强方面有较好的性能。另外,此模型模拟的增强机制也可能是人类视觉系统实现自动适应外界光线条件的机制。 (3)基于分数阶混沌系统的主动控制方法和分时同步策略,实现了单个分数 阶系统与多个分数阶复杂子网络的分时相同步。利用该方案构建了含中枢单元的两层图像目标选择模型,并用实验验证了该模型的可行性。 引入分数阶主动控制策略和分时同步思想,通过线性关系将子网络转化为混合系统,实现了单个混沌系统与子网络(混合系统)间的分时相同步。然后利用该方案构建包括中枢单元和分割单元两层的目标选择模型。 分割层是由相互耦合的分数阶神经元组成,通过相同步实现不同目标物的分割。中枢单元由一个振子构成,通过分时主动控制策略在不同时段与代表不同目标物的混合系统达到相同步,实现目标的选择与转移。 另外,此模型也是对人类视觉系统中目标物选择和转移机制一个很好的解释。 (4)基于分数阶系统的稳定性理论,实现了1+N分数阶复变量节点的复杂网络不 同系数的函数投影同步方案。 将此函数投影同步方案用于构建图像分形特征的识别模型,仿真结果验证了该模型的可行性。首先,构建了1+N节点(复混沌系统)驱动响应复杂网络模型。 根据分数阶系统稳定性理论,设计合理的控制器,实现了分数阶1+N节点复

转子系统非线性振动研究进展

转子系统非线性振动研究进展 3 陈安华 刘德顺 朱萍玉 (湘潭矿业学院振动、冲击与诊断研究所,湖南湘潭,411201)摘 要 由于机械运转速度的不断提高和新型材料、新型结构的推广应用,旋转机械的非线性动力学行 为日显突出和重要1基于线性系统原理的转子动力学理论与方法难以对实践中出现的丰富的非线性动 力学现象作出准确的描述、阐释和预测1近年来,随着非线性科学研究的深入和渗透,转子系统非线性 振动已成为应用力学和机械工程领域的研究热点之一1从有利于建立旋转机械振动状态集与故障集之 间的映射关系出发,综述了近年来转子系统非线性振动研究的主要进展,总结了转子系统中出现的典型 非线性动力现象及其产生机理,目的在于丰富旋转机械故障诊断知识库1参551 关键词 转子 非线性振动 故障诊断 稳定性 分岔 分类号 TH17,TH113 第一作者简介 陈安华 男 35岁 博士 副教授 机械动力学与机械故障诊断 0 引言 自从Jeffcott H H (1919)以来,基于线性系统理论的转子动力学获得了很大的发展,涉及的主要问题(不平衡响应计算、临界转速确定、运转稳定性、参数辨识以及转子平衡)至今在理论上已较为成熟,在实践中也获得了成功的应用,并且拓展了新的应用领域,如机械故障诊断技术等1随着机械运转速度的日益提高和新型材料、新型结构的推广应用,旋转机械中出现的复杂的非线性动力学行为日益引起关注1导致转子系统非线性的主要因素有:轴和支承材料本身的非线性应力应变关系[1,2],滚动轴承刚度[3,4,5,6,7],滑动轴承和挤压油膜阻尼器的油膜力[8,9,10,11],间隙和碰摩[12,13,14,15,16,17],裂纹[18,19,20],参数(质量或刚度)时变[21,22,23]等1由于这些因素不可避免地存在,准确描述转子系统真实动力学行为的微分方程是非线性的1在不少实际问题的处理中,合理的线性化自然能显著地减少分析与计算工作量,降低理论上和技术上的难度,且所得结果与对真实系统的观测基本相符,因而基于线性系统理论的转子动力学得到了充分的发展和广泛的应用,并显示出强大的生命力1然而,当真实转子系统的非线性较为显著时,如果仍采用近似的线性化模型和线性系统的分析方法,将不可避免地“过滤”掉许多系统固有的非线性动力学现象,如稳态响应对初始条件的依赖性、解的多样性与稳定性、振动状态突变、超谐波次谐波共振、混沌振动以及系统长期性态(吸引子)对参数的依赖性等,其主观分析结果与真实系统的客观动力学行为之间必然存在不可忽视的定性和定量上的差异1在大型旋转机械状态监测与故障诊断实践中,人们时常面临转子动力学传统理论难以作出准确阐释的异常振动现象,这就说明,开展转子系统非线性振动的研究,不仅是转子动力学学科自身不断深化的必然结果,更是源于工业实践的迫切需求1 收稿日期:1999-02-24 3国家自然科学基金资助项目(编号:59875073)本文责任编辑:王窈惠 第14卷第2期 1999年 6月湘潭矿业学院学报J.XIAN GTAN MIN.INST.Vol.14No.2J un. 1999

《从非线性动力学到复杂系统》

《从非线性动力学到复杂系统》 段法兵 系统理论博士生课程

第一讲动态系统的发展 系统是一些相互关联的客体组成的集合,动态(动力dynamical)系统是系统状态变量,比如温度、位移、价格、信号幅值等,随着时间变化的。它的描述可以用微分方程或者离散方程。 微分方程历史悠久,可追溯到牛顿、伽利略、欧拉、雅克比等人,用以描述行星的运动轨迹。研究中发现即使满足牛顿引力定律的三体运动也非常复杂,其微分方程是非线性的,非线性是指不满足叠加定律的方程,解无法利用已知函数进行描述,如果能够描述的我们称为显式解。因此,庞加莱在1880年-1910年期间,试图利用解的拓扑几何性质来解释动态系统的运动规律,发现即使确定性系统,其运动规律也会出现随机性态,非常复杂(确定性系统是指其外力是确定的不随机,只要知道初始条件和演化方程,其运动是可预先确定的)。 非线性系统运动的复杂性:李雅普诺夫研究了系统平衡点?的稳定性?问题,随后本迪尔松等发现系统的解包含(1)平衡态(静止不动);(2)周期运动(比如行星)(3)拟周期,就是几个频率不可公约周期之和。 接着1975年Li和Yorke提出了混沌的概念,即系统的解是非周期的一种类似随机运动的现象,这其中就包含了洛伦兹提出的“蝴蝶效应”,根源在于这类非线性动力系统对于初始条件的极其敏感性,初始条件的微小变化导致了系统状态的巨大改变,从此有关非线性科学的发展异常迅速,形成了现代动力学理论,其最重要的贡献是揭示了一个简单的模型可能蕴含了无比复杂的动力学性态。 例子:Van der Pol(范德波尔)方程 1920年Van der Pol利用电子震荡管研究心脏的跳动问题,比如人工心脏起

非线性动力学练习题

2013 “非线性振动” 练习题 1、简述绘制相轨线的原理及其作用。 2、用小参数摄动法求 )1(220<<=+εεωx x x x 的一阶近似解。 3、 用多尺度法或均值法求 (第三章16) )1(320<<=+εεωx x x 的一阶近似解。 4、 用多尺度法求周期激励范德波尔方程 0)0(,)0(,cos )1(220220=-+=+-=+x F A x t F x x x x ω ωωεω 的非共振解。 5、 设运动微分方程为 )1(cos 220<<+-=+εωεωt F x x x 试求0ωω≈的主共振解。 6、 简述非线性单自由度保守系统自由振动的主要特点及与线性系 统的区别。 7、 简述非线性单自由度系统在简谐激励下的强迫振动特点。 8、 简述自激振动产生的主要原因及其特点。 9、 以两自由度非线性系统为例,简述非线性多自由度系统振动的 主要特点。 10、 简述分岔和混沌的概念。(考试从中选取5题)

1、简述绘制相轨线的原理及其作用。 答:绘制相轨迹线的原理如下: 将系统的动力学方程... +(x,)=0x f x 转化为以状态变量表示的状态方程组 ..==-(x,y) y x y f (1) 在利用上式消去微分dt,得到y x 和的关系式 ,=-dy f dx y (x y ) (2) 这个式子所确定的平面(x,y )上的各点的向量场,就构成了相轨迹族。 绘制相轨迹线的方法有两种,第一是等倾线法。等倾线法的原理如下,令方程(2)右边等于常数C ,得到(x,y)相平面内以C 为参数的曲线族 (x,y)+Cy=0f (3) (3)称作相轨迹的等倾线族,族内每一曲线上的所有点所对应的由方程(2)确定的向量场都指向同一方向。 第二种方法是李纳法。其原理如下: 适当选择单位使弹簧的系数为1,设单位质量的阻尼力为-(y)?,则有f(x,y)=x+(y)?。相轨迹微分方程为 +(y)=-dy x dx y ? (4) 在平面上做辅助曲线=-(y)x ? 。此辅助曲线即上述零斜率等倾线,过某个相点 P (x,y )作x 轴的平行线与辅助曲线交与R 点,再过R 点作y 轴的平行线与x 轴交于S 点,连接PS ,将向量PS → 逆时针旋转90度后的方向就是方程(4)确定的相轨迹切线方向。 相轨迹线可以帮助我们定性地了解系统在不同初始条件下的运动全貌。当系统是强非线性振动的时候,近似解析法(如小参数摄动法,多尺度法)不再适用,此时可以采用相轨迹法来研究。(相轨迹线的作用) 非线性动力学主要研究非线性振动系统周期振动规律(振幅,频率,相位的变化规律)和周期解的稳定条件。其研究内容主要有:保守系统中的稳定性及轨道扩散问题;振动的定性理论;非线性振动的近似解析方法;非线性振动中混沌的控制和同步问题;随机振动系统和参数振动系统问题等。

第一章 非线性动力学分析方法

第一章非线性动力学分析方法(6学时) 一、教学目标 1、理解动力系统、相空间、稳定性得概念; 2、掌握线性稳定性得分析方法; ?3、掌握奇点得分类及判别条件; ?4、理解结构稳定性及分支现象; 5、能分析简单动力系统得奇点类型及分支现象. 二、教学重点 1、线性稳定性得分析方法; ?2、奇点得判别。 三、教学难点 ?线性稳定性得分析方法 四、教学方法 讲授并适当运用课件辅助教学 五、教学建议 ?学习本章内容之前,学生要复习常微分方程得内容。 六、教学过程 本章只介绍一些非常初步得动力学分析方法,但这些方法在应用上就是十分有效得。 1、1相空间与稳定性 ?一、动力系统 在物理学中,首先根据我们面对要解决得问题划定系统,即系统由哪些要素组成。再根据研究对象与研究目得,按一定原则从众多得要素中选出最本质要素作为状态变量。然后再根据一些原理或定律建立控制这些状态变量得微分方程,这些微分方程构成得方程组通常称为动力系统。研究这些微分方程得解及其稳定性以及其她性质得学问称为动力学. 假定一个系统由n个状态变量,,…来描述。有时,每个状态变量不但就是时间t得函数而且也就是空间位置得函数。如果状态变量与时空变量都有关,那么控制它们变化得方

程组称为偏微分方程组.这里假定状态变量只与时间t有关,即X =X i(t),则控制它们 i 得方程组为常微分方程组。 ?????(1。1.1) … 其中代表某一控制参数.对于较复杂得问题来说,(i=l,2,…n)一般就是得非线性函数,这时方程(1.1.1)就称为非线性动力系统。由于不明显地依赖时间t,故称方程组(1。1.1)为自治动力系统。若明显地依赖时间t,则称方程组(1、1、1)为非自治动力系统.非自治动力系统可化为自治动力系统. 对于非自治动力系统,总可以化成自治动力系统。 例如: 令,,上式化为 上式则就是一个三维自治动力系统。 又如: 令,则化为 它就就是三微自治动力系统、 对于常微分方程来说,只要给定初始条件方程就能求解。对于偏微分方程,不但要给定初始条件而且还要给定边界条件方程才能求解。 能严格求出解析解得非线性微分方程组就是极少得,大多数只能求数值解或近似解析解。 二、相空间 ,X2,…Xn)描述得系统,可以用这n个状态变量为坐标轴支由n个状态变量=(X 1 起一个n维空间,这个n维空间就称为系统得相空间。在t时刻,每个状态变量都有一个确定得值,这些值决定了相空间得一个点,这个点称为系统状态得代表点(相点),即它代表了系统t时刻得状态。随着时间得流逝,代表点在相空间划出一条曲线,这样曲线称为相轨道或轨线.它代表了系统状态得演化过程。 三、稳定性 把方程组(1。1.1)简写如下

非线性转子 动力学

航空发动机非线性转子碰磨研究 XXX (XXXX 机械工程上海200072) 摘要:综述了国内外非线性转子动力学的研究现状,讨论了非线性转子动力学研究中的7个主要问题,并引述了大量相应的国内外文献,包括:非线性转子动力学研究的一般方法;求解非线性转子动力学问题的数值积分方法;大型转子-轴承系统高维非线性动力学问题的降维求解;基于微分流形的动力系统理论方法;转子非线性动力学行为的机理研究和实验研究;高速转子-轴承系统的非线性动力学设计,最后讨论了非线性转子动力学研究中存在的问题及展望。 关键词:非线性;高速转子;数值积分法 The research for Aeroengine nonlinear rotor WANG Qing-long (Shanghai university mechainal engineering 20072 shanghai) Abstract: Reviewed the research status of nonlinear rotor dynamics both at home and abroad, discusses the seven main in the study of nonlinear rotor dynamics. To questions, and cited a large number of relevant literature both at home and abroad, include: common methods of nonlinear rotor dynamics; To solve the non-linear. Rotor dynamics problems of numerical integral method; Rotor - bearing system of large dimension reduction solution for high dimensional nonlinear dynamics; In the theory of differential dynamic system of the manifold method; Rotor nonlinear dynamics behavior of mechanism research and experiment research; High speed rotor shaft. Bearing system of the nonlinear dynamics design, and finally discusses the problems of nonlinear rotor dynamics research and prospects. Key words: nonlinear; High speed rotor; The numerical integral method. 由于旋转机械系统中各种异常振动的存在,常常引发灾难性的事故。过去研究转子-轴承-基础系统大多采用基于线性转子动力学理论。例如传统转子动力学对转子-轴承系统稳定性问题的研究,一般采用8个线性化的刚度与阻尼特性系数的油膜力模型。对于大型旋转机械中存在的油膜力、密封力、不均匀蒸汽间隙力等严重的非线性激励源,由于数学模型不够完善,以致系统中存在的许多由非线性因素引起的多种复杂动力学行为尚没有彻底搞清,不能满足现代工程设计的需要,迫切需要建立转子-轴承系统的非线性动力学理论,揭示系统存在的各种非线性动力学行为,提出转子-轴承系统的非线性动力学设计方法,研究旋转机械中存在的各种实际问题,这对提高旋转机械运行的稳定性、安全性、可靠性具有重要的现实意义和实际工程背景。 随着非线性动力学理论的发展,非线性转子动力学理论和方法也受到了关注,大量的研究成果使转子动力学面貌一新。但现有的非线性动力学理论和方法在解决高维动力系统方面还存在困难,而工程实际中的转子-轴承-基础系统是一个复杂的高维系统,从而吸引了更多的研究者从事这方面的研究,特别是现代非线性动力学理论在转子动力学中的应用,已成为当今国

单摆非线性动力学

单摆的非线性动力学分析 亚兵 (交通大学车辆工程专业,,730070) 摘要:研究单摆的运动,从是否有无阻尼和驱动力方面来分析它们对单摆运动的影响。对于小角度单摆的运动,从单摆的动力学方程入手,借助雅普诺夫一次近似理论,推导出单摆的运动稳定性情况。再借助绘图工具matlab,对小角度和大角度单摆的运动进行仿真,通过改变参数,如阻尼大小、驱动力大小等绘出单摆运动的不同相图,对相图进行分析比较,从验证单摆运动的稳定性情况。关键词:单摆;振动;阻尼;驱动力 Abstract:The vibration of simple pendulum is studied by analyzing whether or not damp and drive force its influence of the simple pendulum. For small angle pendulum motion, pendulum dynamic equation from the start, with an approximate Lyapunov theory of stability of motion is derived pendulum situation. Drawing tools with help from matlab, small angle and wide-angle pendulum motion simulation, by changing the parameters, such as damping size, drive size draw simple pendulum of different phase diagram, analysis and comparison of the phase diagram, from the verification the stability of the situation pendulum movement. Key words: simple pendulum; vibration; damp; drive force 1 引言 单摆是一种理想的物理模型[1],单摆作简谐振动(摆角小于5°)时其运动微分方程为线性方程,可以求出其解析解,而当单摆做大幅度摆角运动时,其运动微分方程为非线性方程,我们很难用解析的方法讨论其运动,这个时候可以用MATLAB软件对单摆的运动进行数值求解,并可以模拟不同情况下单摆的运动。 θ=时, 随着摆角的减小,摆球的运动速率将越来越大,而加速度将单调下降,至0 加速度取极小值。本文从动力学的角度详细考察了这一过程中摆球的非线性运,得出了在运动过程中.,t θθθ --的关系。

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

海洋生态系统非线性动力学研究

海洋技术 第28卷 1引言 自从上世纪90年代以来,海洋生态方面的研究日趋活跃,海洋生态系统动力学模型的研究成为本领域内的一个重要方向。本文通过参阅国内外大量相关学术资料,建立了新的海洋生态经济系统动力学模型,并运用非线性动力学理论分析了此模型。 2主要内容 2.1 模型介绍 考虑营养盐、自养浮游植物和食植鱼类相互作用关系,并添加人为经济因素对该体系的影响,建立了三者的新模型。 参考NPZ 模型[1],将浮游动物换为食植鱼类;在营养盐方程中,忽略浮游植物和食植鱼类的死亡以及食植鱼类取食浮游植物过程中非同化的浮游植物部分向营养盐的转化,加入外界污染对其的影响;在食植鱼类方程中加入捕捞项,建立模型如下: (1 )式中:N 为营养盐浓度;P 为浮游植物浓度;Z 为食植鱼类浓度;a 为浮游植物生长率;k N 为吸收营养盐的半饱和参 数;e 为污染强度;R m 为食植鱼类的最大摄食率;λZ 为食植鱼类摄食半饱和系数;εP 为浮游植物死亡率;εZ 为食植鱼类死亡率;γ为食植鱼类的营养转化率;h 为人类对食植鱼类的捕捞率。 模型中浮游动物对浮游植物的摄食采用Ivlev 公式[2]:参数 h 是本文着重讨论的分岔参数。并且其它各参数的默认取值如表1所示: 表1 参数意义及其取值范围[3~4] 2.2系统稳定性及分岔分析 根据模型方程的基本特征,注意到食物链模型中各元素的物理意义及在实际发生过程中相互影响、耦合。我们考虑运用Lyapunov 运动稳定性理论[5]来判断变量各状态的稳定 性。 首先求所建模型方程的平衡点,令方程(1)的左端为零,即: (2) 海洋生态系统非线性动力学研究 王洪礼,董占琢 (天津大学机械工程学院,天津300072) 摘 要:海洋生态经济系统非线性动力学模型的建立及分析,对我国海洋生态经济发展乃至社会经济的发展都具 有重要意义。建立了新的海洋生态经济系统动力学模型,研究了模型的稳定性和分岔现象,揭示了该系统的非线性动力学特性。 关键词:海洋生态经济系统;非线性;稳定性;分岔中图分类号:X82 文献标识码:A 文章编号:1003-2029(2009)01-0050-05 第28卷第1期2009年3月海洋技术OCEAN TECHNOLOGY Vol.28,No.1Mar ,2009收稿日期:2008-09-22 基金项目:国家自然科学基金资助项目(10772132);博士点基金资 助项目(20070056063) 作者简介:王洪礼(1945-),女,河北沧县人,天津大学教授,博生导 师。 符号 意义 默认取值 a 浮游植物的生长率 0.2k N 吸收营养盐的半饱和参数0.05Rm 食植鱼类的最大摄食率0.6γ 食植鱼类的营养转化率0.9λZ 食植鱼类摄食的半饱和系数 0.035εP 藻类的死亡率0.005εZ 食植鱼类死亡率 0.005

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

资本市场的非线性动力学特征与风险管理研究

资本市场的非线性动力学特征与风险管理研究资本市场及其风险管理问题一直是世人瞩目的焦点问题。无论是学术界、监管层,还是实际从业人员,都一直对资本市场股价行为及其本质特征饶有兴趣。学术界不惜花费了大量的时间与资源来研究股票价格波动行为;监管层当然对资本市场的有效性倍加关注;对于投资者而言,他们则希望从股票价格行为中挖掘出有价值的信息。迄今为止,对资本市场的研究与分析基本上都是在经典资本市场理论的线性分析范式下展开的。 在标准的分析框架下,研究人员假定投资者是理性的,市场是有效的,股票价格是“公平价格",已经反映了所有可获得的公开信息,价格的变化即收益率服从随机游走过程,金融市场的波动性来自于外部随机事件(白噪声)的干扰。然而,经典资本市场理论的线性化分析方法有其内在的局限性,它不能解释现实金融市场资产价格的复杂多变行为,更不能用来分析像美国股市“1987年股灾"等市场突变行为。在这样的背景下,资本市场的研究出现了从线性转向非线性分析,从均衡走向演化的新趋势。而事实上,资本市场普遍存在的“蝴蝶"效应、“诺亚”效应、收益分布的“胖尾”现象与金融时间序列的高度自相关等也清楚地表明了市场非线性力学特征的存在性。 因此,认识到资本市场的非线性(混沌)动力学特性,将为资本市场研究人员与风险管理人员提供一个全新的视角。本文正是从这一角度展开研究工作。 首先,本文全面地考察了股票价格行为特征。研究结果表明,基于有效市场的传统理论假设:正态分布、随机游走与独立性并不能准确刻画股票价格行为,而基于分形市场的理论假设:非正态稳定分布、分数布朗运动与长期相关性能够很好地描述实际资本市场的价格行为。 实际的金融时间序列服从一个有偏的随机游走过程,具有显著的分形特征与长期记忆效应。同时,本文的研究结果还表明资本市场存在低维混沌,我们从股票市场发现了正的李雅普诺夫指数与约为2.55的分数维。这说明资本市场的随机性与波动性具有内在确定性,使我们的认识超越了外部随机性的局限。基于资本市场作为虚拟经济系统的内在特性,本文提出了资本市场的非线性动力学分析原理,并形成了风险的整体观、内生观与过程观。 在非线性动力学分析原理的指导思想下,本文系统地考察了风险的来源以及

非线性动力学

即non-linear 是指输出输入既不是正比例也不是反比例的情形。如宇宙形成初的混沌状态。 自变量与变量之间不成线性关系,成曲线或抛物线关系或不能定量,这种关系叫非线性关系。 “线性”与“非线性”,常用于区别函数y = f (x)对自变量x的依赖关系。线性函数即一次函数,其图像为一条直线。其它函数则为非线性函数,其图像不是直线。 线性,指量与量之间按比例、成直线的关系,在空间和时间上代表规则和光滑的运动;而非线性则指不按比例、不成直线的关系,代表不规则的运动和突变。如问:两个眼睛的视敏度是一个眼睛的几倍?很容易想到的是两倍,可实际是 6-10倍!这就是非线性:1+1不等于2。 非线性关系虽然千变万化,但还是具有某些不同于线性关系的共性。 线性关系是互不相干的独立关系,而非线性则是相互作用,而正是这种相互作用,使得整体不再是简单地等于部分之和,而可能出现不同于"线性叠加"的增益或亏损。 激光的生成就是非线性的!当外加电压较小时,激光器犹如普通电灯,光向四面八方散射;而当外加电压达到某一定值时,会突然出现一种全新现象:受激原子好像听到“向右看齐”的命令,发射出相位和方向都一致的单色光,就是激光。 迄今为止,对非线性的概念、非线性的性质,并没有清晰的、完整的认识,对其哲学意义也没有充分地开掘。 线性:从相互关联的两个角度来界定,其一:叠加原理成立;其二:物理变量间的函数关系是直线,变量间的变化率是恒量。 在明确了线性的含义后,相应地非线性概念就易于界定: 其—,“定义非线性算符N(φ)为对一些a、b或φ、ψ不满足L(aφ+bψ)=aL(φ)+bL(ψ)的算符”,即叠加原理不成立,这意味着φ与ψ间存在着耦合,对(aφ+bψ)的*作,等于分别对φ和ψ*作外,再加上对φ与ψ的交叉项(耦合项)的*作,或者φ、ψ是不连续(有突变或断裂)、不可微(有折点)的。 其二,作为等价的另—种表述,我们可以从另一个角度来理解非线性:在用于描述—个系统的一套确定的物理变量中,一个系统的—个变量最初的变化所造成的此变量或其它变量的相应变化是不成比例的,换言之,变量间的变化率不是恒量,函数的斜率在其定义域中有不存在或不相等的地方,概括地说,就是物理变量间的一级增量关系在变量的定义域内是不对称的。可以说,这种对称破缺是非线性关系的最基本的体现,也是非线性系统复杂性的根源。 对非线性概念的这两种表述实际上是等价的,其—叠加原理不成立必将导致其二物理变量关系不对称;反之,如果物理变量关系不对称,那么叠加原理将不成立。之所以采用了两种表述,是因为在不同的场合,对于不同的对象,两种表述有各自的方便之处,如前者对于考察系统中整体与部分的关系、微分方程的性质是方便的,后者对于考察特定的变量间的关系(包括变量的时间行为)将是方便的。 非线性的特点是:横断各个专业,渗透各个领域,几乎可以说是:“无处不在时时有。”确实如此。 非线性动力学随着科学技术的发展,非线性问题出现在许多学科之中.传统的线性化方法已不能满足解决非线性问题的要求.非线性动力学也就由此产生. 非线性动力学联系到许多学科,如力学.数学.物理学.化学,甚至某些社会科学等. 非线性动力学的三个主要方面:分叉.混沌和孤立子.事实上,这不是三个孤立的方面.混沌是一种分叉过程.孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象. 经过

非线性动力学学习报告

非线性动力学学习报告 在课堂上老师以生动活泼的方式介绍了分形的相关知识,特别是展现了一些美丽的分形图案,我对此十分感兴趣,所以课后找了一些相关资料,学会了用仿射变换的循环迭代方法,在MATLAB 平台下,实现了一些简单的飞行图案的绘制。具体内容见项目一。其中的数学原理由于我还不是特别清楚,所以在此进仅做一简要汇报,下面会具体叙述用MATLAB 绘制分形图案的过程。 在项目二中,探讨了对于一根细长压杆,端部的压力大小与杆件变形之间的关系。这里的端部压力是较大的载荷(即大于临界力),那么经典的材料力学理论便束手无策,这里构建了一个压杆变形的微段迭代模型,把一个大变形非线性问题转化为有限个小变形的迭加,用MATLAB 编程迭代计算的结果较好的吻合了铁木辛哥弹性稳定理论中有关压杆弹性屈曲中的一些成果。 项目一:用MATLAB 绘制美丽的分形图案 上个世纪60年代,B.Mandelbrot 对一个具有复杂几何性质但局部看起来 仍然一样的几何对象提出了分形概念。在很多非线性动力学系统等血多领域都会看到分形的例子,随着电子计算机的发展,我们绘制出了很多分形图案。 在这个项目中,实现了用MATLAB 来绘制蕨类植物枝叶和著名的Sierpinski 三角形;另外还给出了一个通过编程绘制树枝的例子没有用到仿射变换,只是复杂的循环。 经过翻阅相关资料(考文献[1]),我了解到数学中的仿射变换的定义如下: 设x 是一个n 维向量,A 是n*n 的矩阵,b 是与x 同维的向量,那么变换b Ax x +→称作仿射变换,去不同的A ,b 就会得到不同的变换结果。如果打印前k 次(k 应该取较大的值)迭代过程中向量x 在坐标系中所表示的所有点,那么就可以得到一幅漂亮的分形图案。其中矩阵A 和向量b 的取法涉及到很复杂的数学理论,在这里不做详细介绍。 基于前面的理论分析很容易得到MATLAB 绘图程序代码及其运行结果。 1.、使用数学中的仿射变换理论,绘制蕨类植物枝叶 程序:%fenxing_juelei.m %蕨类植物模拟 x = [.5; .5]; %初值 h = plot(x(1),x(2),'.'); %绘制初值点 %设置用于后面随机数的判别向量 p = [ .85 .92 .99 1.00]; b1 = [0; 1.6]; b2 = [0; 1.6]; b3 = [0; .44];

相关文档
相关文档 最新文档