文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计基本概念

概率论与数理统计基本概念

概率论与数理统计基本概念
概率论与数理统计基本概念

概率论与数理统计复习

第一章概率论的基本概念

一.基本概念

随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.

样本空间S: E的所有可能结果组成的集合. 样本点(基本事件):E的每个结果.

随机事件(事件):样本空间S的子集.

必然事件(S):每次试验中一定发生的事件. 不可能事件(F):每次试验中一定不会发生的事件.

二. 事件间的关系和运算

1.AB(事件B包含事件A )事件A发生必然导致事件B发生.

2.A∪B(和事件)事件A与B至少有一个发生.

3. A∩B=AB(积事件)事件A与B同时发生.

4. A-B(差事件)事件A发生而B不发生.

5. AB=F (A与B互不相容或互斥)事件A与B不能同时发生.

6. AB=F且A∪B=S (A与B互为逆事件或对立事件)表示一次试验中A与B必有一个且仅有一个发生. B=A, A=B .

运算规则交换律结合律分配律德?摩根律

三. 概率的定义与性质

1.定义对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率.

(1)非负性P(A)≥0 ; (2)归一性或规范性P(S)=1 ;

(3)可列可加性对于两两互不相容的事件A1,A2,...(A iAj=φ, i≠j, i,j=1,2,...),

P(A1∪A2∪...)=P( A1)+P(A2)+...

2.性质

(1) P(F) = 0 , 注意: A为不可能事件P(A)=0 .

(2)有限可加性对于n个两两互不相容

的事件A1,A2,...,A n ,

P(A1∪A2∪...∪A n)=P(A1)+P(A2)+...+P(A n) (有限可加性与可列可加性合称加法定理)

(3)若AB, 则P(A)≤P(B), P(B-A)=P(B)-P(A) .

(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .

(5)广义加法定理对于任意二事件A,B ,P(A∪B)=P(A)+P(B)-P(AB) .

对于任意n个事件A1,A2,...,A n

...+(-1)n-1P(A1A2...A n)

四.等可能(古典)概型

1.定义如果试验E满足:(1)样本空间的元素只有有限个,即S={e1,e2,...,e n};(2)每一个基本事件的概率相等,即P(e1)=P(e2)=...= P(e n ).则称试验E所对应的概率模型为等可能(古典)概型.

2.计算公式P(A)=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.

五.条件概率

1.定义事件A发生的条件下事件B发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).

2.乘法定理P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).

P(A1A2...A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (n≥2, P(A1A2...A n-1) > 0) 3. B1,B2,...,B n是样本空间S的一个划分(BiBj=φ,i≠j,i,j=1,2,...,n, B1∪B2∪...∪B n=S) ,则

当P(B i)>0时,有全概率公式P(A)=

当P(A)>0, P(B i)>0时,有贝叶斯公式P (Bi|A)= .

六.事件的独立性

1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B为相互独立的事件.

(1)两个事件A,B相互独立? P(B)= P (B|A) .

(2)若A与B,A与,与B, ,与中有一对相互独立,则另外三对也相互独立.

2.三个事件A,B,C满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C三事件相互独立.

3.n个事件A1,A2,...,A n,如果对任意k (1

,则称这n个事件A1,A2,...,A n相互独立.

第二章随机变量及其概率分布

一.随机变量及其分布函数

1.在随机试验E的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.

2.随机变量X的分布函数F(x)=P{X≤x} , x是任意实数. 其性质为:

(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x1

(3)F(x)右连续,即F(x+0)=F(x). (4)P{x1

二.离散型随机变量(只能取有限个或可列无限多个值的随机变量)

1.离散型随机变量的分布律P{X= x k}= p k (k=1,2,...) 也可以列表表示. 其性质为:

(1)非负性0≤Pk≤1 ; (2)归一性.

2.离散型随机变量的分布函数F(x)=为阶梯函数,它在x=x k (k=1,2,...)处具有跳跃点,其跳跃值为p k=P{X=x k} .

3.三种重要的离散型随机变量的分布

(1)X~(0-1)分布P{X=1}= p ,P{X=0}=1-p (0

(2)X~b(n,p)参数为n,p的二项分布P{X=k}=(k=0,1,2,...,n) (0

(3))X~p(l)参数为l的泊松分布P{X=k}= (k=0,1,2,...) (l>0)

三.连续型随机变量

1.定义如果随机变量X的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=,-∞< x <∞,则称X为连续型随机变量,其中f (x)称为X的概率密度(函数).

2.概率密度的性质

(1)非负性f(x)≥0 ; (2)归一性=1 ;

(3) P{x 1

注意:连续型随机变量X取任一指定实数值a的概率为零,即P{X= a}=0 .

3.三种重要的连续型随机变量的分布

(1)X~U (a,b) 区间(a,b)上的均匀分布.

(2)X服从参数为q的指数分布.

(q>0).

(3)X~N (m,s2 )参数为m,s的正态分布-¥0.

特别, m=0, s2 =1时,称X服从标准正态分布,记为X~N (0,1),其概率密度

, 标准正态分布函数, F(-x)=1-Φ(x) .

若X~N ((m,s2), 则Z=~N (0,1), P{x1

若P{Z>z a}= P{Z<-z a}= P{|Z|>z a/2}= a,则点z a,-z a, ±z a/ 2分别称为标准正态分布的上,下,双侧a分位点. 注意:F(z a)=1-a , z 1- a= -z a.

四.随机变量X的函数Y= g (X)的分布

1.离散型随机变量的函数

X

x 1 x2 ... x k ...

p k

p 1 p2 ... p k ...

Y=g(X)

g(x1) g(x2) ... g(x k) ...

若g(x k) (k=1,2,...)的值全不相等,则由上表立得Y=g(X)的分布律.

若g(x k) (k=1,2,...)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律.

2.连续型随机变量的函数

若X的概率密度为fX(x),则求其函数Y=g(X)的概率密度fY(y)常用两种方法:

(1)分布函数法先求Y的分布函数FY(y)=P{Y≤y}=P{g(X)≤y}=

其中Δk(y)是与g(X)≤y对应的X的可能值x所在的区间(可能不只一个),然后对y求导即得fY(y)=FY /(y) .

(2)公式法若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为

其中h(y)是g(x)的反函数, a= min (g (-¥),g (¥)) b= max (g (-¥),g (¥)) .

如果f (x)在有限区间[a,b]以外等于零,则a= min (g (a),g (b)) b= max (g (a),g (b)) .

第三章二维随机变量及其概率分布

一.二维随机变量与联合分布函数

1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.

对任意实数x,y,二元函数F(x,y)=P{X≤x,Y≤y}称为(X,Y)的(X和Y的联合)分布函数.

2.分布函数的性质

(1)F(x,y)分别关于x和y单调不减.

(2)0≤F(x,y)≤1 , F(x,- ¥)=0, F(-¥,y)=0, F(-¥,-¥)=0, F(¥,¥)=1 .

(3) F(x,y)关于每个变量都是右连续的,即F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) .

(4)对于任意实数x 1

P{x 1

二.二维离散型随机变量及其联合分布律

1.定义若随机变量(X,Y)只能取有限对或可列无限多对值(x i,y j) (i ,j =1,2,... )称(X,Y)为二维离散型随机变量.并称P{X= x i,Y= y j }= p i j为(X,Y)的联合分布律.也可列表表示.

2.性质(1)非负性0≤p i j≤1 . (2)归一性.

3. (X,Y)的(X和Y的联合)分布函数F(x,y)=

三.二维连续型随机变量及其联合概率密度

1.定义如果存在非负的函数f (x,y),使对任意的x和y,有F(x,y)=

则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X和Y的联合)概率密度.

2.性质(1)非负性 f (x,y)≥0 . (2)归一性.

(3)若f (x,y)在点(x,y)连续,则

(4)若G为xoy平面上一个区域,则.

四.边缘分布

1. (X,Y)关于X的边缘分布函数FX (x) = P{X≤x , Y<¥}= F (x , ¥) .

(X,Y)关于Y的边缘分布函数FY (y) = P{X<¥, Y≤y}= F (¥,y)

2.二维离散型随机变量(X,Y)

关于X的边缘分布律P{X= x i }= = p i·( i =1,2,...) 归一性.

关于Y的边缘分布律P{Y= y j }= = p·j ( j =1,2,...) 归一性.

3.二维连续型随机变量(X,Y)

关于X的边缘概率密度f X (x)= 归一性

关于Y的边缘概率密度f Y (y)= 归一性

五.相互独立的随机变量

1.定义若对一切实数x,y,均有F(x,y)= FX (x) FY (y) ,则称X和Y相互独立.

2.离散型随机变量X和Y相互独立p i j= p i··p·j ( i ,j =1,2,...)对一切xi,yj成立.

3.连续型随机变量X和Y相互独立f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立.

六.条件分布

1.二维离散型随机变量的条件分布

定义设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称

P{X=x i |Y=yj}

为在Y= yj条件下随机变量X的条件分布律.

同样,对于固定的i,若P{X=xi}>0,则称

P{Y=yj|X=x i}

为在X=xi条件下随机变量Y 的条件分布律.

第四章随机变量的数字特征

一.数学期望和方差的定义

随机变量X 离散型随机变量连续型随机变量

分布律P{X=x i}= pi ( i =1,2,...) 概率密度f (x)

数学期望(均值)E(X) (级数绝对收敛) (积分绝对收敛)

方差D(X)=E{[X-E(X)]2}

=E(X2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛)

函数数学期望E(Y)=E[g(X)] (级数绝对收敛) (积分绝对收敛)

标准差s(X)=√D(X) .

二.数学期望与方差的性质

1. c为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .

2.X,Y为任意随机变量时, E (X±Y)=E(X)±E(Y) .

3. X与Y相互独立时, E(XY)=E(X)E(Y) , D(X±Y)=D(X)+D(Y) .

4. D(X) = 0 P{X = C}=1 ,C为常数.

三.六种重要分布的数学期望和方差E(X) D(X)

1.X~ (0-1)分布P{X=1}= p (0

2.X~ b (n,p) (0

3.X~ p(l) l l

4.X~ U(a,b) (a+b)/2 (b-a) 2/12

5.X服从参数为q的指数分布q q2

6.X~ N (m,s2) m s2

四.矩的概念

随机变量X的k阶(原点)矩E(X k ) k=1,2,...

随机变量X的k阶中心矩E{[X-E(X)] k}

随机变量X和Y的k+l阶混合矩E(X kY l) l=1,2,...

随机变量X和Y的k+l阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }

第六章样本和抽样分布

一.基本概念

总体X即随机变量X ; 样本X1 ,X2 ,...,X n是与总体同分布且相互独立的随机变量;样本值x1 ,x2 ,...,x n为实数;n是样本容量.

统计量是指样本的不含任何未知参数的连续函数.如:

样本均值样本方差样本标准差S

样本k阶矩( k=1,2,...) 样本k阶中心矩( k=1,2,...)

二.抽样分布即统计量的分布

1.的分布不论总体X服从什么分布, E () = E(X) , D () = D(X) / n .

特别,若X~ N (m,s2 ) ,则~ N (m, s2 /n) .

2.c2分布(1)定义若X~N (0,1) ,则Y =~ c2(n)自由度为n的c2分布.

(2)性质①若Y~ c2(n),则E(Y) = n , D(Y) = 2n .

②若Y1~ c2(n1) Y2~ c2(n2) ,则Y1+Y2~ c2(n1 + n2).

③若X~ N (m,s2 ), 则~ c2(n-1),且与S2相互独立.

(3)分位点若Y~ c2(n),0< a <1 ,则满足

的点分别称为c2分布的上、下、双侧a分位点.

3. t分布

(1)定义若X~N (0,1),Y~ c2 (n),且X,Y相互独立,则t=~t(n)自由度为n的t分布.

(2)性质①n→∞时,t分布的极限为标准正态分布.

②X~N (m,s2 )时, ~ t (n-1) .

③两个正态总体相互独立的样本样本均值样本方差

X~ N (m1,s12 ) 且s12=s22=s2 X1 ,X2 ,...,X n1 S12

Y~ N (m2,s22 ) Y1 ,Y2 ,...,Y n2 S22

则~ t (n1+n2-2) , 其中

(3)分位点若t ~ t (n) ,0 < a<1 , 则满足

的点分别称t分布的上、下、双侧a分位点.

注意: t 1- a (n) = - ta (n).

4.F分布(1)定义若U~c2(n1), V~ c2(n2), 且U,V 相互独立,则F =~F(n1,n 2)自由度为(n1,n2)的F分布.

(2)性质(条件同3.(2)③) ~F(n1-1,n2-1)

(3)分位点若F~ F(n1,n2) ,0< a <1,则满足

的点分别称为F分布的上、下、双侧a分位点. 注意:

第七章参数估计

一.点估计总体X的分布中有k个待估参数q1, q2,..., qk.

X1 ,X2 ,...,X n是X的一个样本, x1 ,x2 ,...,x n是样本值.

1.矩估计法

先求总体矩解此方程组,得到,

以样本矩Al取代总体矩m l ( l=1,2,...,k)得到矩估计量,

若代入样本值则得到矩估计值.

2.最大似然估计法

若总体分布形式(可以是分布律或概率密度)为p(x, q1, q2,..., qk),称样本X1 ,X2 ,...,X n的联合分布为似然函数.取使似然函数达到最大值的,称为参数q1, q2,...,qk的最大似然估计值,代入样本得到最大似然估计量.

若L(q1, q2,..., qk)关于q1, q2,..., qk可微,则一般可由

似然方程组或对数似然方程组(i =1,2,...,k) 求出最大似然估计.

3.估计量的标准

(1) 无偏性若E()=q,则估计量称为参数q的无偏估计量.

不论总体X服从什么分布, E ()= E(X) , E(S2)=D(X), E(Ak)=mk=E(Xk),即样本均值, 样本方差S2,样本k阶矩Ak分别

是总体均值E(X),方差D(X),总体k阶矩mk

的无偏估计,

(2)有效性若E(1 )=E(2)= q, 而D(1)< D(2), 则称估计量1比2有效.

(3)一致性(相合性) 若n→∞时,,则称估计量是参数q的相合估计量.

二.区间估计

1.求参数q的置信水平为1-a的双侧置信区间的步骤

(1)寻找样本函数W=W(X1 ,X2 ,...,X n,q),其中只有一个待估参数q未知,且其分布完全确定.

(2)利用双侧a分位点找出W的区间(a,b),使P{a

(3)由不等式a

2.单个正态总体

待估参数其它参数W及其分布置信区间

m s2已知~N (0,1) ()

m s2未知~ t (n-1)

s2 m未知~ c2(n-1)

3.两个正态总体

(1)均值差m 1-m 2

其它参数W及其分布置信区间

~ N(0,1)

~t(n1+n2-2)

其中Sw等符号的意义见第六章二. 3 (2)③.

(2) m 1,m 2未知, W=~ F(n1-1,n2-1),方差比s12/s22的置信区间为

注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标a/2改为a,

另外的下(上)限取为-¥(¥)即可.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 和Y 的联合分布律如表: 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12(34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

天津理工大学概率论与数理统计同步练习册标准答案详解

天津理工大学概率论与数理统计同步练习册答案详解

————————————————————————————————作者:————————————————————————————————日期: 2

第一章 随机变量 习题一 1、写出下列随机试验的样本空间 (1)同时掷三颗骰子,记录三颗骰子点数之和 Ω= { }1843,,,Λ (2)生产产品直到有10件正品为止,记录生产产品的总件数 Ω= { }Λ,,1110 (3)对某工厂出厂的产品进行检验,合格的记上“正品”,不合格的记上“次品”, 如连续查出2个次品就停止,或检查4个产品就停止检查,记录检查的结果。用“0”表示次品,用“1”表示正品。 Ω={111111101101011110111010110001100101010010000,,,,,,,,,,,} (4)在单位圆内任意取一点,记录它的坐标 Ω= }|),{(122<+y x y x (5)将一尺长的木棍折成三段,观察各段的长度 Ω=},,,|),,{(1000=++>>>z y x z y x z y x 其中z y x ,,分别表示第一、二、三段的长度 (6 ) .10只产品中有3只次品 ,每次从其中取一只(取后不放回) ,直到将3只次品都取出 , 写出抽取次数的基本空间U = “在 ( 6 ) 中 ,改写有放回抽取” 写出抽取次数的基本空间U = 解: ( 1 ) U = { e3 , e4 ,… e10 。} 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 …、 10 ( 2 ) U = { e3 , e4 ,… } 其 中 ei 表 示 “ 抽 取 i 次 ” 的 事 件 。 i = 3、 4、 … 2、互不相容事件与对立事件的区别何在?说出下列各对事件的关系 (1)δ<-||a x 与δ≥-||a x 互不相容 (2)20>x 与20≤x 对立事件 (3)20>x 与18x 与22≤x 相容事件 (5)20个产品全是合格品与20个产品中只有一个废品 互不相容 (6)20个产品全是合格品与20个产品中至少有一个废品 对立事件

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

相关文档
相关文档 最新文档