文档库 最新最全的文档下载
当前位置:文档库 › 电流互感器的二次回路设计

电流互感器的二次回路设计

电流互感器的二次回路设计
电流互感器的二次回路设计

电流互感器的二次回路设计

一.电流互感器二次回路接线

常见的接线方式

1) 单相式接线(图a),一般用于主变中性点和6~10KV电缆线路的零序电流互感器;2)两相星形接线(图b),主要用于6~10KV小电流接地系统的测量和保护回路接线。反应相间故障电流,不能完全反应接地故障。

3)三相星形接线(图c),这种接线用于110~150KV直接接地系统的测量和保护回路接线。反应相间故障及接地故障。

4)三角形接线(图d),测量表计的电流回路一般不用三角形接线。这种接线主要用于Y/d接线变压器差动保护星形侧电流回路。接入继电器的电流为二相电流之差,故继电器的

回路无零序分量,并且流入继电器的电流为相电流的倍。

5)和电流接线(图e)。这种接线主要用于一个半接线,桥形接线等。

TA

TA

TA

(a)

(d)

(二)电流二次回路的接地

电流互感器二次回路必须接地,其目的是为了防止当一、二次之间绝缘损坏时,对二次设备与人身安全造成损害,所以电流互感器二次侧应设一个接地点,一般在配电装置处经端子接地,这样更有利安全,如图(a)、(b)、(c)、(e)。当有几组电流互感器连接构成一套保护时,宜在保护屏上设有一个公用的接地点。

对与三角形接线电流互感器二次回路也应接地,接地点选在经负载后的中性点,如图(d). 对于差动保护而言,各接入单元的二次电流回路不再有电气连接,每个回路应单独一点接地,各接地点间不能串接。该接地点应就地接地。

(a)错误接线(b)正确接线

保护用CT二次回路接线要求

1)一般来说,过流,阻抗,高频,母差,变压器差动等电流互感器都采用星形或不完全星接。为了提高主保护的可靠性,对于220KV~500KV主变和母差都用单独的电流互感器或单独的电流互感器二次绕组供电,尽可能不与其它保护共用同一绕组。

2)保护用电流互感器二次侧应设一个接地点,一般在配电装置经端子接地。有几组电流互感器连接构成的保护电流互感器二次回路应在保护屏上接地。

两点接地的危害:(1)电流二次回路是通过电缆连接的,当接地网上出现短路电流或雷击电流时,由于电缆屏蔽层两点的电位不同,使屏蔽层内流过电流,可能烧毁屏蔽层。当屏蔽层内流过电流时,对每个芯线将产生干扰信号。

(2)在电流二次回路中,如果正好在继电器电流线圈的两侧都有接地点,一方面两点接地点和地所构成的并联回路,会短路电流线圈,使通过电流线圈的电流大为减少。此外,在发生接地故障时,两接地点间将因地网通过零序电流而产生地电位差,将在电流线圈中产生极大的额外电流。这两种原因,将使通过继电器电流线圈的电流与电流互感器二次通入的故障电流有极大差异,会引起保护的不正确动作,同时会引起计量的不准确。

判别方法

为了消除两点接地的隐患,在电流互感器一次侧A相通入交流电流,电流二次回路用钳形电流表监测A相及N线,如A相与N线电流相等,则电流回路一点接地,同时也检验了接线的正确性;如N线电流是A相电流的一半左右,则电流回路是两点接地,且为主控室和开关场两点接地。例如,电流互感器变比为300/5,在一次A相通流60A,电流二次回路在A相监测为1A,二次回路N点也为1A,则为一点接地;如果电流二次回路A相为1A左右,二次回路N点为0.5A左右,则为主控室和开关场电流两点接地;

思考:如果N线电流比A相电流的少一小半左右,则电流回路接地点在哪?

3)电流互感器二次回路一般不设切换回路,当确实需要切换时,应确保切换时电流互感器二次回路不能开路。

4)旁代实例讲解

电流互感器及交流电流回路试题

电流互感器及交流电流回路 1 如何选择电流互感器的主要技术参数? 电流互感器的二次回路分为测量回路和保护回路。它的主要技术规范的选择方法如下所述。1)额定一次电压,由所在系统的标称电压确定。可以选用高电压等级的电流互感器在低电压等级的系统中使用,如选用10kv的电流互感器在6kv系统中使用。 2)额定一次电流,按照GB1208规定的额定电流等级选用。如果一次电流不能按照规定的这些等级选用时,可以用以下的方法解决(1)保护回路和测量回路的变比要求不同时,可采用二次绕组带抽头电流互感器。也可以改变一次抽头的电流互感器,一般分串联和并联接法,可获得倍数变比或半数变比的电流互感器。(2)测量回路用电流互感器有特殊用途的用s级的,它在10~110%的额定电流范围内保持准确度要求。 3)额定二次电流:有1A和5A两类。选用原则:(1)对新建发电厂和变电所有条件时,宜选用1A。(2)如有利于互感器安装或扩建工程原有TA为5A时,及某些情况下为降低TA的二次开路电压,额定二次电流可选用5A。(3)一个厂,站内的额定二次电流可同时选用1A 和5A。 4)准确级和暂态特性在以下专题说明 5)铁心个数。电流互感器铁心个数有两类:一类为一个电流互感器只有一个一次绕组和二次绕组的单铁心式,大部分低压电流互感器就是这一类;一类是为一个一次绕组有两个及两个以上二次绕组的多铁心式,每个二次绕组,按照用途不同配置。电能计量仪表和测量表计在满足准确级的前提下,可以共用一个二次绕组。 6)按结构可分为油浸式,树脂浇注式和SF6式电流互感器。 7)短路要求,对带有一次回路导体的TA进行校验,对于母线从窗口穿过皆无固定板的TA可不校验动稳定。 2 电流互感器如何配置? 电流互感器的配置应符合以下要求: 1)电流互感器二次绕组的数量,铁心类型和准确等级应满足继电保护自动装置和测量仪表的要求。 2)保护用电流互感器的配置应避免出现主保护的死区。接入保护的电流互感器二次绕组的分配,应注意当一套保护停用时,出现被保护元件保护范围内部故障时的保护死区。 3)对中性点有效接地系统,电流互感器可按3相配置,对中性点非有效接地系统,依具体要求可按两相或三相配置。 4)但配电装置采用一个半断路器接线时,对独立式电流互感器每串宜配置三相,每组的二次绕组数量按照工程需要确定。 5)继电保护和测量仪表宜用不同的二次绕组供电,若受条件限制需共用一个二次绕组时,其性能应同时满足测量和保护的要求,且接线方式应避免注意仪表校验时影响继电保护工作。6)在使用微机保护的条件下,各类保护宜尽量共用二次绕组,以减少电流互感器二次绕组的数量。当一个元件的两套房为备用的主保护应使用不同的二次绕组。 7)电流互感器的二次回路不宜进行切换,当需要时,应采取防止开路的措施。 3 电流互感器的二次负荷如何计算? 1)电流互感器的二次负荷可以用阻抗Zb(Ω)或容量Sb(VA)表示。二者之间的关系为 Sb=Isn*Isn*Zb 电流互感器的二次负荷额定值(Sbn)可根据需要选用 2.5、5、7.5、10、15、20、30V A。在某些特殊情况下,也可选用更大的额定值。 2)电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

电流电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取0.05~0.1

根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗 根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:

电流互感器二次容量的选型及计算

电流互感器的容量,主要是根据电流互感器使用的二次负载大小来定,电流互感器的二次负载主要和其二次接线的长度和负载有关。 一般来说二次线路长的,要求的容量要大一些;二次线路短的,容量可选的小一点。 电流互感器的容量一般有5VA-50VA,对于短线路可选5VA,一般稍长的选20VA 或30VA,特殊情况可选的更大一些。 电流互感器容量的选择要复合实际的要求,不是越大越好,只有选择的二次容量大小接近实际的二次负荷时,电流互感器的精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器的距离了,如果测量单元是在距离较远的综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上的,则选5VA或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流的大小选择变比,一般按照60-80的%额定电流选择比较理想; 2、计量用的互感器就选精确度高点(0.5级足矣),测量用的可以更低点; 3、根据配电柜的布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式的固定支撑问题一直做的不太可靠,如果布局实在狭小也只好用穿心式了;另外提醒注意以下几点: 1、有多个二次绕组的电流互感器一定要把闲置的二次接线端用铜芯线牢固的短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类的保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成的危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。电流互感器二次容量的计算及选择 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。

电流互感器和交流电流回路

电流互感器和交流电流回路 我的读书笔记 电流互感器及交流电流回路 1 如何选择电流互感器的主要技术参数? 电流互感器的二次回路分为测量回路和保护回路。它的主要技术规范的选择方法如下所述。1)额定一次电压,由所在系统的标称电压确定。可以选用高电压等级的电流互感器在低电压等级的系统中使用,如选用10kv的电流互感器在6kv系统中使用。 2)额定一次电流,按照GB1208规定的额定电流等级选用。如果一次电流不能按照规定的这些等级选用时,可以用以下的方法解决(1)保护回路和测量回路的变比要求不同时,可采用二次绕组带抽头电流互感器。也可以改变一次抽头的电流互感器,一般分串联和并联接法,可获得倍数变比或半数变比的电流互感器。(2)测量回路用电流互感器有特殊用途的用s级的,它在10~110%的额定电流范围内保持准确度要求。 3)额定二次电流:有1A和5A两类。选用原则:(1)对新建发电厂和变电所有条件时,宜选用1A。(2)如有利于互感器安装或扩建工程原有TA为5A时,及某些情况下为降低TA的二次开路电压,额定二次电流可选用5A。(3)一个厂,站内的额定二次电流可同时选用1A和5A。 4)准确级和暂态特性在以下专题说明 5)铁心个数。电流互感器铁心个数有两类:一类为一个电流互感器只有一个一次绕组和二次绕组的单铁心式,大部分低压电流互感器就是这一类;一类是为一个一次绕组有两个及两个以上二次绕组的多铁心式,每个二次绕组,按照用途不同配置。电能计量仪表和测量表计在满足准确级的前提下,可以共用一个二次绕组。 6)按结构可分为油浸式,树脂浇注式和SF6式电流互感器。 7)短路要求,对带有一次回路导体的TA进行校验,对于母线从窗口穿过皆无固定板的TA可不校验动稳定。 2 电流互感器如何配置? 电流互感器的配置应符合以下要求: 1)电流互感器二次绕组的数量,铁心类型和准确等级应满足继电保护自动装置和测量仪表的要求。 2)保护用电流互感器的配置应避免出现主保护的死区。接入保护的电流互感器二次绕组的分配,应注意当一套保护停用时,出现被保护元件保护范围内部故障时的保护死区。3)对中性点有效接地系统,电流互感器可按3相配置,对中性点非有效接地系统,依具体要求可按两相或三相配置。 4)但配电装置采用一个半断路器接线时,对独立式电流互感器每串宜配置三相,每组的二次绕组数量按照工程需要确定。 5)继电保护和测量仪表宜用不同的二次绕组供电,若受条件限制需共用一个二次绕组时,其性能应同时满足测量和保护的要求,且接线方式应避免注意仪表校验时影响继电保护工作。 6)在使用微机保护的条件下,各类保护宜尽量共用二次绕组,以减少电流互感器二次绕组的数量。当一个元件的两套房为备用的主保护应使用不同的二次绕组。 7)电流互感器的二次回路不宜进行切换,当需要时,应采取防止开路的措施。 3 电流互感器的二次负荷如何计算? 1)电流互感器的二次负荷可以用阻抗Zb(Ω)或容量Sb(VA)表示。二者之间的关系为

电流互感器二次线的计算

电流互感器问答 15.当有几种表计接于同一组电流互感器时,其接线顺序如何? 答:其接线顺序是:指示仪表、电度仪表、记录仪表和发送仪表。 16.使用电流互感器应注意的要点有哪些? 答:(I)电流互感器的配置应满足测量表计、自动装置的要求。 (2)要合理选择变比。 (3)极性应连接正确。 (4)运行中的电流互感器二次线圈不许开路. (5)电流互感器二次应可靠接地。 (6)二次短路时严禁用保险丝代替短路线或短路片。 (7)二次线不得缠绕。 17.电流互感器的轮校周期和检修项目是什么? 答;计量用和作标准用的仪器和有特殊要求的电流互感器校验周期为每两年一次,一般仪用互感器核验周期为每四年一次。仪用互感器的检验项目为:校验一、二次线圈极性;测定比差和角差;测量绝缘电阻、介质损失以及而压试验. 18.怎样根据电流互感器二次阻抗正确选择二次接线的截面积? 答:可根据下式计算进行选择 S≥ρLm / Z―(rq+ri+rc). 式中S——连接导线的截面积 Lm——连接导线的计算长度m,单机接线Lm=2L,星形接线Lm=L,不完全星形接线Lm=√3 ρ——导线电阻率Ωmm2/m Z——对应于电流互感器准确等级的二次负荷额定阻抗,可从铭牌查出。 rq——为仪表电流线圈的总阻抗Ω; rj——为继电器电流线圈的总阻抗Ω rc——连接二次线的接触电阻一般取0.05Ω 19.电流互感器二次为什么要接地? 答:二次接地后可以防止一次绝缘击穿,二次串入高压,威胁人身及设备的安全,属于保护接地。接地点应在端子k2处,低压电流互感器一般采用二次保护接零的方式。 20对电流互感器如何进行技术管理? 答:(1)电流互感器以及其它计量设备必须做好台帐,有专人管理。并做好互感器转移记录。 (2)在供电企业内应建立各种相应的技术档案和管理制度,包括出厂原始记录、资料。历年修校记录、检修工艺规程和质量标准. (3)对计量用电流互感器的安装、更换、移动、校验、拆除、加封和接线工作均由供电

(完整版)电流互感器二次容量的计算及选择

电流互感器容量选择 电流互感器の容量,主要是根据电流互感器使用の二次负载大小来定,电流互感器の二次负载主要和其二次接线の长度和负载有关。一般来说二次线路长の,要求の容量要大一些;二次线路短の,容量可选の小一点。 电流互感器の容量一般有5VA-50VA,对于短线路可选5VA,一般稍长の选20VA或30VA,特殊情况可选の更大一些。 电流互感器容量の选择要复合实际の要求,不是越大越好,只有选择の二次容量大小接近实际の二次负荷时,电流互感器の精度才较高,容量偏大或偏小都会影响测量精度。 考虑是安装在配电柜上,就要看测量单元(电度表或综合保护装置)和互感器の距离了,如果测量单元是在距离较远の综控室,则一般选择20VA或30VA,如果测量装置也是装在配电柜上の,则选5VA 或10VA就可以满足要求。 建议按三个方面综合考虑: 1、根据负荷电流の大小选择变比,一般按照60-80の%额定电流选择比较理想; 2、计量用の互感器就选精确度高点(0.5级足矣),测量用の可以更低点; 3、根据配电柜の布局选择穿心式或普通式互感器,强烈建议使用普通式,穿心式の固定支撑问题一直做の不太可靠,如果布局实在狭小也只好用穿心式了; 另外提醒注意以下几点: 1、有多个二次绕组の电流互感器一定要把闲置の二次接线端用铜芯线牢固の短接起来; 2、切记严禁在电流互感器二次侧安装保险、空气开关之类の保护元件; 3、必须在停电后才能在电流互感器上作业,千万不要带电拆、装电流互感器; 4、第一次带电时最好不要带负荷,即使接错线了造成の危害会小很多; 5、电流互感器出现开裂、变色、变形、发热等现象时立即切断电源,不要扛。 电流互感器二次容量の计算及选择

电流互感器结构及原理

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝 数(N1)较少,直接串联于电源线路中,一次负荷电流()通过一次绕组时,产生 的交变磁通感应产生按比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电 流比:。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额 定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3 特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变,在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图

浅谈电流互感器二次接线问题

龙源期刊网 https://www.wendangku.net/doc/a44554718.html, 浅谈电流互感器二次接线问题 作者:于建军马东波赵洪波孙海燕 来源:《中国科技博览》2016年第09期 [摘要]通过对寿光境内公共变电站电流互感器在运行过程中的二次接线安全隐患问题的分析和研究,总结引起电流互感器二次接线故障的关键问题,提出解决办法,以提高电流互感器二次接线正确率。 [关键词]电流互感器二次接线故障隐患措施 中图分类号:TM452 文献标识码:A 文章编号:1009-914X(2016)09-0308-01 一、现状的调查与分析 在所辖的110kV、35kV变电站内安装有大量的电流互感器,随着对供电可靠性要求越来越高,尽可能减少停电。同时《安规》中明确规定,电流互感器在运行中严禁开路。电流互感器在电力系统中有着很重要的作用,倘若二次发生开路,将严重威胁人身安全和设备安全,造成巨大经济损失和社会负面影响。 我们通过对从2000年至今部分变电站的电流互感器回路故障及隐患问题进行了抽样统计分析,得出结论如下表所示: 二、电流互感器运行原理及事故原因分析 电流互感器倘若二次开路,一次电流将全部用于激磁,使铁芯严重饱和。交变的磁通在二次线圈上将感应出很高的电压,其峰值可达几千伏甚至上万伏,该峰值电压作用于二次线圈及二次回路上,将严重威胁人身安全和设备安全,甚至线圈绝缘因过热而烧坏,保护可能因无电流而不能反映故障,对于差动保护和零序电流保护则可能因开路时产生不平衡电流而误动作。所以《安规》规定,电流互感器在运行中严禁开路。 那么产生电流互感器二次开路的原因有哪些呢? (1)由于交流电流回路中的试验接线端子的结构和质量上存在缺陷,在运行中发生螺杆与铜板螺孔接触不良,造成开路。 (2)由于电流回路中的试验端子压板的胶木头过长,旋转端子金属片未压在压板的金属片上,而误压在胶木套上,致使开路。 (3)修试人员工作中的失误,如忘记将继电器内部接头接好、验收时未能发现。

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~ 根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点

接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗

电流互感器接线方式

电流互感器接线方式 电流互感器在交流回路中使用,在交流回路中电流的方向随时间在改变。电流互感器的极性指的是某一时刻一次侧极性与二次侧某一端极性相同,即同时为正、或同时为负,称此极性为同极性端或同名端,用符号"*"、"-" 或"."表示。(也可理解为一次电流与二次电流的方向关系)。按照规定,电流互感器一次线圈首端标为L1,尾端标为L2;二次线圈的首端标为K1,尾端标为K2。在接线中L1 和K1 称为同极性端,L2 和K2 也为同极性端。其三种标注方法如图1 所示。电流互感器同极性端的判别与耦合线圈的极性判别相同。较简单的方法例如用 1.5V 干电池接一次线圈,用一高内阻、大量程的直流电压表接二次线圈。当开关闭合时,如果发现电压表指针正向偏转,可判定 1 和 2 是同极性端,当开关闭合时,如果发现电压表指针反向偏转,可判定1 和2 不是同极性端。 3 电流互感器的极性与常用电流保护以及易出错的二次接线 3.1 一相接线

图 1 电流互感器的三种极性标注 图 2 一相接线 一相式电流保护的电流互感器主要用于测量对称三相负载或相负荷平衡度小的三相装置中的一相电流。电流互感器的接线与极性的关系不大,但需注意的是二次侧要有保护接地,防止一次侧发生过电流现象时,电流互感器被击穿,烧坏二次侧仪表、继电设备。但是严禁多点接地。两点接地二次电流在继电器前形成分路,会造成继电器无动作。因此在《继电保护技术规程》中规定对于有几组电流互感器连接在一起的保护装置,则应在保护屏上经端子排接地。如变压器的差动保护,并且几组电流互感器组合后只有一个独立的接地点。 3.2 两相式不完全星形接线 两相式不完全星形接线用于相负荷平衡和不平衡的三相系统中。如图 3 所示。若有一相二次极性那么流过3KA 的电流为I A I

电流互感器二次负荷计算

电流互感器二次负荷计算 电流互感器二次负荷计算计算电流互感器的负荷时应注意不同接线方式下和 故障状态下的阻抗换算系数。电流互感器的二次负荷可以用阻抗Z2(Ω)或容量 S(VA)表示。二者之间的关系为: S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25Z2 当电流互感器二次电流为1A时, S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。测量用的电流互感器的负荷计算。一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算 Z2=Kcj.zkZcj+Klx.zkZlx+Zc 式中:Zcj-------测量表计线圈的阻抗(Ω) Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。 Zc-------接触电阻(Ω),一般取0.05~0.1(Ω)。 Kcj.zk----测量表计的阻抗换算系数 Klx.zk---- 连接导线的阻抗换算系数 电流互感器的二次负荷计算 1)电流互感器的二次负荷可以用阻抗Zb(Ω)或容 量Sb(VA)表示。二者之间的关系为 Sb=Isn*Isn*Zb 电流互感器的二次负荷额定值(Sbn)可根据需要选用2.5、5、7.5、10、15、20、30VA。在某些特殊情况下,也 可选用更大的额定值。 2)电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置; 另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 (a)测量用的电流互感器的负荷计算。一般在工程计算时可负略阻抗之间的相位差,二次负荷Zb可按下式计算Zb=ΣKmc* Zm+Klc*Z1+Rc 式中:Zm -------仪表电流线圈的阻抗(Ω) Z1--------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。 Rc-------接触电阻(Ω),一般取 0.05~0.1(Ω)。 Kmc-----仪表接线的阻抗换算系数 Klc-------连接导线的阻抗换

电流互感器二次负荷和绕组个数选取应慎重

电流互感器二次负荷和绕组个数选取应慎重 摘要:阐述了电流互感器二次负荷选取增大或二次绕组个数增多给产品设计和制造带来的困难,以及在产品使用过程中可能产生的不良后果。 关键词:二次负荷、径向场强、准确级、仪表保安系数(FS)。 0引言 目前在电流互感器的招标技术文件中,存在二次绕组个数增多,8~10个,并且二次负荷选取很大,80VA、100VA,甚者150VA。后果是,二次绕组体积增大,油箱或储油柜体积随之增大。不仅加大了产品的设计和制造难度,增加了成本,而且在产品的使用过程中也会产生不良后果。详述如下: 1实际运行二次负荷变小,会使电流互感器准确级降低 从电流互感器的工作原理知道,只有励磁电流等于零时,二次电流乘以电流比才等于一次电流,此时误差ε为零。由于励磁电流或多或少总是存在,所以电流互感器的电流误差ε是负值(曲线1),如图1。只有采用了匝数补偿措施后才有可能出现正值电流误差(曲线2)。制 在设计时为了满足在25%~120%额定负荷,不同电流下误差均满足国标或企标要求,一般都要采用减匝补偿,曲线2正是产品出厂时的误差曲线。 设补偿前误差 i ε,减匝补偿 值 b ε, b ε是正值。由误差公式可知,电流误差ε为 b n c C IN N A f L Z I ε θ α μ π ε+ + =100 *) sin( ) ( 20 1 2 2 2 即: b i ε ε ε+ =。在没有减匝补 偿时,减匝补偿值 b ε=0,电流误 差ε= i ε,与二次负荷成正比,随

二次负荷减小而减小,即曲线1会越接近X 轴。但在减匝补偿后,电流误差b i εεε+=,随二次负荷减小,补偿前误差i ε趋于零,电流误差ε=b ε,会正方向增大,接近b ε(曲线3),导致实际运行时误差超标,准确级降低。 1- 减匝补偿前电流误差曲线 2- 减匝补偿后电流误差曲线 3- 减小二次负荷实际运行电流误差曲线 图1 2实际运行二次负荷变小,电流互感器FS 系数增大,失去保护二次回路的作用 电力系统中使用的电流互感器往往会有很大的过电流流过一次绕组,为避免二次回路的仪器、仪表不致受到大电流的冲击,希望测量绕组在过电流情况下二次电流不再按比例增长,因此标准 提出了仪表保安系数(FS )的要求。所谓仪表保安系数(FS)是额定仪表保安电流与额定一次电流之比值。而额定仪表保安电流是二次负荷为额定值时,复合误差不小于10%的最小一次电流值。这个一次电流值越小,FS 值也越小。也就是说在一次电流倍数不太大时,复合误差就等于或超过10%,一次电流再增加,误差将更 大,二次电流的增长不多,对测量仪表来说就比较安全。所以选型时,除要求二次负荷外,几乎都要求测量绕组准确级为0.2SFS5。 制造商按标准设计时除满足0.2S 准确级外,还要满足在额定二次负荷,5倍额定一次电流时,铁心磁密应饱和,保证此时的复合误差大于10%。为此采用初始导磁率很高而饱和磁密较低的超微晶铁心。

电流互感器和电压互感器的接线方式

电力系统中的二次设备——继电保护及全自动装置等绝大多数是根据发生故障时电增大、电压降低的特点而工作的,这些电气一般都是通过电流互感器和电压互感器的副圈加到二次设备上.故在此将电流互感器、电压互感器的接线方式加以说明。 一、电流互感器的接线方式 在继电保护装置中电流互感器的接线方主要有四种:三相完全星形接线方式;两相完全星形接线方式;两相差接线方式;两相继电器式接线方式。 1.三相完全星形接线方式 三相星形接线方式的电流保护装置对各故障(如三相短路、两相短路、两相短路并地、单相接地短路)都能使保护装置起动,足切除故障的要求,而且具有相同的灵敏度如图2-l。 当发生三相短路时,各相都有短路电讯即A相?DA,B相?BD,C相?DC.反应到电流互感器二次例的短路电流分别为?a、?b、?c,它们分别流径A相、B相、C相继电器的线圈,使三只继电器(如图2一1中的a、b、c)动作.当发生A、B两相短路时A、B两相分别有短路电流?DA、?DB,它们流径电流互感器后,反应到其二次测分别为?a、?b,又分别将电流继电器a、b起动,去切除故障.当发生出接地故障好,则A相继电器a起动,切除故障。

电流互感器接成三相完全星形接线方式,适用于大电流接地系统的线路继电保护装置5变压器的保护装置。 1.两相不完全星形接线方式 此种接线是用两只电流互感器与两只电流继电器在A、C两相上对应连接起来。此种接线方式只适用于小电流接地系统中的线路继电保护装置,如6~35KV的线路保护均应采用此种接线方式。 此种接线方式,对各种相间短路故障均能满足继电保护装置的要求.但是此种接线方式不能反应B相接地短路电流,(因B相未装电流互感器和继电器)所以对B相起不到保护作用,故只适用小电流接地系统。 由于此种接线方式较三相完全星形接线方式少了三分之一的设备,节约了投资,又可提高供电可靠性,故得到了广泛的应用。 不完全星形接线方式不装电流互感器的一根规定为B相。如果在变电站或发电厂出线断路器的电流保护使用的电流互感器两相装的不统一,则当发生不同地点又不相同的两点接他故障时,会造成保护装置的拒动而越级掉闸,如图2-3所示。 3.两相三继电器式接线方式、两相三继电器式接线方式如图2-4所示。

电流互感器二次容量的计算及选择

电流互感器二次容量的计算及选择 摘要:电流互感器的二次电流有 1A及5A两种,选用不同的二次电流,则二次的负荷及容量不同,所用的控制电缆截面也不同。 关健词:电流互感器;二次负荷;二次容量 1 引言 电流互感器在电力系统中起着重要的作用,电流互感器的工作原理类似于变压器,它将大电流按一定比例变为小电流,提供各种仪表使用和继电保护用的电流,并将二次系统与高电压隔离。它不仅保证了人身和设备的安全,也使仪表和继电器的制造简单化、标准化,提高了经济效益。 电流互感器的额定一次电流根据不同回路的正常电流会有不同,但电流互感器额定二次电流却是标准化的,只有1A及5A两种,本文就这两种电流分别计算测量及保持用电流互感器在不同的传输距离下所需的二次容量。信息来源: 2 电流互感器二次负荷的计算 电流互感器的负荷通常有两部分组成:一部分是所连接的测量仪表或保护装置;另一部分是连接导线。计算电流互感器的负荷时应注意不同接线方式下和故障状态下的阻抗换算系数。 电流互感器的二次负荷可以用阻抗Z2(Ω)或容量S(VA)表示。二者之间的关系为 S=I2*I2*Z2 当电流互感器二次电流为5A时,S=25 Z2 当电流互感器二次电流为1A时,S=Z2 电流互感器的二次负荷额定值(S)可根据需要选用5、10、15、20、25、30、40、50、60、80、100VA。 2.1 测量用的电流互感器的负荷计算。信息来源: 一般在工程计算时可负略阻抗之间的相位差,二次负荷Z2可按下式计算信息来源: Z2=Kcj.zkZcj+Klx.zkZlx+Zc 信息来源: 式中:Zcj-------测量表计线圈的阻抗(Ω) Zlx-------连接导线的单程阻抗(Ω),一般可忽略电抗,仅计算电阻。

电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电1

电流互感器的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A的电流转变为5A的电流。 使用 1)电流互感器的接线应遵守串联原则:即一次绕阻应与被测电路串联,而二次绕阻则与所有仪表负载电流互感器 串联2)按被测电流大小,选择合适的变化,否则误差将增大。同时,二次侧一端必须接地,以防绝缘一旦损坏时,一次侧高压窜入二次低压侧,造成人身和设备事故3)二次侧绝对不允许开路,因一旦开路,一次侧电流I1全部成为磁化电流,引起φm和E2骤增,造成铁心过度饱和磁化,发热严重乃至烧毁线圈;同时,磁路过度饱和磁化后,使误差增大。电流互感器在正常工作时,二次侧近似于短路,若突然使其开路,则励磁电动势由数值很小的值骤变为很大的值,铁芯中的磁通呈现严重饱和的平顶波,因此二次侧绕组将在磁通过零时感应出很高的尖顶波,其值可达到数千甚至上万伏,危机工作人员的安全及仪表的绝缘性能。另外,一次侧开路使二次侧电压达几百伏,一旦触及将造成触电事故。因此,电流互感器二次侧都备有短路开关,防止一次侧开路。在使用过程中,二次侧一旦开路应马上撤掉电路负载,然后,再停车处理。一切处理好后方可再用。4)为了满足测量仪表、继电保护、断路器失灵判断和故障滤波等装置的需要,在发电机、变压器、出线、母线分段断路器、母线断路器、旁路断路器等回路中均设2~8个二次绕阻的电流互感器。对于大电流接地系统,一般按三相配置;对于小电流接地系统,依具体要求按二相或三相配置5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如:若有两组电流互感器,且位置允许时,应设在断路器两侧,使断路器处于交叉保护范围之中6)为了防止支柱式电流互感器套管闪络造成母线故障,电流互感器通常布置在断路器的出线或变压器侧7)为了减轻发电机内部故障时的损伤,用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障,用于测量仪表的电流互感器宜装在发电机中性点侧。 互感器原理 在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。)微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。如图绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 微型电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 接线方式 电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为单相,三相星形和不完全星形(图4a、b、c)。电流互感器 电流互感器接线方式电流互感器接线方式

(完整版)电压互感器和电流互感器

目录 1. 概述 (2) 2. 电压互感器 (2) 2.1. 基本介绍 (2) 2.2. 主要类型 (3) 2.3. 工作原理 (3) 2.4. 注意事项 (4) 2.5. 铭牌标志 (5) 2.6. 基本作用 (5) 2.7. 接线方式 (5) 2.8. 常见异常 (6) 3. 电流互感器 (7) 3.1. 基本介绍 (7) 3.2. 基本原理 (7) 3.3. 型号参数 (8) 3.4. 使用原则 (10) 3.5. 校验方法 (11) 3.6. 注意事项 (12)

1.概述 互感器在供配电系统中主要分为两种:电压互感器和电流互感器。 在供配电系统中,大电流、高电压有时不能直接用电流表和电压表来测量,必须通过互感器按比例减小后测量。互感器的内部结构就是变压器。按照变压器的原理运行。 互感器和变压器的工作原理相同,都是运用电磁感应原理来工作的.变压器的作用是将一种等级的电压变换成另一种等级的同频率的电压,它只能实现电压的变换,不能实现功率的变换.互感器分为电压互感器和电流互感器.电压互感器的作用是供给测量仪表,继电器等电压,从而正确的反映一次电气系统的各种运行情况.使测量仪表,继电器等二次电气系统与一次电气系统隔离,以保证人员和二次设备的安全,将一次电气系统的高电压变换成同意标准的低电压值(100 伏,100/1.732伏,100/3伏). 电力互感器的作用与电压互感器的作用基本相同,不同的就是电流互感器是将一次电气系统的大电流变换成标准的5安或1安供给继续电器,测量仪表的电流线圈。 2.电压互感器 2.1.基本介绍 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 电压互感器(Potential transformer 简称PT,也简称TV)和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和

电流互感器的二次回路设计

电流互感器的二次回路设计 一.电流互感器二次回路接线 常见的接线方式 1) 单相式接线(图a),一般用于主变中性点和6~10KV电缆线路的零序电流互感器;2)两相星形接线(图b),主要用于6~10KV小电流接地系统的测量和保护回路接线。反应相间故障电流,不能完全反应接地故障。 3)三相星形接线(图c),这种接线用于110~150KV直接接地系统的测量和保护回路接线。反应相间故障及接地故障。 4)三角形接线(图d),测量表计的电流回路一般不用三角形接线。这种接线主要用于Y/d接线变压器差动保护星形侧电流回路。接入继电器的电流为二相电流之差,故继电器的 回路无零序分量,并且流入继电器的电流为相电流的倍。 5)和电流接线(图e)。这种接线主要用于一个半接线,桥形接线等。 TA TA TA (a) (d) (二)电流二次回路的接地 电流互感器二次回路必须接地,其目的是为了防止当一、二次之间绝缘损坏时,对二次设备与人身安全造成损害,所以电流互感器二次侧应设一个接地点,一般在配电装置处经端子接地,这样更有利安全,如图(a)、(b)、(c)、(e)。当有几组电流互感器连接构成一套保护时,宜在保护屏上设有一个公用的接地点。 对与三角形接线电流互感器二次回路也应接地,接地点选在经负载后的中性点,如图(d). 对于差动保护而言,各接入单元的二次电流回路不再有电气连接,每个回路应单独一点接地,各接地点间不能串接。该接地点应就地接地。

(a)错误接线(b)正确接线 保护用CT二次回路接线要求 1)一般来说,过流,阻抗,高频,母差,变压器差动等电流互感器都采用星形或不完全星接。为了提高主保护的可靠性,对于220KV~500KV主变和母差都用单独的电流互感器或单独的电流互感器二次绕组供电,尽可能不与其它保护共用同一绕组。 2)保护用电流互感器二次侧应设一个接地点,一般在配电装置经端子接地。有几组电流互感器连接构成的保护电流互感器二次回路应在保护屏上接地。 两点接地的危害:(1)电流二次回路是通过电缆连接的,当接地网上出现短路电流或雷击电流时,由于电缆屏蔽层两点的电位不同,使屏蔽层内流过电流,可能烧毁屏蔽层。当屏蔽层内流过电流时,对每个芯线将产生干扰信号。 (2)在电流二次回路中,如果正好在继电器电流线圈的两侧都有接地点,一方面两点接地点和地所构成的并联回路,会短路电流线圈,使通过电流线圈的电流大为减少。此外,在发生接地故障时,两接地点间将因地网通过零序电流而产生地电位差,将在电流线圈中产生极大的额外电流。这两种原因,将使通过继电器电流线圈的电流与电流互感器二次通入的故障电流有极大差异,会引起保护的不正确动作,同时会引起计量的不准确。 判别方法 为了消除两点接地的隐患,在电流互感器一次侧A相通入交流电流,电流二次回路用钳形电流表监测A相及N线,如A相与N线电流相等,则电流回路一点接地,同时也检验了接线的正确性;如N线电流是A相电流的一半左右,则电流回路是两点接地,且为主控室和开关场两点接地。例如,电流互感器变比为300/5,在一次A相通流60A,电流二次回路在A相监测为1A,二次回路N点也为1A,则为一点接地;如果电流二次回路A相为1A左右,二次回路N点为0.5A左右,则为主控室和开关场电流两点接地; 思考:如果N线电流比A相电流的少一小半左右,则电流回路接地点在哪? 3)电流互感器二次回路一般不设切换回路,当确实需要切换时,应确保切换时电流互感器二次回路不能开路。 4)旁代实例讲解

相关文档
相关文档 最新文档