文档库 最新最全的文档下载
当前位置:文档库 › 基于FPGA的片内并行机网络模型优化策略分析

基于FPGA的片内并行机网络模型优化策略分析

基于FPGA的片内并行机网络模型优化策略分析
基于FPGA的片内并行机网络模型优化策略分析

嵌入式技术

肷人瓦玟不EmbeddedTechnology

基于FPGA的片内并行机网络模型优化策略分析串

李长松1’2

(1.中国科学院国家天文台北京100012;2.中国科学院研究生院北京100039)

摘要:针对基一2FFr处理算法,采用分块存储思想,将存储器、处理机数据交换网络模型进行优化。优化后的网络模型数据通路数仅为20,降低为原来的4%以下,且不随F兀1计算点数增多而增加。整个设计在Virtex系统芯片XCV800上实现。

关键词:实时信号处理;并行计算;FFT;网络模型

Analysisonparallelcomputer7

snetworkmodulebasedonFPGA

LI

ChangSon91?2

(1.NationalAstronomicalObservatories,ChineseAcademyofSciences,Beijing100012,China;

2.GraduateUniversityoftheChineseAcademyofSciences,Beijing100039,China)

Abstract:Directedtowardstheradix-2FFralgorithm,thispaperintroducesanewmethod,whichcanoptimizethenetwork

modulebetweenthe

memor)randtheprocessingunit,byusingtheblockmemory.Afternetworkoptimization,thelinknumberisre-ducedtolowerthen4%ofnormaldesign.andnotincreasedwithFf-I'points.ThisdesignisrealizedonXCV800.KeyworcLs:reM-fimesignalprocessing;parallelcomputing;FFr;networkmodule

实时信号处理系统【llF-泛应用于图像处理、语音处理、智能仪表、通信以及自动控制等领域。F丌/D兀’作为数字信号处理(DSP)系统中常用的积分变换算法被普遍使用。同时FFrr运算的计算量很大,往往构成实时信号处理的计算瓶颈。本文以空间太阳望远镜的相关跟踪系统为研究背景121,考虑我国可应用到航天环境的高可靠性的电子系统其主频往往不高于25MHz,所以采用并行计算的策略。通过对计算资源与速度的平衡分析,选择在FPGA内构造两个蝶形处理器实现并行计算。两个处理机采用共享存储器模式f引。如果在存储数据与处理机之间采用传统数据总线方式,需要总线仲裁器对总线的请求进行分时应答,难以实现数据从源节点到目标节点的实时传输;而采用点对点任意连接的网状结构会使设计复杂度大幅增加。因此,本文针对FFT运算特点,设计了存储器与并行机的网络模型。该网络模型没有数据传输延迟,但结构得到了极大简化。

1并行FFT结构分析

本文针对32x32点序列的图像进行FFTr变换。可以采用行列变换的形式,对于每行,列数据可以用基一2算法141进行计算。基一2算法计算的核心为蝶形运算。为了

?国家自然科学基金委员会天文联合基金项目(10778628)

32欢迎网上投稿WWW.chinaaet.com实现并行处理,在FPGA内部构造出两个蝶形运算模块,结构如图1。

图1双核F盯计算单元结构图

图l中RAM为FPGA块存储器,存放原始数据和FFT之后的最终结果。“Base一2Core”为蝶形运算单元,图中为两个蝶形运算单元并列构成双核结构,其中每个

《电子技术应用》2008年第9期

万方数据

嵌入式技术7Em吲aeanc№109y

蝶形运算单元的输入和输出都是两个数据通道。InputBuffer是存储器与蝶形运算单元之间的数据缓存,它逐行接收从存储器RAM发来的数据,然后按一定顺序发送给两个处理单元,并缓存中间结果。OutputBuffer为输出缓存,它将FFr最后一级的计算结果进行缓存,等待主存储器RAM空闲时再发送过去。

2处理机与存储器网络模型

双核处理器的数据输入和输出都是4个通道,每个通道均为复数形式的18位浮点数据(共计36位宽度)。4个通道同时工作意味着有相对应的4个并行的存储器通道。而输入序列是存储在输入缓存中的两行,列共64点数据。如果输入缓存采用FPGA内部的BlockRam方式实现,则难以实现4个通道同时工作。因为32点的基-2FFF共分5级运算,每一级运算请求的数据顺序不同,即使构造4端口的存储器也无法实现同时读取任意4个数据。如果用FPGA内部的查找表(LUT,LookUpTable)实现分布式存储,则存储器与双核处理器组成的网络结构如图2。

图2存储计算网络模型

图2中上方的圆形区域代表存储的数据,下方的圆形区域代表双核处理器的4个通道。如果每个数据都可能进入双核处理器的每一个输入端。则数据通路如同图2的网络结构。假设上方的数据点数为肘,下方的数据通路为Ⅳ,则连接复杂度计算公式为:

P=2xCWxCⅣ=2MxN(1)其中,P为通路个数,不同方向表示不同的通路,即公式中的系数2。对于本文情况,数据点肘为64,计算通路|7、r为4,所以连接复杂度为512。

3基于R算子的网络模型简化

在基于FFr的蝶形运算中,并非所有数据都有进入任何数据通道的可能性,而是按照一定的规律顺序进入4个计算通道。根据并行FFF算法,并行FFfr可以表示为如下递归形式151:

施+t=CE。一IPNX,i(2)其中,毛为第i级变换;C为和差算子;E。为旋转因子的乘积运算;n为完全混合算子。其中C和E。的作用是完成蝶形运算,而R的作用是将数据进行重排。因此可以根据数据重排规律进行网络优化。

R算子的作用是将序列(a,b,c,d)转化为序列(a,c,《电子技术应用》2008年第9期b,d)。假设输入序列和输出序列均转化为二维形式:聋=匕批=瞄二]㈣这样完全混合算子的作用相当于矩阵的转置。因此设计上既不采用FPGA内部BlockRam设计输入缓存,也不用分布式存储方法,而是利用分块存储的方式。假设将存储器分为4块,则基于完全混合算子的数据读写方式如图3所示。

?叫

图3分块存储的读写模式

图3中圆形区域表示存储的分块,4个存储区域构成一个缓存整体。为了实现矩阵的转置,将读和写的控制分开,读取序列为上半区和下半区,写入序列为左半区和右半区。图中实心圆形为活动存储单元.空心圆形为非活动存储单元。图中上两个矩形分别代表读取的两种模式,下两个矩形则代表写入的两种模式。通过读取和写入的不同实现了序列的转置。图3中同时只有两个存储区域活动代表双核处理器的一个计算单元,即两个计算通道。另外两个计算通道情况相同。基于以上设计模型,实际的数据连接模型如图4。

图4优化后的存储计算网络模型

图4中,上面8个圆形为存储区域,下面4个圆形为计算通路。根据建模分析所有的连接情况如图中的网络,其中箭头代表方向。该图形左右对称,分别代表两个相同的处理单元。它们之间的交叉线表示在FFF最后一级运算时存在数据交换。经初步分析,优化后的网络模型的数据复杂度仅为20。这样通过将输入缓冲存储器划分为8个模块后,可以使设计的复杂度减少25.6倍,即降低为原来的4%以下。而且,随着计算点数的增加,网络的规模保持不变。根据这种方法得到单处理器和多处理器的复杂度如表1所示。

33

o@一一◇O

o◇

◇o

◇o

◇◇

警.、、\

◇';≤:一

零古■

"≮=)

魄繁、..、/

V06

万方数据

嵌入式技术

肷人瓦玟不表1设计复杂度与处理器关系表

处理器个数

单核(2通道)

双核(4通道)

设计

优化前128512复杂度

优化后

20

4实验结果

根据优化模型分别设计相应的输入缓存InputBuffer和输出缓存OutputBuffer。分别对这两个单元进行控制信号仿真,仿真波形见图5、图6。

图5、图6中“rl”为行列变换转换控制信号。对于输出缓存,“we”和“en”分别为写和读控制信号。可以看出,在行变换和列变换的状态下,分别对应16次读写信号。整个FFT的时间可以从缓存的工作状态估算出来,即190斗s一300ps之间,约llOpes。

对于32x32点的二维Ff-I.,每行/N变换需要分为5

级运算,每次蝶形运算同时有4个数据到达。因此完成一次二维FFr共需要32×32×2×5,4=2560个时钟周期。工作在25MHz的主频下,计算时间约为1021xs。估算时间与仿真波形时间相近,可见整个计算过程中数据交换不存在网络延时。

综上所述,在FPGA片内实现并行计算时,存储器采用FPGA内的“BlockRAM”很难满足多通道数据计算的

需求,而分布式存储模式则随F丌计算点数增多而消耗

过多资源。通过对特定FFI"算法进行分析,改为分块式存储,将网络模型进行了简化,使存储单元与处理器之间的数据通道数缩减为20,

并且不随F丌计算点数的增

多而增多,将资源消耗控制在一定规模以内。整个并行FFT计算在VirtexXCV800上实现,经测试,计算时间仅为1101上s,符合设计需求。参考文献

[1】苏涛,何学辉,吕林夏,等.

实时信号处理系统设计[MI.西安:西安电子科技大学

出版社,2006

[2】布朗,施密特.空间太阳望

远镜评估研究报告【M】.中国科学院北京天文台,1997.【31曾泳泓,成礼智,周敏.数字

信号处理的并行算法[M】.长沙:国防科技大学出版社,

1999.

【41胡广书.数字信号处理【M】.北京:清华大学出版社,1997.【51蒋增荣,曾泳泓,余品能.快速算法【M】.长沙:国防科技

大学出版社,1993.

(收稿日期:2008—03-10)

暑尸宠T爹北京思普瑞特科黝2僦彩溉”4“㈣垫坐竺嵌入式‘打技发展有限公司印机革命性突破”D6’隆重上嵌入式打印机作为微型打印机的一员,正广泛应用于仪器、仪表、消防、医疗、衡器、便携设备。坚持“以顾客为中心”、“持续改进”不断开拓创新一直是思普瑞特(SPRT)人追求的基本理念。秉承为用户着想,从用户的实际需求出发,我们设计开发了这款具有“革命性”突破的D6系列产品,优势为:

(1)微型打印机也可以“DIY”,模块化设计,解决用户面板大小与纸卷直径大小的矛盾选择;(2)超小,超薄,追求极致,为用户节省出尽可能大的空间与位置,设计更灵活、方便;(3)用户面板“一体化”设计,完全嵌入用户面板,整体可观性强;

(4)极为方便的“前安装”方式,简化安装程序,从打印机前方即可方便装卸。欲了解详情请浏览:WWW.sprinter.corn.en或见本期第8页右。

34

欢迎同上投稿WWW.chinaaet.corn

《电子技术应用》2008年第9期

袱万方数据

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

校园网络流量估算模型

宝鸡文理学院 论文题目:校园网络流量估算模型 09级姓名:王军涛系别与专业:数学系数学与应用数学09级姓名:李静系别与专业:数学系数学与应用数学09级姓名:马华璐系别与专业:物理系测控技术与仪器

校园网络流量估算模型 摘要 随着时代的发展,校园网已经在各个高校相当普遍,由于网络互联环境的复杂,导致了网络的可靠性越低,网络服务越容易出现问题,网络的性能就更容易受到影响。传统的网络管理是在网络报警之后,根据网络日志或网络提示解决潜在的或已经出现的问题,是一种响应式的行为。这个时候的网络服务可能已经受到影响。为了使学校的网络部门提前处理掉潜在的问题,从而使校园网络能更好的服务学校的教学和生活,我们必须精确地估计和预测校园网流量的数据高峰,从而对校园网流量的周期性、突发性作出准确地预测,以达到防患于未然。为此,我们以某学院某个周期(一周内)按照固定时间间隔统计的两个核心服务器的网络发送请求数据(单位:字节)和收到数据(单位:字节)以及平均发送和收到的数据(单位:字节)信息为依据,通过数学建模提出了一套完整的预测方案。具体做法如下:首先,我们基于自相似性提出了校园网络模型为: 1,5 1.5 1.5 () 2.6(121)1,2,3 r k k k k k =?+-+-= 其次,从所给数据我们分析得到了每天各个时间段的网络流量有较大的差别,为此根据数据流量的多少,我们将每天划分为网络高峰期,正常期,空闲期三个时期,并采用了R/S分析法表示出了自相似性参数H的表达式,然后通过MATLAB 软件编程计算出了上述三个时期H的值分别为 10.844 H=,20.735 H= 30.713 H= 接着我们通过相关的流量数据和每天各个量得数据关于时间的走势图对校园网络实际流量数据周期性、突发性进行了分析,得到结论是七天中每天都是有周期的,但是每天的最高峰,最低峰都是不同的,每天的流量都会对本周的流量产生影响,而且波峰总在星期六和星期日之间游动,波谷总在星期二和星期四之间游动随后我们通过题中所给的数据对我们的预测模型进行了验证与检验,发现我们预测的与实际测量的比较接近。最后我们通过所建的模型以及得出的结论对相关部门提出了如下建议1.加强校园网络安全管理;2.构建多功能校园网络系统,实现网络资源高度共享;3.网络速度慢,稳定性差,制约了社会对学校的关注度; 4. 师生共同建设高水平的管理团队,取长补短,完善网络应用及维护; 5.实行同域内高校共建主干网,分而自治,加强网络信道的建设。 关键词:自相似性长相关性 Hurst参数 R/S分析方法

流线优化模型与算法研究及应用

配套的处理方式;果蔬采后商品化处理量几乎达到了100%,形成了完整的果蔬冷链体系。而我国的产地基础设施不完善,未能解决分选、分级、预冷、冷藏运输和保鲜等采后果蔬的处理问题。我国果蔬冷链存在许多问题:产地预冷环节薄弱;冷藏运输工具落后;冷库发展水平低;缺乏有影响力的第三方冷链物流。我国果蔬冷链发展水平要赶上发达国家还有较长的路要走。 要完善我国的果蔬冷链业,除了大力研发性价比合理、符合国情的相关冷链设备、设施以外;还需要全面的对整个果蔬冷链过程中存在的影响果蔬产品质量的风险因素进行分析和评价,从而一一破解;更需要系统地梳理整个果蔬冷链链条,是指实现协同化,构建果蔬冷链质量质量保障体系。这样才能真正确保果蔬产品的质量安全,确保千万消费者食用上安全放心的果蔬产品。 流线优化模型与算法研究及应用 张锦*(交通与物流学院) 1 研究背景 目前我国物流产业正处于高速发展期,理论体系与应用研究正在不断完善。物流活动的目的就是使物流服务来满足物流需求,即通过仓储、加工、运输、配送、包装、装卸搬运等活动来满足社会经济活动中供应商、制造商、零售商、消费者等需求方的对物的移动、储存与服务的需求。在宏观层面的区域及城市经济和微观层面的制造、贸易、消费等典型社会经济活动中的物流活动可抽象为具有特定需求的空间结构,称作物流需求网络。 在物流系统中,由若干特定的点、线和特定的权构成的,反映物流服务与需求关系的供需网络称之为流线网络,它具有以下典型特征。 1.反映了仓储、加工、运输、配送、包装、装卸搬运等物流服务与需求方在物品数量、到达时间、物流费用等方面的物流需求间的供需关系。 2.具有嵌套、多层、多级、多维、多准则、拥塞等典型的超网络结构特征,并且具有连接供需两个物流网络的超网络结构。 3.当实际需求为特定值时,物流服务追求的目标为用恰当的费用,在恰当的时间把恰当数量的恰当物品,经恰当的路线送到恰当的地点。 物流供应网络与物流需求网络之间的关系可由超网络结构进行刻画,用匹配度刻画物流服务与物流需求之间的适应程度。 2 国内外研究现状 目前,国内外学者对流线的组织与优化问题研究较少,与此问题相关的内容包括物流网络、物流网络分配、动线优化、超网络理论与应用、变分不等式算法及其在供应链网络中的应用等内容。 2.1 物流网络研究现状 国外的学者大都倾向从微观的企业角度去研究物流网络的资源配置和协调问题,如物流基础设施、市场竞争机制以及配送运输等问题。这类研究大多利用数学规划法、系统仿真法、启发式 *作者简介:张锦,男,教授。

交通流量数学模型

交通流量数学模型 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

交通量优化配置 摘要 城市交通拥挤现象是城市交通规划最为明显的失策现象之一。从某种程度上说,城市交通拥挤现象是汽车社会的产物,特别是在人们上下班的高峰期.交通拥挤现象尤为明显。“据统计,上海市由于交通拥挤,各种机动车辆时速普遍下降,50年代初为25km现在却降为15kin左右。一些交通繁忙路段,高峰时车辆的平均时速只有3—4km。交通阻塞导致时间和能源的严重浪费,影响城市经济的效率。”城市交通拥挤现象是现代我国大中城市存在的普遍问题.由于公交车、小汽车流量较多,加上餐饮业商贸功能聚集,使本来就不宽的道路变得拥挤不堪,给进行物资运输,急救抢险,紧急疏散等状况带来不便。其中,城市各路段交通流量的合理分配可以有效缓解道路发生拥挤。接下来,我们将模拟一个交通网络,用节点流量方程、环路定理、网络图论模型去合理分配该交通网络的交通流量已达到交通量优化配置。 关键字:交通流量、节点、环路、网络图论

一、问题重述 我们模拟某区域道路网络如图1所示,每条道路等级(车道数)完全相同,某时间段内,有N辆车要从节点1出发,目的地是节点0(假设该时间段内,路网中没有其它车辆)。在该时间段内,道路截面经过的车辆数越多,车辆在该路段行驶的速度就越慢。 我们在此要解决的问题是确定有效的行驶路径及其算法,合理分配每条道路的交通流量,使N辆车从节点1到节点0的总行驶时间最小。 二、模型假设 1)各路段单向通车 2)道路截面经过的车辆数与车辆在该路段行驶的速度成反比例函数关系 3)车流密度均匀不变 4)假设N辆车在极短时间内全部开出(即把车当做质点)5)各环路两条支路对时间负载均衡

网络优化报告

网络优化报告 网络优化报告流量监测是网络管理的基础。从网络体系架构来说,网络流量是一切研究的基础;它能直接反映网络性能的好坏;更能帮助判断网络故障及网络安全等状况。随着Ineernet重要性的日益提高和网络结构的日益复杂.人们经常会遇到网络拥塞和服务质量低等一系列问题.越来越有必要对网络的整体拓扑结构和网络行为进行深入的了解、分析,以利于发现网络瓶颈,优化网络配置,并进一步发现网络中可能存在的潜在危险。为此。需要对大规模网络结构进行动态描述,并根据网络流量的变化分析网络的性能,为加强网络管理、提高网络利用率.因此网络流量的测量与分析一直为人们所关注。 网络测量技术始于上世纪70年代初,发展于80年代.90年代已渐成体系.在网络测量的方法、工具及流量的测量模型等方面取得了长足的发展。美国在1992年开始着手IIltemet特征的研究.其中比较著名的项目有NIMIⅢationalIntemetMea.surementInfrastnlctu商。它是一个完整的网络测量基础框架,并且是第一个执行大规模端到端ntemet行为测量的软件.NIMI主要采用主动测量技术.主要目的是要测量全球的Intemet.致力于建立一个总体的可扩展的网络测量基础框架.而不是为特定的分析目标做一组特定的测量操作。

网络流量简而言之就是网络上传输的数据量。就象要根据来往车辆的多少和流向来设计道路的宽度和连接方式一样,根据网络流量设计网络是十分必要的。在网络中不同的位置通过不同的方法采集不同空间粒度和不同时间粒度下的网络流量,并借助于数理统计、随机过程和时间序列等数学手段针对预先所定义的一系列的网络流量的相关属性对网络流量展开分析与研究,得到网络流量的不同属性在其构成、分布、相关性和变化规律与趋势等方面的特征,简称流量测量;并且所得到的"特征"叫做网络流量特征,简称流量特征。 网络流量贯穿整个网络,没有网络流量,网络应用也就无从存在。如果把TCP/IP协议栈比作成为网络的灵魂,通过网线等连接起来计算机、交换机和路由器等网络设备比作成为网络的骨架,那么网络流量可以看作成是网络中流动的血液。这样,对于研究网络的可用性、可靠性和稳定性而言,研究网络流量显然是获得第一手有效参数的最为直接和最为基础的手段之一。应用各种主要基于硬件或者软件或者硬软件相结合所实现的流量测量与分析系统,实现网络流量的监测,并根据你的应用情况对网络流量进行一定的干预,以保证关键性的应用。 流量监测包括测量工具/系统的部署、流量数据的采集、数据包的解析和处理、测量实体量化数值的获得与统计分

基于数学模型的网络优化方法研究

基于数学模型的网络优化方法研究 赵鹏 通信一团技术室 摘 要 为了提高网络链路的利用率,解决网络传输中的最大流问题,该文利用建立数学模 型的方法来求解网络的传输路径,研究了基于路径的网络优化方法。该方法能够极大地提高网络的链路利用率,从而降低网络的拥塞,使得网络的性能得到较大改善。 关键词 网络优化 最大流 数学模型 1 引言 随着网络技术的进步和人们对多媒体综合业务需求,传统的数据网络逐渐转向多媒体网络,在这过程中,除了相关服务以外,我们还面临许多极具战性的网络设计和优化问题。网络优化的目标是提高或保持网络质量,而网络质量是各种因素相互作用的结果,随着网络优化工作的深入开展和优化技术的提高,优化的范围也在不断扩大。 在计算机网络优化设计中,各条链路的容量分配和各节点间的路由选择是两个重要问题。在给定网络拓扑结构和各节点间传输流量的条件下,如何确定各条链路的容量大小和选择各节点间的最佳路由,使整个网络成本费用最低并能满足规定的性能指标呢? 许多网络优化的文献,研究针对CDMA 网络、GPRS 网络、GSM 网络、PHS 网络等具体网络在投入运行后,对网络进行参数采集、数据分析,找出影响网络质量的原因,通过技术手段或参数调整使网络达到最佳运行状态,涉及到交换网络技术、无线参数、小区参数配置、信令和设备技术等方面。 本文针对目前许多网络传输链路和网络设备没有得到充分利用,从而影响网络性能的问题,利用网络优化方法从理论上进行分析,研究了用于提高网络链路利用率的基于路径的网络优化方法,该方法能够充分地利用网络链路进行流量传输,从而改善网络的整体性能。 2 网络优化理论 很多情况下可以将网络优化问题转化成数学问题进行研究和分析。从根本上讲,优化问题包含三个基本要素: 决策变量集合或向量:n R x ∈(本文,x 代表在一条或多条路径上的流量) 目标函数R R x f n →:)( 一组约束条件g(x)和h(x),用来定义x 的范围。 解决优化问题实际上就是找出一个点x*,使得f(x)最大化或最小化。 典型的网络优化问题包含找出一组路由和该路由上的流量值以便达到最大或最小化目标函数的目的。目标函数可以代表最大链路利用率、平均延迟或其他指标。 基于路径的问题首先要计算出网络流可能流经的路径,要最大限度的利用网络链路,同时路径上的流量不能超过链路容量。 对于基于路径的网络优化问题可以简单表示成: max f(x) s.t. ∑∈=P p p b x

08第八章___神经网络的参数优化设计方法

1 第8章 神经网络的参数优化设计 在神经网络的泛化方法中,研究最多的是前馈神经网络的结构优化设计方法(剪枝算法、构造算法及进化算法等,我们将在以后各章讨论)。除了结构设计,其余前馈神经网络的泛化方法还有主动学习、最优停止法、在数据中插入噪声、神经网络集成及提示学习方法等,由于这些方法中神经网络的结构是固定的,因此神经网络性能是通过参数优化改善的,我们称这些方法为神经网络的参数优化设计方法。本章介绍最主要的参数优化设计方法,并给出了每种方法的算法实现和仿真例子。 8.1 主动学习 8.1.1 原理 按照学习机器对训练样本的处理方式,可将学习方式分为两类:被动学习方式和主动学习方式。被动学习是常用的学习方式,常被称为“从样本中学习” (Learning from samples ),该方式被动地接受训练样本,并通过学习从这些样本中提取尽可能多的信息。与被动学习相反,主动学习属于更高层次的、具有潜意识的学习。主动学习对训练样本的选择是主动的,通常通过对输入区域加以限制,有目的地在冗余信息较少的输入区域进行采样,并选择最有利于提高学习机器性能的样本来训练分类器,从而提高了整个训练样本集的质量。由上一章的讨论,训练样本质量对神经网络的泛化能力有极大影响,甚至超过网络结构对泛化能力的影响。因此采用主动学习方法,是改进神经网络泛化能力的一个重要方法。 主动学习机制大部分用于分类或概念学习[Baum1991,HwCh1990,SeOp1992]。在单概念学习中,Mitchell[Mitch1982]关于版本空间(Version Space)的论述有着较大的影响。下面,我们先简要介绍一下这一理论。 如果X 为一线性空间,概念c 定义为X 中点的集合。对目标概念t ,训练样本可写为()()x x t ,,其中X ∈x 为样本输入,()x t 为对x 的分类。如果t ∈x ,则()1=x t ,称()()x x t ,为t 的正样本;如果t ?x ,则()0=x t ,此时称()()x x t ,为t 的负样本。显然,对线性空间内的任何两个可分概念1c 和2c ,如果()()x x 1,c 是1c 的正样本(负样本),则()()x x 11,c ?必然是2c 的负样本(正样本),即任意两个可分概念的正负样本之间可以互相转换。如果某概念c 对x 的分类与目标概念对其的分类()x t 相等,即()()x x t c =,

网络流量分析解决方案

1 网络流量分析解决方案 方案简介 NTA网络流量分析系统为客户提供了一种可靠的、便利的网络流量分析解决 方案。客户可以使用支持NetStream技术的路由器和交换机提供网络流量信息, 也可以使用DIG探针采集器对网络流量信息进行采集。并且可根据需求,灵活启动不同层面(接入层、汇聚层、核心层)的网络设备进行流量信息采集,不需要改动现有的网络结构。 NTA网络流量分析系统可以为企业网、校园网、园区网等各种网络提供网络流量信息统计和分析功能,能够让客户及时了解各种网络应用占用的网络带宽,各种业务消耗的网络资源和网络应用中TopN流量的来源,可以帮助网络管理员及时发现网络瓶颈,防范网络病毒的攻击,并提供丰富的网络流量分析报表。帮助客户在网络规划、网络监控、网络优化、故障诊断等方面做出客观准确的决策。2方案特点 ● 多角度的网络流量分析 NTA网络流量分析系统可以统计设备接口、接口组、IP地址组、多链路接口的(准)实时流量信息,包括流入、流出速率以及当前速率相对于链路最大速率 的比例。 NTA网络流量分析系统可以从多个角度对网络流量进行分析,并生成报表,包 括基于接口的总体流量趋势分析报表、应用流量分析报表、节点(包括源、目 的IP)流量报表、会话流量报表等几大类报表。 ● 总体流量趋势分析 总体流量趋势报表可反映被监控对象(如一个接口、接口组、IP地 址组)的入、出流量随时间变化的趋势。 图形化的统计一览表提供了指定时间段内总流量、采样点速率最大值、 采样点速率最小值和平均速率的信息。对于设备接口,还可提供带宽 资源利用率的统计。 支持按主机统计流量Top5,显示给定时间段内的流量使用在前5位 的主机流量统计情况,以及每个主机使用的前5位的应用流量统计。 同时还支持流量明细报表,可提供各采样时间点上的流量和平均速率

网络流量预测模型研究

2017年第8期信息通信2017 (总第176 期)INFORMATION & COMMUNICATIONS (Sum. N o 176) 网络流量预测模型研究 陈广居\梁鹏2,王坤3 (1.94750部队福建连城366200;2.94937部队浙江杭州310021 ;3.94872部队江西樟树331204) 摘要:针对当前网络通信业务量大,业务种类多的特点,对近年来网络流量预测模型研究现状进行了综述,分析了多种网 络流量预测模型,针对网络流量的不同特点对各种模型从计算复杂度、应用场合及适用范围等方面展开比较分析。比较 结果表明,预测模型与所分析流量特性及应用场合关系密切,在具体应用中应充分考虑预测目标和具体的网络流量特 点,选择合适的预测模型。 关键词:短相关;长相关;线性预测;非线性预测;组合预测 中图分类号:T H393文献标识码:A文章编号:1673-1131(2017)08-0191-04 The R eserch o f N etw ork Traffic Prediction M odel C h e n G u a n g ju1, L ia n g P e n g2, W a n g K u n3 (1. U n it 94750 o f P L A, L ia n che n g F u jia n 366200, C h in a; 2. U n it 94937 o f P L A, H a n g zh o u Z he jia n g 310021, C hin a; 3. U n it 94872 o f P L A, Zhangshu Jia n gxi 331204, C h in a) A b s tra c t:F o r the characteristics o f the current ne tw o rk com m unication traffic, this paper presents an o ve rvie w on the study o f m odels for ne tw o rk traffic prediction in recent years, analyzes different kinds o f ne tw o rk traffic prediction m odels. In v ie w o f the different characteristics o f ne tw o rk traffic, the m odels are analyzed and com pared fro m the aspects o f com putational co m-plexity, application and scope o f application. T h e results p ro ve that prediction m o d e l should correlate to traffic characteristics and scene tightly. It needs to select the appropriate prediction m odels according to the target and the specific characteristics o f ne tw o rk traffic. k e y w o rd s: lo n g range dependence; short range dependence; linear prediction; nonlinear p rediction; com bination Prediction 〇引言 网络流量是网络运行的重要指标,其反映了网络的运行 状态,近年来网络流量建模和预测成为人们的研究热点。针 对网络流量特性进行建模是网络设计规划和网络状态分析的 前提,也对网络管理与故障处置、新的网络协议的开发以及提 高网络运行服务质量具有重大意义;网络流量预测模型的研 究对于更好地理解网络业务的性能和规律、规划网络设计、决 定网络拥塞控制、应用于网络安全、网络管理的异常检测、提 高服务质量意义深远。网络流量预测以过去的流量数据为依据,通过建立适当的数学模型对将来的流量状态进行预测。因此,掌握网络流量的特点对提高预测的精度和深入分析预测 本质尤其重要。在当前的一些网络流量预测资料中,大部分 的研究重点是对网络流量特性的数学分析,单纯针对网络流 量进行预测的研究不多,与之对应,这一领域的研究在河流流 量、道路交通、金融分析等领域中有较多的应用。本文对近年 来网络流量预测算法研究现状进行了综述,分析了多种网络 流量预测模型,并结合不同的网络流量特性对各种模型的适 用范围及应用场合进行了分析比较,最后得出结论,虽然智能 通信机房监控系统采用S O A P传输协议,这个协议是新时期 W e b S e r v ic e服务和物联网体系中的一种存在的标准传输协 议,S O A P协议定义了一个完善的逻辑业务服务请求者和逻辑 业务服务提供者之间相关的信息传输规范,促使X M L数据传 输更加安全,S O A P协议采用了传统的互联网传输协议,使物 联网作为数据传输的标准模式进行传输,可以为用户提供一 个格式化的相关协议信息,并且能够承载相关的物联网传输 协议,这些协议主要包括以下几个关键方面,S O A P封套信息、S O A P编码规则、S O A P R P C进行逻辑业务处理表示等。S O A 能够更好的实现信息的加工和服务,首先用户可以获取相关 的信号数据,接着可以分析信号的类型,如果信号为抽取信号,就可以实现数据抽取功能;如果信号为引用数据失效信号,则 可以将其划分到响应弓丨用数据失效弓丨擎中;如果信号为数据 已变更信号,则可以将数据推送到数据库中;如果信号为即时 获取,可以启动即时获取数据操作引擎。操作完成之后,这些数据均可以持久化地保存到数据存储器中,保证数据的及时 处理,进一步实现数据的加工和服务。通信机房监控系统是 现代无线通信的一个重要标志,物联网采用自适应技术,可以保证通信质量达到最优化,根据信道的传输环境的变化,适时 地改变N B-I O T的发送、接收参数。 3结语 随着我国通信事业的发展,通信机房包含的设备越来越多, 这些设备承载着数以亿计的资源,保?2联网软件的正常运行。 因此提高机房的智能化管理已经成为人们研究的重点,本文提 出利用物联网的数据感知、信息采集和数据分析功能,构建一个 实时的、动态的智能化机房,提高机房的运行管控成效。 参考文献: [1]陈武.物联网信息技术在数据机房建设中的应用研究[J]. 信息系统工程,2016(12):70-72. [2]李铁.基于物联网的机房温度报警系统设计与实现[J].中 国新通信,2017(3):65-66. [3]胥志强,何国平,杨漾.物联网技术在气象部门智能机房 建设中的应用[J].网络安全技术与应用,2017⑵:130-131. [4]王有为.基于物联网思维的高速公路变电所机房监控系 统[J].中国交通信息化,2016(8):116-117. 191

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

基于神经网络的优化计算实验报告

人工智能实验报告 实验六基于神经网络的优化计算实验 一、实验目的: 掌握连续Hopfield神经网络的结构和运行机制,理解连续Hopfield神经网络用于优化计算的基本原理,掌握连续Hopfield神经网络用于优化计算的一般步骤。 二、实验原理 连续Hopfield神经网络的能量函数的极小化过程表示了该神经网络从初始状态到稳定状态的一个演化过程。如果将约束优化问题的目标函数与连续Hopfield神经网络的能量函数对应起来,并把约束优化问题的解映射到连续Hopfield神经网络的一个稳定状态,那么当连续Hopfield神经网络的能量函数经演化达到最小值时,此时的连续Hopfield神经网络的稳定状态就对应于约束优化问题的最优解。 三、实验条件: VC++6.0。 四、实验内容: 1、参考求解TSP问题的连续Hopfield神经网络源代码,给出15个城市和20个城市的求解结果(包括最短路径和最佳路线),分析连续Hopfield神经网络求解不同规模TSP问题的算法性能。 2、对于同一个TSP问题(例如15个城市的TSP问题),设置不同的网络参数,分析不同参数对算法结果的影响。 3、上交源代码。

五、实验报告要求: 1、画出连续Hopfield神经网络求解TSP问题的流程图。 2、根据实验内容,给出相应结果及分析。 (1)15个城市(测试文件TSP15.TXT)

tsp15.txt 最短路程 371 最佳路线 →→→→→→→→→→→→→→→1914861351534712210111 (2)20个城市(测试文件TSP20.TXT) tsp20.txt 最短路程349 最佳路线 →→→→→→→→→→→→→→→→→→→→→141618971315111735124289191610201 3、总结连续Hopfield神经网络和遗传算法用于TSP问题求解时的优缺点。 遗传算法易出现早熟收敛和收敛性差的缺点。 Hopfield算法对高速计算特别有效,但网络不稳定。 用Hopfield解TSP问题效果并不理想。相对前面的遗传算法解TSP 性能有相当大差距。

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

片上网络流量模型的研究与实现

28卷 第1期2011年1月 微电子学与计算机 MICROELECTRONICS &COM PU TER V ol.28 N o.1Januar y 2011 收稿日期:2009-12-18;修回日期:2010-02-09 基金项目:国家自然科学基金项目(60676010);国家 八六三 计划项目(2007AA01Z108);教育部长江学者和创新团队发展计划 片上网络流量模型的研究与实现 彭元喜,陈 诚 (国防科技大学计算机学院,湖南长沙410073) 摘 要:分析了三种具有代表性的流量模型:均匀分布、泊松分布、自相似流量模型,并实现了基于这些模型的流量生成器.模拟结果与预期结果符合,目前流量生成器已经应用到实际模拟平台之中.关键词:流量模型;片上网络;片上多核系统 中图分类号:T P393 文献标识码:A 文章编号:1000-7180(2011)01-0161-04 The Study and Implementation on Traffic Model of Network -on -Chip PENG Yuan x i,CHEN Cheng (Schoo l of Co mputer Science,N atio nal U niver sity o f Defense T echno log y,Chang sha 410073,China)Abstract:T his paper analyzes three represent ative tr affic models fr equently used in the netw or k,and implements a traffic g ener ator based on t hese mo dels.T he r esults of simulat ion ar e appro ximat ely in line with the ex pected results and the traffic g ener ator are used in the act ual simulatio n platfor m rig ht no w.Key words:t raffic mo del;net wo rks-on-chip (No C);chip multipr ocesso r (CM P) 1 引言 片上网络(Netw o rk-on-Chip,NoC)能克服总线的限制,可重用性好,大大提高设计效率;可伸缩性好,可并行进行多个传送事务,有希望成为未来片上IP 核互连的有效解决方法[1].围绕NoC 的关键技术研究取得了较大进展,但是在NoC 性能评价与仿真平台建模方面仍面临诸多挑战.在系统建模中,一个非常重要的方面就是提供人工合成流量,NoC 具有自相似的流量特性,No C 流量模型的好坏直接关系到系统建模的成功与否. 流量模型是理解和预测网络行为、分析网络性能、设计网络的理论基础.目前计算机网络流量模型[2] 主要有均匀分布、泊松分布、自相似流量模型.已研究了片上处理器流量,提出片上处理器的随机进程产生的流量具有自相似性,这些都表明目前的计算机网络流量模型适应于片上网络. 2 片上网络流量模型研究 2.1 均匀流量模型 均匀流量模型(U niform Rando m Traffic M od el)就是假设发送报文的源端以恒定的速率向网络注入报文,它是一种常用的流量模型.设连续型随机变量X 的概率密度函数为 f (x )=1 b -a ,a !x !b 0,其他 则称随机变量X 服从[a,b]上的均匀分布.X 落在 [a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关.均匀分布的流量模型就是假设发送报文的源端以恒定的速率向网络注入报文.假设网络中发送报文的源端的报文注入率恒为 ,相邻发送的两报文之间的时间间隔为 ,则两者的关系为 =1 .

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

相关文档
相关文档 最新文档