文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计答案,祝东进

概率论与数理统计答案,祝东进

概率论与数理统计答案,祝东进
概率论与数理统计答案,祝东进

习题

1. 写出下列随机试验的样本空间: (1) 掷两颗骰子,观察两颗骰子出现的点数. (2) 从正整数中任取一个数,观察取出数的个位数. (3) 连续抛一枚硬币,直到出现正面时为止.

(4) 对某工厂出厂的产品进行检查,如连续检查出两个次品,则停止检查,或

检查四个产品就停止检查,记录检查的结果. (5) 在单位圆内任意取一点,记录它的坐标. 解:(1){(,)|1,2,,6,1,2,

,6}i j i j Ω===;

(2){|0,1,

,9}i i Ω==;

(3)Ω={(正), (反, 正), (反, 反, 正), (反, 反, 反, 正), … };

(4)Ω={(次, 次), (次, 正, 正, 正), (次, 正, 正, 次), (次, 正, 次, 次), (次,

正, 次,正), (正, 次, 次), (正, 次, 正, 正), (正, 次, 正, 次)};

(5)22{(,)|,,1}x y x R y R x y Ω=∈∈+≤.

2. 在掷两颗骰子的试验中写出下列事件的集合表示: (1) A =”出现的点数之和为偶数”.

(2) B =”出现的点数之和为奇数, 但没有骰子出现1点”. (3) C =”至少掷出一个2点”. (4) D =”两颗骰子出现的点数相同”.

解: (1) {(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),A = {(4,2),(4,4),(4,6),(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)}=;

(2){(2,3),(2,5),(3,2),(3,4),(3,6),(4,3),(4,5),(5,2),(5,4),(5,6),(6,3),(6,5)}B =;

(3){(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2)}C =; (4){(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}D =.

3. 设,,A B C 是三个事件,试用,,A B C 来表示下列事件:

(1) 事件“,,A B C 中至少有一个事件发生”. (2) 事件“,,A B C 中至少有两个事件不发生”. (3) 事件“,,A B C 中至多有一个事件不发生”. (4) 事件“,,A B C 中至少有一个事件不发生”. (5) 事件“,A B 至少有一个发生,而C 不发生”. 解:(1)A B C ; (2)()()()A B

A C

B

C 或 ()()()()A B C A B C AB C A B C ;

(3)()

()()()ABC A BC AB C AB C 或()

()()AB AC BC ;

(4)A B C ; (5)()A B C 或(

)()()ABC

ABC ABC .

4. 指出下列命题哪些成立,哪些不成立 (1) ()

A B AB B =. (2) ()A B A

AB =.

(3) ()

()A AB AB =. (4) ()A B C A B C =.

(5) A B A B =. (6) ()

()AB AB =?.

(7) A B ?等价于A B B =或AB A =或B A ?. (8) 若AB =?,则A B ?.

解:(1)正确;(2)正确;(3)正确;(4)正确;(5)错误;(6)正确;(7)正确;(8)正确.

5. 在数学系的学生中任选一名学生,令事件A 表示被选学生是女生, 事件

B 表示被选学生是三年级学生, 事件

C 表示被选学生是运动员. (1)叙述ABC 的意义.

(2)在什么条件下ABC A =成立 (3)什么时候A C =成立

解: (1)被选学生是三年级男运动员;

(2)因为ABC A =等价于A BC ?,即数学系的女生全部都是三年级运动员; (3)数学系的男生全部都是运动员,且运动员全部都是男生.

6. 试用维恩图说明,当事件A ,B 互不相容,能否得出A ,B 也互不相容 解: 不能.

7. 设样本空间{}010x x Ω=≤≤, 事件{}27A x x =≤≤,{}15B x x =≤≤,试求: ,,,A B AB B A A B -.

解:{}17A B x x =≤≤;{}25AB x x =≤≤;{}12B A x x -=≤<;

[0,2)(5,10]A B AB ==.

习题

(6) 设

A B ?,

()()0.2,0.3,

P A P B ==求(1)()P A B ; (2)

()P BA ;(3)()P A B -. 解: ()()0.3P A B P B ==;

()()()0.1P B A P B P A =-=;

()()0P A B P -=?=.

(7) 设()(),P AB P A B = 且()2

,3

P A =求()P B .

解:注意到()()1()1()()()P A B P A B P A B P A P B P AB ==-=---. 从而由()()P AB P A B =得()()1P A P B +=.

于是1

()1()3

P B P A =-=.

(8) 设,,A B C 为三个随机事件, 且1()()(),2

P A P B P C ===1

()(),3P AB P BC ==

()0P AC =,求()P A B C .

解: 由()0P AC =知()0P ABC =. 于是由广义加法公式有

()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC =++---+

325

236

=

-=.

(9) 设,A B 为两个随机事件,且()0.7,()0.9P A P B ==,问: (4)在什么条件下, ()P AB 取到最大值,最大值是多少 (5)在什么条件下, ()P AB 取到最小值,最小值是多少

解:(1)由于()()()()P AB P A P AB P B ≤≤且.由此可见在A B ?条件下,()P AB 取到最大值()0.7P A =. (6)

注意到()()()()P AB P A P B P A B =+-. 因此当()1P A B =时,()P AB 取

到最小值0.70.910.6+-=.

思考: 有人说(2),在AB =?时,()P AB 取到最小值0. 你能指出错误在什么 地方吗

(10) 设,A B 为两个随机事件,证明: (1) ()1()()()P AB P A P B P A B =--+.

(2) 1()()()()()()P A P B P AB P A B P A P B --≤≤≤+.

证明:(1)由广义加法公式可得 ()1()1()()()P AB P A

B P A P B P A B =-=--+.

(2)由(1)立得1()()()P A P B P AB --≤. 其余不等式是显然的.

(11) 设,,A B C 为三个随机事件,证明:()()()()P AB P AC P BC P A +-≤. 证明:由广义加法公式可得

()(())(()())()()()

()()().

P A P A B C P AB AC P AB P AC P ABC P AB P AC P BC ≥==+-≥+-

(12) 设12,,,n A A A 为n 个事件,利用数学归纳法证明:

(1) (次可加性) ()12

1

()n

n k k P A A A P A =≤∑.

(2) ()12

1

()(1)n

n k k P A A A P A n =≥--∑.

证明: (1) 当2n =时, 由广义加法公式有

()2

1

212121

()()()()k k P A A P A P A P A A P A ==+-≤∑.

即对2n =成立.

假设对n k =成立, 于是

()1

211

2111()()()()().

k

k k k k k P A A A A P A A A P A P A P A P A +++≤+≤+

++

即对1n k =+成立. (1)得证.

(2)当2n =时, 由广义加法公式有

()12121

212()()()()()1P A A P A P A P A A P A P A =+-≥+-.

即对2n =成立.

假设对n k =成立, 即()121

()(1)k

k i i P A A A P A k =≥--∑.

于是

()12

112

111

1

1()()1

()(1)()1().

k k k k k i k i k i i P A A A A P A A A P A P A k P A P A k +++=+=≥+-≥--+-=-∑∑ 即对1n k =+成立. (2)得证. (13) 设12,,

A A 为一列事件,且1,1,2,

n n A A n +?=,证

明:1

(

)lim ()n n n n P A P A +∞→+∞

==.

证明:(利用性质6(1)的结论) 显然12,,

A A 为一列事件,且1,1,2,

n n A A n +?=,即性质6(1)的条件成立,

因此1(

)lim ()n n n n P A P A +∞

→+∞

==.

于是1

1

(

)1(

)1lim ()lim ()n n n n n n n n P A P A P A P A +∞

+∞→+∞

→+∞

===-=-=.

习题

(7)掷两颗均匀的骰子,求下列事件概率: (1)两颗骰子的点数相同;(2)两颗骰子的点数之和为偶数;(3)一颗骰子的点数恰是另一颗骰子的点数的两倍.

解:(1)16; (2) 12; (3)3

18

.

(8)有五条线段,长度分别为1,3,5,7,9(单位cm),从这五条线段中任取三条,求所取的三条线段能拼成三角形的概率. 解:由古典概型可得所求的概率为

3

533

10

C =. (9)一个小孩用13个字母:A 、A 、A 、C 、E 、H 、I 、I 、M 、M 、N 、T 、T 做组字游戏.如果字母的各种排列是随机的,问组成”MATHEMATICIAN ”一词的概率为多少

解:由古典概型可得所求的概率为3!2!2!2!

13!

. (10)

n 个人随机地排成一列,甲、乙是其中的两个人,求甲、乙两人之间恰

好有r 个人的概率, 这里0,1,,2r n =-.

解:由古典概型可得所求的概率为2(1)!!2!

!

r

n C n r r n -?--.

(11) n 个男孩和m 个女孩(1m n ≤+)随机排成一列,求任意两个女孩都不

相邻的概率.

解:n 个男孩和m 个女孩(1m n ≤+)随机排成一列共有()!n m +种排法. 任意两个女孩都不相邻可按如下方式进行: 先将n 个男孩排好,共有1n +个间隔,从1n +个间隔中选出m 个位置进行女生排列.因此排法总数为1!!m n C n m +.

从而由古典概型可得所求的概率为1!!

()!

m n C n m n m ++.

(12) 从n 双尺码不同的鞋子中任取2(2)r r n <只,求下列事件的概率:

a) 所取的2r 只鞋子中没有两只成对的; (2) 所取的2r 只鞋子中只有两只成对的; (3) 所取的2r 只鞋子恰成r 对.

解:(1)2222r r n r n C C ?;(2)12(1)2(1)1

222r r n n r

n

C C C ---??;(3)22r n r n C C . (13) 掷一枚均匀的硬币n 次,求出现的正面次数多于反面次数的概率.

解:设A 表示硬币出现的正面次数多于反面次数,B 表示硬币出现的反面次数

多于正面次数,C 表示硬币出现的反面次数等于正面次数.易见

()()()1P A P B P C ++=, ()()P A P B =.

当21n m =+时,易见()0P C =,从而1()2

P A =

. 当2n m =时,易得21()2n n n

P C C ??= ???.从而2

11()122n n n P A C ????=-?? ???????

.

(14) 从一个装有a 个白球,b 个黑球的袋中逐一将球不放回地随机取出,

直至留在袋中的球都是同一颜色的球为止,求最后留在袋中的球都是白球的概率.

解:此题设想将袋中的a 个白球和b 个黑球全部摸出,则最后一次(第a b +次)摸出白球与本题所述的事件相同.因此由抽签原理可得所求的概率为a

a b

+. (15)

口袋中有5个白球、3个黑球,从中任取两个,求至少取到一个白球的

概率.

解:所求的概率为2

3281C C -.

(16)

某人有m 把钥匙,其中只有一把能打开门,他一把接一把地试开门,

不能开门的就扔掉.求他恰好在第k 次把门打开的概率. 解:所求的概率为()()

1(2)

(1)11

1(1)m m m k m m m k m

-?--+?=?--+.

(17)

任取一个正整数,求下列事件的概率:

a) 该数平方的个位数是1; (2)该数立方的个位和十位都是1.

解:(1)我们知道一个数平方的个位数只与该数的个位数有关.因此我们观察取出数的个位数,其样本空间为{0,1,2,

,9}Ω=.易知其是古典概型.设A 表

示该数平方的个位数是1, 则{1,9}A =,于是2

()10

P A =

. (2)一个数立方的个位和十位与该数的个位和十位有关.因此我们观察取出数的个位和十位数,其样本空间为{00,01,02,,99}Ω=,B 表示该数立方的

个位和十位都是1.则{71}B =,于是1()100

P B =. (18)

某人忘记了一个电话号码的最后一位数字,因此只能试着随意地拨

这位数,假设拔完规定电话位数算完成一次拨号,且假设对方电话不占线,试问他拨号不超过四次就能接通电话的概率是多少 解:所求的概率为19198198714

1010910981098710

??????+++=??????. (19)

一公司批发出售服装,每批100套.公司估计某客商欲购的那批100

套服装中有4套是次品,12套是等级品,其余是优质品,客商在进货时要从中接连抽出2套做样品检查,如果在样品中发现有次品,或者2套都是等级品,客商就要退货.试求下列事件的概率:(1)样品中1套是优质品,1套是次品;(2)样品中1套是等级品,1套是次品;(3)退货;(4)该批货被接受;(5)样品中恰好有1套优质品. 解:(1)样品中1套是优质品,1套是次品的概率为

2

100

844

C ?; (3))样品中1套是等级品,1套是次品的概率为

2

100

124

C ?; (4)退货的概率为22

9612

221001001C C C C ??+- ???

;

(5)该批货被接受的概率为2222

969612

12222

10010010011C C C C C C C ????--+-=?? ??

???; (6)样品中恰好有1套优质品的概率为2

100

8416

C ?. (20)

在桥牌比赛中,把52张牌(不包括大小王)任意地分给东、南、西、

北四家(每家13张牌),求下列事件的概率:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花;(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃;(3) 南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃.

解:(1)北家的13张牌中恰有5张黑桃、4张红心、3张方块、1张草花的概率为

54311313131339!

13!13!13!52!

13!13!13!13!

C C C C ?

或5431

1313131352!13!39!C C C C ;

(2)南家及北家共有9张黑桃,东、西两家各有2张黑桃的概率为

13!39!

9!2!2!17!11!11!52!26!13!13!

?

;

(3)南家及北家共有9张黑桃,东家有1张黑桃,西家有3张黑桃的概率为

13!39!

9!1!3!17!12!10!52!26!13!13!

?

.

(21)

将3个球随机地放入4个杯子,求4个杯子中球的个数最大值为2的

概率.

解: 3个球随机地放入4个杯子共有34种放法. 4个杯子中球的个数最大值为2相当于先从3个球中任意地选出2个球作为一个整体和另外一个球放到4

个杯子(注意不能同时放入同一个杯子)的放法总数为24A .于是所求的概率为

2

43

4A . (22) 设集合A 有4个元素, 集合B 有3个元素,随机地作集合A 到集合B

的映射,求该映射为满射的概率.

解:该映射为满射的概率为2443!

3

C ?.

(23)

将m 个球随机地放入n ()n m ≤个盒子中,求下列事件的概率:

(14) 每个盒子中均有球; (2)恰好有1个盒子空着的概率. 解:设i A 表示第i 个盒子无球,1,2,

,i n =.

(6) 设A 表示每个盒子中均有球.则12

12n n A A A A A A A ==.

注意到(1)()m

i m n P A n -=, 1,2,

,i n =,

(2)()m

i j m

n P A A n

-=,1i j

n ≤<≤,

12

12(),1,1,2,

,.k i i i k m

P A A A i i i n k n n =≤<<

<≤=

于是由广义加法公式有

()11

2

12

111211

1

()()(1)()(1)(2)1().n

n n i i j n i i j n

m m

n n

n n

m m

m

m n k n m

k P A A A P A P A A P A A A n n C C C n n

n n k C n +=≤<≤--==-

+

+---=+++-=∑∑

从而(

)

()1

1

2

1

2

1

()()11m

n k

n n n

m

k n k P A P A A A P A A A C n -=-==-=-∑. (7) 恰好有1个盒子空着可以这样理解,先从n 个盒子任意选定1个空盒,然后将m 个球随机地放入1n -个盒子,使得1n -个盒子都有球. 从而由(1)及乘法原理可知"恰好有

1个盒子空着"共有

2

111(1)(1)n m k m n

n k C n C n k --=??----????

∑样本点,于是其概率为

2

111(1)(1)n m k m n

n k m C n C n k n --=??----??

??∑. (24)

某班有m 个同学参加面试,共有n ()n m ≤

张考签,每人抽到考签用后

即放回,在面试结束后,求至少有一张考签没有被抽到的概率. (8) 解:设i A 表示第i 张考签没有被抽到,1,2,

,i n =.设A 表示至少有一张

考签没有被抽到. 则1

2

n A A A A =.

注意到(1)()m

i m n P A n -=, 1,2,

,i n =,

(2)()m

i j m

n P A A n

-=,1i j n ≤<≤,

12

12(),1,1,2,

,.k i i i k m

P A A A i i i n k n n =≤<<

<≤=

于是由广义加法公式有

()11

2

12

1

1121

1

1

()()()(1)()(1)(2)1().n

n n i i j n i i j n

m m

n n

n n

m m

m

m n k n m

k P A P A A A P A P A A P A A A n n C C C n n

n n k C n +=≤<≤--===-

+

+---=+++

-=∑∑

(25) 从n 阶行列式的一般展开式中任取一项,问这项包含主对角线元素的

概率为多少

解:设i A 表示所取的项含第i 行第i 列主对角线元素,1,2,,i n =.设A 表示所

取的项包含主对角线元素. 则12

n A A A A =.

注意到(1)!

()!i n P A n -=

, 1,2,,i n =, (2)!

()!i j n P A A n -=

,1i j n ≤<≤,

1212()!

(),1,1,2,

,.!

k i i i k n k P A A A i i i n k n n -=

≤<<<≤=

于是由广义加法公式有

()11

2

12

1

1121()()()(1)()

(1)!(2)!1!!!

1.!

n

n n i i j n i i j n

n n

n n

n

k P A P A A A P A P A A P A A A n n C C C n n n k +=≤<≤===-

+

+---=+++=∑∑

习题

1. 已知111

(),(|),(|)432

P A P B A P A B =

==,求()P B ; ()P A B ;()P A B . 解:注意到1

()()(|),12

P AB P A P B A ==

故 ()1/121()(|)1/26P AB P B P A B =

==.

1

()()()()3

P A B P A P B P AB =+-=.

1

()()()6

P A B P A P AB =-=. □

2. 设()0.4,()0.7,P A P B ==试证:(|)0.5.P B A ≥

证明: 因为()()()()()0.3P A B P B P AB P B P A =-≥-=, ()1()0.6P A P A =-= . 故 ()0.3

(|)0.5.0.6()

P A B P B A P A =

≥= □ 3. 设N 件产品中有M 件不合格品,从中逐一不放回地取出两件产品, (6)已知第一次取出不合格品,求第二次也取出不合格品的概率;

(7)已知所取的两件产品中有一件是不合格品,求另一件也是不合格品的概率.

解:(1)设i A 表示"第i 次取出不合格品",1,2i =. 于是所求的概率为211

()1

M P A A N -=

-. (2)设A 表示所取的两件产品中有一件是不合格品, B 表示另一件也是不合格品. 于是所求的概率为

222222

2()

().()1M

N M N M N N M

N

C C C P AB P B A C P A C C C --===-- □ 4. 掷两颗均匀的骰子,(1)已知点数和为偶数,求点数和等于8的概率;(2) 已知点数

和为奇数,求点数和大于6的概率;(3) 已知点数和大于6,求点数和为奇数的概率.

解: (1)所求的概率为

518; (2)所求的概率为12

18; (3)所求的概率为1221

. □ 5. 一个家庭中有三个小孩,已知其中一个是女孩,求至少有一个男孩的概率. 解: A 表示三个小孩中有一个是女孩, B 表示三个小孩中至少有一个是男孩,

于是所求的概率为()6/86

().()7/87

P AB P B A P A =

== □ 6. 为防止意外事故,在矿井内同时安装两种警报系统A 与B ,每种系统单独使用时,

其有效率A 为,B 为,在A 失灵条件下B 有效概率为.求:(1)发生事故时,这两种警报系统至少有一个有效的概率;(2)在B 失灵条件下,A 有效的概率. 解:A 表示系统A 有效, B 表示系统B 有效. 由题意知

()0.92,()0.93,(|)0.85P A P B P B A ===,

从而()(|)()0.850.080.068,P A B P B A P A ==?= ()()()0.862P AB P B P A B =-=.

(1)所求的概率为()()()()0.988P A B P A P B P AB =+-=.

(2)所求的概率为()()()

(|)0.8291()()

P A B P A P AB P A B P B P B -=

==-. □

7. 口袋中有1只红球和1n -只白球,现从中一个一个不放回地取球, (1) 已知前1()k k n -≤次都没有取到红球,求第k 次取出红球的概率. (2) 求第k 次取出红球的概率. 解: (1)所求的概率为1

1

n k -+;

(2)所求的概率为

1

n

. □ 8. 口袋中有a 只白球、b 只黑球和3个红球,现从中一个一个不放回地取球,试求白

球比黑球出现得早的概率. 解:设A 表示白球比黑球出现得早,

i B 表示第i 次取出白球, i C 表示第i 次取出黑球, i D 表示第i 次取出红球, 则1121231234()()()A B D B D D B D D D B =, 且1121231234,,,B D B D D B D D D B 两两互

斥,于是

1121231234()()()()()P A P B P D B P D D B P D D D B =+++

a

a b

=

+. □ 9. 某射击小组共有20名射手,其中一级射手4人,二级射手8人,三级射手7人,

四级射手1人,一、二、三、四级射手能通过选拔进入比赛的概率分别是,,,. 求任取一位射手,他能通过选拔进入比赛的概率. 解: 设i B 表示选出i 级射手,1,2,3,4i =. A 表示选出的射手能通过选拔进入比赛. 于是由全概率公式得

4

1

()(|)()0.645.i

i

i P A P A B P B ==

=∑ □

10. 12个乒乓球中有9个新球,3个旧球,第一次比赛,取出3个球,用完放回,第

二次比赛又取出3个球.求第二次取出的3个球中有2个新球的概率. 解:设i B 表示第一次比赛取出3个球中有i 个新球, 0,1,2,3i =. A 表示第二次取出的3个球中有2个新球. 由全概率公式知

21

33

3

939333

001212

()(|)().i i i i

i i i i C C C C P A P A B P B C C --+====?∑∑ □ 11. 某商店出售尚未过关的某电子产品,进货10件,其中有3件次品,已经售出2

件,现要从剩下的8件产品中任取一件,求这件是正品的概率. 解: 设i B 表示已经售出2件产品中有i 件次品,0,1,2i =.

A 表示从剩下的8件产品中任取一件产品是正品.

则由全概率公式知

22

2

372

001057

()(|)().8

10i i i i i i C C i P A P A B P B C -==?+==?=∑∑ □ 12. “学生参加选择题的测验,每一个题目有5个备选答案,其中有一个正确.若该

学生知道答案,则他一定能选出正确的答案,否则他随机地从5个答案中选一个.若该学生知道所有试题的70%的正确答案,求:(1)对一试题,该学生选得正确答案的概率是多少(2)若该学生对一试题已选得正确答案,问他真正知道此题答案的概率是多少

13. 设有来自3个地区的各10名、15名和25名考生的报名表,其中女生的报名表分

别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1) 求先抽到的一份是女生报名表的概率.

(2) 已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率. 14. 口袋中有一球,不知它的颜色是黑的还是白的,假设”该球是白球”的可能性为

1

2

.现再往口袋中放入一只白球,然后从口袋中任意取出一只,已知取出的是白球,求口袋中原来那只球是白球的概率.

解: 设B 表示"往口袋中放入一只白球,然后从口袋中任意取出一只是白球," A 表示口袋中原来那只球是白球. 则由贝叶斯公式知

1

1(|)()22(|)1113

(|)()(|)()1222

P B A P A P A B P B A P A P B A P A ?

===+?+?. □

15. 甲、乙两人轮流掷一颗骰子,甲先掷.每当某人掷出1点时,则交给对方掷,否则此

人继续掷.试求第n 次由甲掷的概率. 解:设i A 表示第i 次由甲掷, 1,2,,i n =.

显然125()1,()6P A P A ==, 1151

(|),(|)66

i i i i P A A P A A ++==,1,2,,i n =.

于是由全概率公式有

111()(|)()(|)()

51

()(1())6614

(),1,2,,.66

i i i i i i i i i i P A P A A P A P A A P A P A P A P A i n +++=+=?+?-=+?=

从而1

12()123i i P A -??

??

=+?? ?

??

????

. 2,,i n =. □

16. 设()0P A >,证明:()

(|)1()

P B P B A P A ≥-

. 证明:注意到()()()()()P AB P A P AB P A P B =-≥-, 不等式两边同除以()P A 得

()()()()

(|)1()()()

P AB P A P B P B P B A P A P A P A -=

≥=-. □ 17. 设0()1P B <<,证明: (|)()P A B P A ≤的充要条件是(|)()P A B P A ≥.

证明:

(|)()

()()()

()()()()()()()()(|)().

P A B P A P AB P A P B P AB P A P AB P A P A P B P A P B P A B P A ≤?≤?=-≥-=?≥ □

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

概率论与数理统计教程(魏宗舒)第七章答案

. 第七章 假设检验 设总体2(,)N ξμσ~,其中参数μ,2σ为未知,试指出下面统计假设中哪些是简单假设,哪些是复合假设: (1)0:0,1H μσ==; (2)0:0,1H μσ=>; (3)0:3,1H μσ<=; (4)0:03H μ<<; (5)0:0H μ=. 解:(1)是简单假设,其余位复合假设 设1225,,,ξξξL 取自正态总体(,9)N μ,其中参数μ未知,x 是子样均值,如对检验问题0010:,:H H μμμμ=≠取检验的拒绝域:12250{(,,,):||}c x x x x c μ=-≥L ,试决定常数c ,使检验的显着性水平为 解:因为(,9)N ξμ~,故9 (,)25 N ξμ~ 在0H 成立的条件下, 000 53(||)(||)53 521()0.05 3c P c P c ξμξμ-≥=-≥? ?=-Φ=??? ? 55( )0.975,1.9633 c c Φ==,所以c =。 设子样1225,,,ξξξL 取自正态总体2 (,)N μσ,20σ已知,对假设检验0010:,:H H μμμμ=>,取临界域12n 0{(,,,):|}c x x x c ξ=>L , (1)求此检验犯第一类错误概率为α时,犯第二类错误的概率β,并讨论它们之间的关系; (2)设0μ=,20σ=,α=,n=9,求μ=时不犯第二类错误的概率。 解:(1)在0H 成立的条件下,2 00(, )n N σξμ~,此时 00000()P c P ξαξ=≥=

10 αμ-= ,由此式解出010c αμμ-= + 在1H 成立的条件下,2 0(, )n N σξμ~,此时 1010 10 ()(P c P αξβξμ-=<==Φ=Φ=Φ- 由此可知,当α增加时,1αμ-减小,从而β减小;反之当α减少时,则β增加。 (2)不犯第二类错误的概率为 10 0.9511(0.650.51(3) 0.2 1(0.605)(0.605)0.7274αβμμ--=-Φ-=-Φ- =-Φ-=Φ= 设一个单一观测的ξ子样取自分布密度函数为()f x 的母体,对()f x 考虑统计假设: 0011101 201 :():()00x x x H f x H f x ≤≤≤≤??==? ??? 其他其他 试求一个检验函数使犯第一,二类错误的概率满足2min αβ+=,并求其最小值。 解 设检验函数为 1()0x c x φ∈?=?? 其他(c 为检验的拒绝域)

概率论与数理统计第四版-课后习题答案_盛骤__浙江大学

完全版 概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )-P (AC )+ P (ABC )= 8 508143=+-

概率论与数理统计教程(茆诗松)

2004年7月第1版 2008年4月第10次印刷 第一章 随机事件与概率 1.1 随机事件及其运算 1.1.1 随机现象 在一定的条件下,并不总是出现相同结果的现象称为随机现象.在相同条件下可以重复的随机现象又称为随机试验. 1.1.2 样本空间 随机现象的一切可能基本结果组成的集合称为样本空间,记为Ω={ω},其中ω表示基本结果,又称为样本点.样本点是今后抽样的最基本单元. 1.1.3 随机事件 随机现象的某些样本点组成的集合称为随机事件,简称事件. 1.1.4 随机变量 用来表示随机现象结果的变量称为随机变量. 1.1.7 事件域 定义1.1.1 设Ω为一样本空间,?为Ω的某些子集所组成的集合类.如果?满足: (1) Ω∈?; (2)若A ∈?,则对立事件A ∈?; (3)若A n ∈?,n =1,2,…,则可列并 A n ∞n =1∈?. 则称?为一个事件域,又称为σ代数. 在概率论中,又称(Ω,?)为可测空间. 1.2 概率的定义及其确定方法 1.2.1 概率的公理化定义 定义1.2.1设Ω为一样本空间,?为Ω的某些子集所组成的一个事件域.若对任一事件A ∈?,定义在?上的一个实值函数P (A )满足: (1)非负性公理 若A ∈?,则P A ≥0; (2)正则性公理 P Ω =1; (3)可列可加性公理 若A 1,A 2,…,A n 互不相容,有 P A i ∞i =1 = P A i ∞ i =1 则称P (A )为事件A 的概率,称三元素(Ω,?,P )为概率空间. 第二章 随机变量及其分布 2.1 随机变量及其分布 2.1.1 随机变量的概念 定义2.1.1 定义在样本空间Ω上的实值函数X =X (ω)称为随机变量. 2.1.2 随机变量的分布函数 定义2.1.2 设X 是一个随机变量,对任意实数x ,称

概率论与数理统计知识点汇总(详细)

概率论与数理统计知识点汇总(详细)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计练习题及答案

A . P(A B) =P(A) B . P AB 二 P A 概率论与数理统计习题 、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) 1. 设 X~N(1.5,4),且:?:」(1.25) =0.8944,.:」(1.75) = 0.9599,贝U P{-2

相关文档
相关文档 最新文档