文档库 最新最全的文档下载
当前位置:文档库 › 4-25 -高阶方程的降阶法、幂级数解法

4-25 -高阶方程的降阶法、幂级数解法

4-25 -高阶方程的降阶法、幂级数解法
4-25 -高阶方程的降阶法、幂级数解法

4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法

(Power series solution to second order linear ODE )

[教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程.

[教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换.

[教学方法] 预习1、2;讲授1、2 [考核目标]

1. 知道共振现象.

2. 知道拉普拉斯变换的概念和性质.

3. 知道常见函数的拉普拉斯变换和逆变换.

1. 高阶方程降阶法

例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向,

质点运动加速度为22dt d ml ?,所受的力为?sin mg -. 于是单摆方程为??sin 2

2l g

dt d -=. 下面考察如下柯西问题:??sin 22l

g

dt d -=,0)0(',)0(0==???.

(2)令dt d v ?=,下面导出?

d dv

,由??d dt dt dv d dv ?

=知,dt d d dv dt dv dt d ????==22. 于是原方程化为

??sin l

g

v d dv -=,这是一个一阶可分离变量型方程。 解得

C l g

v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-±

=l

g

v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到

)cos (cos 20???-±=l

g

dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形:

)cos (cos 20???--=l

g

dt d l g t dt l g d t 22cos cos 000

-=-=-???

?

???,特别地令?---=000

0cos cos 2?????

d g l T ,

则0T 表示摆从最大正角0?到0?-之间运动所需时间. 在考察摆从0?-运动到最大正角0?之间运动情形:

)cos (cos 20???-=l

g

dt d l g T t dt l g d t T 2)(2cos cos 00

-==-??-

?

?

???,容易得到, ?--=

=-000

00cos cos 2?????

d g l T T t ,因此单摆完成一个周期所需时间为02T .

注解:(1)

?-

-?

?

???

cos cos d 称为椭圆积分函数,其反函数)(t ?称为椭圆函数.

(2) 当初始偏角0?很小时,(近似公式推导如下)

??-=-=0

00

2

2

0002

sin 22

sin 224

cos cos 24

2???

?????d g l d g l T ??????

?

?

?-=0

2

00

2sin 2sin 12

sin

2

?????

d g l ,令)

2/sin()

2/sin(0??=

s ,则) )2/(arcsin(sin 20s ??=,

于是当0?很小时,ds s ds d 2)2/(sin 122

02≈-=

??,得到g l

s

ds g l T π214

21020=-≈?. 作业58. 求解方程(1) 0)dt dx ()dt dx (dt x d x 3222=+-; (2) 0)dt

dx (x 12dt x d 2

22=-+.

2. 二阶线性方程的幂级数解法

(1)幂级数收敛:+∞<<∞-=∑+∞

=x ,e n!x x

0n n ;+∞<<∞-=∑+∞=x x,cos (2n)!x (-1)0

n 2n n .

Geometric series:

1x 1 ,x

11

x 0n n <<--=

∑+∞

=; Binomial series:

a 3

20

n n n a x)(1x 3!

2)1)(a a(a x 2!1)a(a ax 1x C +=+--+-+

+=∑+∞

= . (2)幂级数一些性质:(a) 幂级数相等(Identity Principle):

I x ,x b x a

n n n 0

n n

n

∈=∑∑+∞

=+∞

=当且

仅当 0,1,2,n ,b a n n ==.

(b) 幂级数收敛半径(Radius of Convergence):给定幂级数

∑+∞

=0

n n

n x

c ,如果

),0(lim

1+∞∈=+∞→ρn

n n c c ,则幂级数收敛区间为)1

,1(ρρ-,端点处敛散性单独考虑.

(c) 幂级数求导法则:如果∑+∞

==

n n

n x

c f(x)在开区间I 上收敛,则f(x )在I 上可导且导数为

I x ,x nc (x)' f 1

n 1n n ∈=∑+∞

=-.

(d) 幂级数指标调换(Shift of Index of summation ):例如

∑∑+∞

=++∞

=-+=0

n n 1n 1

n 1

n n

x 1)c (n x

nc .

例69. 用幂级数方法求解方程02y dx

dy

3)(x =+-. 解:令,x c 1)(n 'y ,x

c y 0n n 1n 0n n

n ∑∑∞

=+∞

=+==

代入方程比较系数得到

0x c 2x 1)c (n 3x

1)c

(n 0

n n n 0

n n

1n 0n 1

n 1

n =++-+∑∑∑∞

=∞

=+∞

=++,调整指标得到

0x c 2x 1)c (n 3x

nc 0

n n n 0n n

1n 1

n n

n

=++-∑∑∑∞

=∞

=+∞

=,于是,

0)x 2c 1)c 3(n -(nc 2c 3c 1

n n n 1n n 01=++++-∑∞

=+,解得,c 1)

3(n 2n c ,c 32c n 1n 01++==

+ 得到, 1,2,n ,c 3

1

n c 0n n =+=

由31c c lim n 1n n =+∞→知, 原方程的幂级数解()∑∞

=+=0n n

n

x 3

1n c x y ,收敛区间为3) 3,(I -=. 作业59. 运用幂级数方法求解方程0x dt

x

d 22=+.

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 12 2-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如)(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到 )(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0 ),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:01、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 0 2、 022 1 1≠b a b a ,?? ?=++=++00 222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( xy v xy f dx dy x ==),(2 22),(x y w x y xf dx dy == θθsin ,cos ,0))(,())(,(r y r x ydx xdy y x N ydy xdx y x M ===-++ 以上都可以化为变量可分离方程。 例2.1、 2 5 --+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 71+=- ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

全微分方程及积分因子

全微分方程及积分因子

全微分方程及积分因子 内容:凑微分法,全微分方程的判别式,全微分方程的公式解,积分因子的微分方程,只含一个变量的积分因子和其他特殊形式的积分因子。由于有数学分析多元微积分的基础,本节的定理1可以简化处理。对课本中第三块知识即全微分方程的物理背景可以留到后面处理,对第四块知识增解和失解的情况要分散在本章各小节,每次都要重视这个问题。关于初等积分法的局限性可归到学习近似解法时一起讲解。 重点:全微分方程的公式解和积分因子的计算,难点为凑微分法和积分因子的计算。 习题1(1,3,5),2,3 思考题:讨论其他特殊形式的积分因子。 方程:0),(),(=+dy y x N dx y x M 判定:全微分?x N y M ??≡?? 解法:C dy y x N dx y x M y y x x =+??00),(),(0 初值问题0=C 积分因子:x N y M y M x N ??-??=? ???????-??μμμ1

)(x μ: N x N y M dx d ?? -??=μμ1 )(y μ: M x N y M dy d ??- ??-=μμ1 1.解下列方程: 1)0)(222=-+dy y x xydx 解:x N y M ?? ≡??=x 2 ??=-+x y C dy y xydx 002 )0(2既 C y y x =-3/32 2)0)2(=+---dy xe y dx e y y 解:x N y M ??≡??=y e -- ??=-+-y x y C dy y dx e 00)2(既C y xe y =--2 3)0)1(222=---+dy y x dx y x x 解:x N y M ??≡??=y x --221 ??=---+x y C dy y dx y x x 002)1(2 C y y y x x =-+---+23 232322)(32 )(32 )(32 既C y x x =-+23 2 2)(32 4)0)ln (3 =++dy x y dx x y

第二节 几类简单微分方程及其解法

第二节 几类简单微分方程及其解法 本节将介绍可分离变量的微分方程、齐次方程以及一阶线性微分方程等一阶微分方程的解法. 一阶微分方程是微分方程中最基本的、最常见的一类方程.它的一般形式可表示为: 0)',,(=y y x F 或),('y x F y =, 其中)',,(y y x F 为,,'x y y 的已知函数,),(y x F 为,x y 的已知函数. 一、可分离变量的微分方程 如果一阶微分方程),('y x F y =的等式右端能分解为: )()(),(y g x f y x F =, 即)()('y g x f y = (7.2.1) 则称方程(7.2.1)为可分离变量的微分方程. 设)(y g ≠0,则方程(6.2.1)改写为: dx x f dy y g )() (1=, 上式两边积分,可得 ??=dx x f dy y g )()(1. 上述将微分方程化成分离变量形式求解的方法,称为分离变量法. 注:在分离变量时,未知函数y 的函数和微分要写在等式的左边. 例1 求微分方程)3(2'+=y x y 的通解. 解1: 原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,3ln 12c x y +=+即.312-±=+c x e y 记1c e c ±=,则微分方程的通解为 32 -=x ce y (c 为任意常数). 解2:

原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,ln )3ln(2c x y +=+即,3ln 2x c y =+23x ce y =+ 则微分方程的通解为 32 -=x ce y (c 为任意常数). 注:为了简化运算,规定: (1) 微分方程中出现形为 ?u du 的积分时,可不按不定积分基本积分公式表写成 ln du u c u =+?,而是写成ln du u u =?; (2) 不定积分等式中至少有一个形为?u du 的积分时,任意常数不写成c ,而写成c ln 并放在等式右侧. 例2 求微分方程y xy ='的通解. 解: 分离变量,两边积分, 得 ,dy dx y x =?? c x y ln ln ln += cx ln = 则微分方程的通解为cx y = (c 为任意常数). 例3 求微分方程dx e x dy x e y y )1(2)1(2+=+的通解. 解: 分离变量,两边积分, 得 dx x x dy e e y y ??+=+2121, c x e y ln )1ln()1ln(2++=+ )1(ln 2x c +=, ).1(12x c e y +=+ 则微分方程的通解为 ]1)1(ln[2-+=x c y (c 为任意常数). 例4 求微分方程)'('2 y y a xy y +=-的通解.

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

高阶方程的降阶法幂级数解法

1 / 3 4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d m l ?,所受的力为?sin mg -. 于是单摆方程为??sin 22l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ?=知,dt d d dv dt dv dt d ???? ==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?+ +-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210 a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-?, 1 3134673(31) k a a k k += ??????+, 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36 347 01[1][] 232356 2356(31)33434673(31) n x x x x x y a a x n n n n =+++ ++++++ ?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个

任意常数0a 及1a )便是所要求的通解。 例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?+ +-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0, ,,1 n n a a a a a n -==== - 因而 5678911 11,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 5 213 2! !k x x y x x k +=+++ ++ 2 4 22 (1),2! ! k x x x x x xe k =+++ ++= 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方

微分方程的幂级数解法

微分方程的幂级数解法 函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻求函数关系,在实践中具有重要意义。在许多问题中,不能直接找到所需的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式,这样的关系式称为:微分方程。对其进行研究,找寻未知函数,称为解微分方程。本章主要介绍微分方程的一些基本概念和几种常用解法 微分方程的幂级数解法 当微分方程的解不能用初等函数或其积分式表达时,我们就要寻求其它解法。常用的有幂级数解法和数值解法。本节我们简单地介绍一下微分方程的幂级数解法。

求一阶微分方程(1)满 足初始条件的特解,其中函数 f (x , y)是、的多项式: . 这时我们可以设所特解可展开为 的幂级数 (2) 其中是待定的系数,把(2)代入(1)中,便得一恒等式,比较这恒等式 两端的同次幂的系数,就可定出常数 , 以这些常数为系数的级数(2)在其收敛区间内就是方程(1)满足初始条件 的特解。 例1求方程满足的特

解。 解这时,故设 , 把及的幂级数展开式代入原方程,得 由此,比较恒等式两端x 的同次幂的系数,得 于是所求解的幂级数展开式的开始几项为 。 关于二阶齐次线性方程用幂级数求解的问题,我们先叙述一个定理: 定理如果方程(3)中的系数P(x)与Q(x)可在-R<x<R 内展开为x的幂级数那么

在-R<x<R内方程(3)必有形如 的解。 例 2 求微分方程的满足初始条件 , 的特解。 解这里在整个数轴上满足定理的条件。因此所求的解可在整个数轴上殿开成x的幂级 数(4) 由条件得。对级数(4)逐项求导,有 , 由条件得.于是我们所求方程的级数解及的形式已成为 (5) (6) 对级数(6)逐项求导,得

线性常微分方程的级数解法

第四章 线性常微分方程的级数解法 4.1 常点邻域之级数解法 ① 常点邻域的级数解概念 ---- (二阶线性常微分方程的一般形式) 0)()(=+'+''w z q w z p w (4.1) ----(常点概念) 对于式(4.1)中,若)(z p 与 )(z q 在某点及其邻域内解析,则称此点为常点; 反之,若)(z p 与)(z q 至少一个在该点不解析,则称此点为奇点。 ----(常点邻域内解的存在定理) 若)(z p 与 ) (z q 在 R z z <-0内单值解析,则方程(4.1)在 R z z <-0内存在单值唯一的解析解。 ----(常点0z 邻域内之级数解的一般形式) 若 )(z p 与)(z q 在R z z <-0内单值解析,则对于式 (4.1),可设级数解∑∞ =-=0 0)(n n n z z a w ,再将 ) (z p 与 )(z q 在R z z <-0内展为泰勒级数,代入式(4.1)以 确定级数解之待定系数。 ② 勒让德方程之级数解 ----(勒让德方程形式)

0)1(2)1(2=++'-''-y l l y x y x (4.2) ----(在常点0=x 邻域内的级数解) 分析: 由1 2)(2-= x x x p 及2 1) 1()(x l l x q -+=,可知0=x 为常点;故可设:∑∞ ==0 n n n x a y , 相应:∑∞ =-='1 1 n n n x na y ,∑∞ =--=''2 2)1(n n n x a n n y , 代入方程(4.2),得: )1(2)1()1)(2(0 2=++--- ++∑∑∑∑∞ =∞ =∞ =∞ =+n n n n n n n n n n n n x a l l x na x a n n x a n n ,即: n n a l l n n a n n )()1)(2(222--+=+++,或 n n a n n l n l n a ) 1)(2() 1)((2++++-=+;显然有: 02!2)1)((a l l a +-= ,13!3) 2)(1(a l l a +-=, 04! 4)12)(2)(1)((a l l l l a ++-+-=, 15! 5)4)(3)(2)(1(a l l l l a +-+-=,即 02)! 2() 12)(22()1)((a k l k l k l l a k +---+-= , 012)! 12() 2)(12()2)(1(a k l k l k l l a k ++--+-= + ;相应级 数解为两个线性无关解的迭加: ∑∑∑∑∞ =++∞ =∞ =++∞ =+=+ = 1 21210 220 1 2120 22k k k k k k k k k k k k x A a x A a x a x a y (4.3)

全微分方程的不定积分解法及其证明

全微分方程的不定积分解法及其证明 一个一阶微分方程写成 P (x,y ) dx + Q (x,y ) dy = 0 ⑴ 形式后,如果它的左端恰好是某一个函数u= u (x,y ) 的全微分: du (x,y ) = P (x,y ) dx + Q (x,y ) dy 那么方程⑴就叫做全微分方程。这里 5u 5x = P (x,y ), 5u 5y = Q (x,y ) 方程⑴就是du (x,y ) = 0,其通解为: u (x,y ) = C(C 为常数) 可见,解全微分方程的关键在于求原函数u (x,y )。因此,本文将提供一种求原函数u (x,y ) 的简捷 方法,并给出证明。 1引入记号 为了表述方便,先引入记号如下: 设M (x,y ) 为一个含有变量x,y 项的二元函数,定义: ⑴“M (x q ,y ) ”表示M (x,y ) 减去它里面含有变量x 的项; ⑵“M (x,y q )”表示M (x,y ) 减去它里面含有变量y 的项; 注意:常数项看作既不含变量x 也不含变量y 的项。 现举一例如下: 设:M (x,y ) = xy + x ey+ x 1- x + sinx+ co sx co sy + y 2+ 1 按记号定义有: M (x q ,y ) = M (x,y ) - (x y + x ey + x 1 - x + sinx + co sx co sy ) = y 2 + 1 M (x,y q )= M (x,y ) - (x y + x ey + co sx co sy + y 2) = x 1 - x

+ sinx + 1 2u (x,y ) 的简捷求法 引理设开区域G 是一个单连通域,函数P (x,y ),Q (x,y ) 在G 内具有一阶连续偏导数,则 P (x,y ) dx + Q (x,y ) dy 在G 内为某一函数u (x,y ) 的全微分的充分必要条件是等式 5P 5y = 5Q 5x

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y ’=p 则y ”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C 1) 即dy/dx=φ(y,C 1),即dy/φ(y,C 1)=dx,所以∫dy/φ(y,C 1)=x+C 2 5.二阶常系数齐次线性微分方程解法 一般形式:y ”+py ’+qy=0,特征方程r 2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y ”+py ’+qy=f(x) 先求y ”+py ’+qy=0的通解y 0(x),再求y ”+py ’+qy=f(x)的一个特解y*(x) 则y(x)=y 0(x)+y*(x)即为微分方程y ”+py ’+qy=f(x)的通解 求y ”+py ’+qy=f(x)特解的方法: ① f(x)=P m (x)e λx 型 令y*=x k Q m (x)e λx [k 按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m (x)的m+1个系数 ② f(x)=e λx [P l(x)cos ωx+P n (x)sin ωx ]型 令y*=x k e λx [Q m (x)cos ωx+R m (x)sin ωx ][m=max ﹛l,n ﹜,k 按λ+i ω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m (x)和R m (x)的m+1个系数

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的 连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2) 的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y Λ为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k Λ使得当在该区间内有02211≡+++n n y k y k y k Λ, 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r ,

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土 01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我 们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法1可.分离变量的方程 dy g ( y )dy?f (x )dx ,或 ?f (x )g (y ) dx 其特点是可以把变量 x 和 y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例 1.求微分方程 dx?xyd?y 2 dx?ydy 的通解 . 解 2 先合并 dx 及 dy 的各项 ,得 y (x 1)dy ( y 1)dx ?? ? 设 2 1 0, 1 0, y dy? 1 dx y ? ? x ? ? 分离变量得 2 x?1 y ?1 两端积分 y dy? 1 dx 得 1 ln | 2 1| ln | 1| ln | | 2 x? 1 y ?1 2 2 2 ( x?1) 2 2 2 ?C ( x?1) 2 . 于是 y ?1 ??C 记 C??C , 则得到题设方程的通解y ?1 1 1 2.齐次方程 dy y (1) ?f ( ) dx x dy (2) ?f (ax?by?c )(a ,b 均不等于 0) dx 例 2 求解微分方程 dx dy . 2 2 ? 2 x ?xy?y 2 y ?xy y 2 y ? ?? dy 2 2? ? 解 原方程变形为 2y ?xy ? x x , ? 2 2 ? ? 2 dx x ?xy?y y y ? ? 1? ?? ? x x ? ? y dy du 2 du 2u ?u , 令 u? , 则 ?u?x , 方程化为 u?x ? 2 x dx dx dx 1 ?u?u ?1 ? 1 1 ? 2 1 ? dx 分离变量 得 ? ? ? ?? ? ?du? , ?2 ?u?2 u? u?2 u?1? x 两边积分得

考研高数:幂级数的收敛半径,收敛区间,收敛域

考研高数:幂级数的收敛半径,收敛区 间,收敛域

综合上述,整体法适用于任何级数,而根值法或比值法适用于所有项都可取到或者删掉有限项后的级数。大家做题时,按照级数的类型,选方法之后再计算即可。 凯程考研辅导中心优势 凯程考研辅导中心创办于2005年4月,具有强大高校背景,是中国最早专门从事考研高端辅导的机构之一。并积累了多年的考研辅导经验。 成功学员多 至今已有数千位学员进入全国各大高校研究生院学习,这些同学的名单在网上有据可查。而且从2005年到2010年,据不完全统计,每年凯程考研辅导中心的成功学员人数要比前一年翻一倍,所谓的成功学员,是指通过初试,进入各校复试并最终录取的同学。 师资力量强 首先,所有老师均来自北京各高校的教师,且讲任何课程备课必须超过一个月,那些虽然有名但是准备草草的老师从来不能站在讲台上,这是对老师的硬性要求。 其次,所有老师都必须经过专门的培训与试讲环节且试讲必须得到听课学生90%以上的好评,好评不够马上淘汰。 第三,讲授的内容必须是应试化的,让学生越听越迷糊的老师,也坚决不要。 课程质量高 采取公共课小班授课,专业课一对一辅导的方式,针对不同程度学生的特点及程度差异,因材施教,精讲精练,才能达到理想的效果 服务效果好 服务,是一种理念,更是一种信念。只有经历过考研的人才能够理解考研对于每个人,每个家庭的意义。凯程考研的全部管理人员都有着考研成功的经历,才能够给广大考生提供贴心、贴切的服务,保证考生没有后顾之忧的全力以赴进行备考。. 凯程教育:

凯程考研成立于2005年,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观口号:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经验、历年辅导效果、学员评价等因素进行综合评价,询问往届学长然后选择。判断师资力量关键在于综合实力,因为任何一门课程,都不是由一、两个教师包到底的,是一批教师配合的结果。还要深入了解教师的学术背景、资料著述成就、辅导成就等。凯程考研名师云集,李海洋、张鑫教授、方浩教授、卢营教授、孙浩教授等一大批名师在凯程授课。而有的机构只是很普通的老师授课,对知识点把握和命题方向,欠缺火候。 对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。在考研辅导班中,从来见过如此辉煌的成绩:凯程教育拿下2015五道口金融学院状元,考取五道口15人,清华经管金融硕士10人,人大金融硕士15个,中财和贸大金融硕士合计20人,北师大教育学7人,会计硕士保录班考取30人,翻译硕士接近20人,中传状元王园璐、郑家威都是来自凯程,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,更多专业成绩请查看凯程网站。在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。最好的办法是直接和凯程老师详细沟通一下就清楚了。 建校历史:机构成立的历史也是一个参考因素,历史越久,积累的人脉资源更多。例如,凯程教育已经成立10年(2005年),一直以来专注于考研,成功率一直遥遥领先,同学们有兴趣可以联系一下他们在线老师或者电话。 有没有实体学校校区:有些机构比较小,就是一个在写字楼里上课,自习,这种环境是不太好的,一个优秀的机构必须是在教学环境,大学校园这样环境。凯程有自己的学习校区,有

相关文档
相关文档 最新文档