文档库 最新最全的文档下载
当前位置:文档库 › 浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算
浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

本文摘自中国论文网,原文地址:https://www.wendangku.net/doc/aa8642546.html,/2/view-4721822.htm 摘要:根据型钢水泥土搅拌墙技术规程JGJ199-2010,结合工程实例阐述三轴水泥搅拌桩施工过程中水泥用量及注浆量的计算和现场控制措施,以及根据浙江省市政工程预算定额(2010)及其定额解释阐述三轴水泥搅拌桩工程量的计算方法,为省内类似工程施工提供参考。

中国论文网 https://www.wendangku.net/doc/aa8642546.html,/2/view-4721822.htm

关键词:三轴水泥搅拌桩水泥用量及水泥浆量计算与控制工程量计算

中图分类号:K826.16 文献标识码:A 文章编号:

三轴水泥搅拌桩就是利用新型的三轴搅拌桩机就地利用三轴螺旋式或螺旋叶片式两种搅拌机头钻进旋转切削土体,同时在其中两轴钻头端部将水泥浆液喷入土体,并在中轴钻头端部喷入高压空气,对水泥土进行充分搅拌,并置换出部分水泥土浆。在完成的三轴水泥搅拌桩内插入H型钢,就是型钢水泥土搅拌墙(一般在搅拌桩施工结束后30分钟内,再将H型钢插入搅拌桩体内,固化后形成水泥土“地下连续墙”墙体)。其主要特点是构造简单,止水性能好,工期短,造价低,环境污染小,特别适合城市建设中的深基坑工程。

型钢水泥土搅拌墙在市政工程的应用比较普遍,如管道沟槽的开挖、地铁车站的出入口基坑、过江隧道及城市地下通道的明挖段的围护结构等;三轴水泥土搅拌桩单独作为截水帷幕,具有土层适应性强、截水性能好、施工速度快、造价低等特点,在杭州粉土地区应用广泛,已基本取代高压旋喷桩;在软

土地基上,采用三轴水泥土搅拌桩加固土体的效果明显优于普通水泥土搅拌桩,在开挖深度较深、环境保护要求严格的工程中应用较为普遍。

随着三轴水泥搅拌桩在建设工程中的广泛应用和型钢水泥土搅拌墙技术规程JGJ199-2010的实行,在施工过程中就三轴水泥搅拌桩的水泥用量及注浆量的计算与控制,工程量的计算等方面各方易有争议。本文将根据型钢水泥土搅拌墙技术规程JGJ199-2010,结合杭州市紫金港路工程02标的工程实例阐述三轴水泥搅拌桩施工过程中水泥用量及注浆量的计算和现场控制措施,以及根据浙江省市政工程预算定额(2010)及其定额解释阐述三轴水泥搅拌桩工程量的计算方法。

工程概况

杭州市紫金港路工程02标南起文一西路,北至紫金港路工程01标(桩号为K2+804.628~K4+110),全长1305.372m,采用地面道路+隧道形式。本工程地处杭州城西,土质较差,基本以软土为主。本工程隧道采用明挖顺作法施工,基坑支护结构根据开挖深度、地质条件的不同采用多种支护方案,较深处采用地下连续墙、钻孔咬合桩、SMW工法桩、钻孔灌注桩结合1~4道内支撑的支护围护体系,U型槽开挖较浅处采用水泥搅拌桩、重力式挡墙、自然放坡等围护体系。本工程基坑标准段宽度为24.2m,最大基坑宽度为44.5m,开挖深度1.234m~18.368m,局部深度达20.776m。本工程三轴水泥搅拌桩主要为Φ

650@450三轴水泥搅拌桩地基处理(水泥掺量为12%)间距为2.4m*1.2m格构式布置;被动区加固及地连墙护壁成槽(水泥掺量为15%)同排搭接350mm排与排之间搭接50mm,护壁成槽坑外为套接一孔法施工;Φ850@600SMW工法桩(水

泥掺量为20%)间距为1.2m,为套接一孔法施工;水泥搅拌桩28天无侧限抗压强度qu不小于1.2MPa。

水泥用量及注浆量的计算和现场控制措施

水泥用量及水泥浆量的计算与现场控制措施

1.1、水泥用量计算

单幅三轴水泥搅拌桩水泥用量=被搅拌土体的体积x土体容重x设计水泥掺量。被搅拌土体的体积=桩截面面积x桩的深度,而对于桩截面面积,在实际中易理解为“一幅桩的截面积(由若干个圆形组成的截面,圆形之间搭接部分要扣除)”,实际上是错误的。因为《型钢水泥土搅拌墙技术规程》 JGJT199-2010,该规程4.1.5条规定:计算水泥用量时,被搅拌土体的体积应按搅拌桩单桩圆形截面面积与深度的乘积计算。该规程条文说明 4.1.5条第4点水泥用量的计算:三轴水泥土搅拌桩单幅桩由3个圆形截面搭接组成,对于首开幅,单幅桩的被搅拌土体体积应为3个圆形截面面积与深度的乘积;采用套接一孔法连续施工时,后续单幅桩的被搅拌土体体积应为2个圆形截面面积与深度的乘积;圆形相互搭接的部分应重复计算。

三轴水泥搅拌桩水泥用量计算要分为两种情况进行计算,一种是常规搭接施工,如Φ650@450幅与幅之间搭接350mm,一种是套接一孔法施工,如Φ

850@1200,而套接一孔法施工有以下两种形式。

(a)单排挤压式连接示意图(b)跳槽式全套复搅式连接示意图

现举例紫金港02标工程的实例对以上几种形式三轴水泥搅拌桩施工中水泥用量计算如下:

常规搭接水泥用量计算

如主线隧道3+638~3+679段被动区加固Φ650@450幅与幅之间搭接

350mm,土容重为18kn/m3,水泥掺量为15%,桩顶标高为-7.0m,桩底标高为-18.8m,桩长为11.8m。

单幅三轴水泥搅拌桩水泥用量=被搅拌土体的体积x土体容重x设计水泥掺量=3.14*0.652/4*3*11.8*1.8*0.15=3.170(t)

每米水泥用量为:3.170/11.8=268.64(kg)

每m3水泥用量为:268.4/(3.14*0.652/4*3)=269.75(kg)

(2)套接一孔法水泥用量计算

如主线隧道3+841~3+879段SMW工法桩采用Φ850@1200,套接一孔法施工,土容重为18kn/m3,水泥掺量为20%,桩顶标高为3.5m,桩底标高为-

24m,桩长为27.5m。

A、单排挤压式

首开幅三轴水泥搅拌桩水泥用量=被搅拌土体的体积x土体容重x设计水泥掺量=3.14*0.852/4*3*27.5*1.8*0.2=16.84(t)

每米水泥用量为:16.84/27.5=612.36(kg)

后续幅水泥用量=3.14*0.852/4*2*27.5*1.8*0.2=11.23(t)

每米水泥用量为:11.23/27.5=408.36(kg)

B、跳槽式全套复搅式:

首开幅(大幅)三轴水泥搅拌桩水泥用量=被搅拌土体的体积x土体容重x 设计水泥掺量=3.14*0.852/4*3*27.5*1.8*0.2=16.84(t)

每米水泥用量为:16.84/27.5=612.36(kg)

中幅水泥用量=3.14*0.852/4*2*27.5*1.8*0.2=11.23(t)

每米水泥用量为:11.23/27.5=408.36(kg)

小幅水泥用量=3.14*0.852/4*1*27.5*1.8*0.2=5.615(t)

每米水泥用量为:5.615/27.5=204.18(kg)

现场施工中水泥用量的控制可通过自动拌浆系统进行电子自动计量控制,过程中可通过查泥浆比重与喷浆时间进行复核。

水泥浆量的计算与控制措施

根据计算出的单幅桩水泥用量,试桩确定的水灰比及下沉与提升速度来确定水泥浆量和现场控制措施。还是用紫金港02标工程主线隧道3+638~3+679段地基处理Φ650@450,土容重为18kn/m3,水泥掺量为15%,桩顶标高为-14.074m,桩底标高为-19.074m,实桩桩长为5m,总桩长为23m,其中上部18m 长空搅部分设计无水泥掺量要求来举例说明。

根据前面的方式计算单幅桩水泥用量

=3.14*0.65*0.65/4*5*1.8*0.15=1.343t,以及现场试桩确定的水灰比为1.5:1,水泥浆比重为1.37t/m3,可计算出单幅桩实桩水泥浆量=1.343(水泥用量)/0.4【水泥用量/(水泥用量+用水量)】/1.37(水泥浆比重)=2.451m3。

浆泵参数:现场采用两台BW-250泥浆泵经现场实测平均注浆压力为

1.0Mpa,通过实量直径为

2.0m,高度为2.0m的储浆桶内平均每分钟浆液面下降高度为64mm,则实际每分钟的注浆量为0.202m3,与可实时打印的流量计所记录的流量相符。

根据试桩情况,18m空搅部分钻进所需时间为13.6分钟,(虽然设计对空搅部分未要求水泥掺量,但在现场实际施工还是要喷浆钻进的,只是掺量多少的问题)每分钟注浆量为0.202 m3,侧18m长空搅部分的水泥浆量为

=0.202*13.6=2.747 m3(相当于水泥掺量为

2.747*0.4*1.37/1.8/18/0.995=5%),单幅总浆量为=2.451+2.747=5.20m3。

单幅桩供浆时间=实桩供浆时间+空搅部位时间=2.451/0.202+13.6=25.73分钟。

钻杆下深及提升时间:根据试桩效果,施工采用一次下深喷浆搅拌,喷浆量约为总浆量的67%,和一次提升喷浆搅拌,喷浆量约为总浆量的33%,不复搅。实桩下深速度为0.7m/min,空桩为1.324m/min,下沉时间为:

18/1.324+5/0.7=20.74min,在桩底持续喷浆搅拌1min。实桩提升速度控制为1.3m/min,提升时间为:5/1.3=3.85min。钻杆下沉与提升的总时间为

20.74+1+3.85=25.6min,浆泵供浆时间为25.7min,与钻杆下沉与提升的总时间25.6min相匹配。

本段内地基处理G16幅流量计所反应的注浆情况

本段内三轴水泥搅拌桩地基处理钻芯取样试验报告

从以上两张图中可以看出所采取的水泥及水泥浆量控制符合设计及规范要求,能确保成桩质量。

三轴水泥搅拌桩工程量的计量

根据型钢水泥土搅拌墙技术规程JGJ199-2010、浙江省市政工程预算定额(2010)及其定额解释,三轴水泥搅拌桩工程量的计算方法如下:水泥搅拌桩工程量按桩长乘以搅拌桩单桩圆形截面面积计算,即每一幅桩(由若干根圆形单桩搭接组成)工程量为桩长乘以若干根单桩圆形截面面积的乘积,圆形相互搭接部分不予扣除;相邻幅之间的搭接部分也不扣除;但采用套接一孔法(即全断面套打)施工时,其重复搅拌的单桩圆形截面面积不得重复计算。设计无明确规定时,桩长按设计桩顶标高至桩底长度另加0.5m计算;若设计桩顶标高至打桩前的原地面高差小于0.5m时,另加长度按实际计算。

对于套接一孔法施工的水泥搅拌桩的工程量,为方便计算可以采用以下公式进行计算:

设水泥搅拌桩桩长为L,单桩截面直径为D,圆周率为π,幅数为N,重复搅拌的孔数为m,三轴水泥搅拌桩工程量为Q。则:

Q = L·(πD2/4)·(3N–m)

结束语

随着三轴水泥搅拌桩在浙江省建设工程中的广泛应用,在施工过程中控制好其水泥用量及注浆量,是确保其成桩质量的关键,而其实施的效果是这一新技术能否推广的关键。本文通过杭州市紫金港路工程02标工程实例中对三轴水泥搅拌桩水泥用量及注浆量控制取得的效果,也是进一步推广了这一新技术在建设工程中的应用。

参考文献

[1] JGJ199-2010,型钢水泥土搅拌墙技术规程

[2] DB33/T1082-2011,浙江省型钢水泥土搅拌墙技术规程

[3] 浙江省市政工程预算定额(2010)

[4] 浙江省建设工程2010版计价依据综合解释

[5] 杭州市紫金港路工程02标施工图纸,2010.

本文摘自中国论文网,原文地址:https://www.wendangku.net/doc/aa8642546.html,/2/view-4721822.htm

三轴深层搅拌桩施工作业标准

三轴深层搅拌桩施工作业标准 1作业制度 1)施工作业执行文件:施工项目部下发的有效设计图纸、技术交底文件《三轴搅拌桩作业指导书》 2)施工作业执行的强制性规范:《安全生产法》、《建设工程安全生产管理条例》、《建筑地基处理技术规范》、《建筑基坑支护技术规程》。 3)作业队制定的《**作业队浆喷桩施工职责分工及岗位责任制制度》。 2 作业准备 1)三轴搅拌桩水泥浆浆液配合比必须提前报当地建筑工程质量检测中心进行验证,验证结果符合设计文件要求并报监理验收同意后方能开始施工。 2)开工前组织技术人员认学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行安全技术交底,对参加施工人员进行上岗前培训,考核合格后持证上岗。 3)三轴搅拌桩桩机进场后必须经当地建筑工程质量检测中心检测合格后报当地安监部门备案并报监理验收,相关仪器仪表必须经当地计量检测单位检测合格后报监理验收,监理验收合格后方能施工。

3三轴搅拌桩施工工艺流程图 4 施工工艺 三轴搅拌桩施工前应进行成桩不小于2根工艺性试验,确定三轴搅拌桩机喷浆量、钻进速度、提升速度、搅拌次数等参数。待工艺试验经检验满足设计和质量要求后,方能进行大面积施工。 4.1场地平整 清除一切地面和地下障碍物,场地低洼处先抽水和清淤,分层夯实回填粘性土,必要时可以掺拌石灰或水泥,确保桩机站位处地基稳定。

4.2桩位布置 按设计图排列布置桩位,在现场用经纬仪或全站仪定出每根桩的桩位,并做好标记,每根桩的桩位误差±5CM。(对于SMW工法桩,放样后做好测量技术复核单,报监理复核验收,确认无误后方能进行三轴搅拌桩施工) 4.3桩机就位 搅拌桩机到达作业位置,由当班机长统一指挥,移动前仔细观察现场情况,确保移位平稳、安全,待桩机就位后,用吊锤检查调整钻杆与地面垂直角度,确保垂直度偏差不大于1%。在桩机机架上画出以米为单位的长度标记,以便钻杆入土时观察、记录钻杆的钻进深度,确保搅拌桩桩长不少于设计桩长。 4.5备制水泥浆 按成桩工艺试验确定配合比拌制水泥浆,待压浆前将水泥浆倒入储浆桶中,制备好的水泥浆滞留时间不得超过2小时。 4.6预搅下沉 启动浆喷机电动机,放松起重机或卷扬机钢丝绳,使浆喷桩机沿导向架自上而下浆喷切土下沉,开启灰浆泵同时喷浆,边喷浆边旋转,使水泥浆和原地基土充分拌和,直到下沉钻进至桩底标高,并原位喷浆30s以上。 4.7提升喷浆搅拌 确认浆液已到桩底时,以实验确定的速度提升搅拌钻头,边喷浆边旋转,提升到离地面50cm处或桩顶设计标高后在关闭灰浆泵,在原位转动喷浆30s,以保证桩头均匀密实。 4.8重复上、下搅拌 喷浆机提升到设计桩顶标高时,为使软土和水泥浆浆喷均匀,再次将浆喷机边旋转边沉入土中,到设计加固深度后在将浆喷机提升处地面。 4.9提钻,转移 将搅拌钻头提出地面,停止主电机、空压机,填写施工记录,桩机移位并校正桩机垂直度后进行下一根桩施工。 5劳动组织 作业队应配备专职项目负责人、技术负责人、专职安全员、领工员、工班长。 作业队下设水泥浆生产工班和桩机施工作业工班,桩机配备数量根据工程量

4、三轴水泥搅拌桩(完成稿)

四、三轴水泥土搅拌桩 1 适用范围 本作业指导书适用于三轴水泥土搅拌桩的施工。 2 编制依据 《上海市基坑工程技术规程》DG/TJ08-61-2010 《上海市型钢水泥土搅拌墙技术规范》DGJ08-116-2005 《型钢水泥土搅拌墙技术规程》JGJ/T199-2010 《建筑基坑支护技术规程》JGJ120-99 《建筑基坑工程监测技术规范》GB50497-2009 3 施工准备 1)技术准备 a)场地标高测量,以确定成桩下沉及提升长度,并在桩架上对不同桩长做好下沉及提升的标记。 b)定位测量:根据建设单位提供坐标基准点,按照设计图进行放样定位工作,并做好永久及临时标志,放样定位后请监理进行验收。 c)浆液配置:水灰比应控制在 1.5~2.0,砂土中应掺入膨润土加强孔壁稳定性及抗渗性。 d)水泥用量计算:水泥掺入比按设计要求,施工前应根据设计的对水泥掺入比计算水泥用量,并对水及水泥的投入量、提升下沉速度、注浆压力(注浆压力不应小于2.5Mpa)、单桩注浆流量现场挂牌明示。水泥用量的计算见下: L:桩长、γ:土的容重、κ:水泥掺入比 e)要选择和确定桩机进出路线、施工顺序及针对性的应急措施,制定施工方案,作好技术交底。 f)根据设计要求,进行工艺性试桩,确定相关工艺参数(如:水泥浆液水

灰比、注浆泵工作压力、成桩提升及下沉时的速度)。试桩不应少于2根,试桩时甲方、监理、施工三方确认并做好记录。 2)人员准备 施工机具应由专人负责使用和维护,大、中型机械及特殊机具需执证上岗,操作者须经培训后,执有效的合格证书方可操作,作业人员需经安全培训,并接受施工技术交底。 3)材料准备 a)水泥:宜用P.O42.5级普通硅酸盐水泥。 b)外加剂:按设计及现场实际要求。 c)材料进场应有产品出厂合格证,按要求进行现场抽样复检,合格后方可使用。 4)设备准备 a)根据项目地质条件与成桩深度合理选择相应功率的三轴搅拌机,粘性土中宜选择叶片式,砂砾中选用螺旋叶片式。 b)主要机械:三轴搅拌机、自动制浆设备、注浆泵、挖土机、吊车等。 c)主要器具:手推车、磅秤、比重计、全站仪、经纬仪、线锤、水准仪、压力表、流量计、型钢导轨等。 d)三轴搅拌机应做好设备检测,检测合格后方可使用。 5)作业条件 a)场地应先整平,同时清除桩位处上、地下一切障碍物。 b)围护轴线及场地标高测量完毕,围护的轴线和高程的控制桩,应设置在不受施工影响的地点,并应妥善保护。 c)设备开机前应检修、调试,检查桩机运行及输浆管畅通情况。 d)水源、电源配备到位,并满足使用要求。 4 施工方法 工艺流程:测量放线→开挖导向沟→设置定位型钢→桩孔定位→钻机就位→配制浆液→成桩→关闭搅拌机、清洗。 1)测量放线:根据控制桩放出桩位中心线,并做好标桩,并对标桩采取保护措施。

三轴搅拌桩施工工艺标准及其施工解决方法

三轴搅拌桩施工工艺 三轴深层搅拌桩施工标准 1、施工制度 1)施工作业执行文件:施工项目部下发的有效设计图纸、技术交底文件《三轴搅拌桩作业指导书》 2)施工作业执行的强制性规范:《安全生产法》、《建设工程安全生产管理条例》、《建筑地基处理技术规范》、《建筑基坑支护技术规程》。 3)作业队制定的《三轴搅拌施工队浆喷桩施工职责分工及岗位责任制制度》。2、作业准备 1)三轴搅拌桩水泥浆浆液配合比必须提前报当地建筑工程质量检测中心进行验证,验证结果符合设计文件要求并报监理验收同意后方能开始施工。 2)开工前组织技术人员认真学习施工性施工组织设计、阅读、审核施工图纸,澄清有关技术问题,熟习规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行安全技术交底,对参加施工人员进行上岗前培训,考核合格后持证上岗。 3)三轴搅拌桩桩机进场后必须经当地建筑工程质量检测中心检测合格后报当地安监部门备案并报监理验收,相关仪器表必须经当地计量检测单位检测合格后报监理验收,监理验收合格后方能施工。 3、三轴搅拌桩施工工艺流程图

4、施工工艺 三轴搅拌桩施工前应进行成桩不小于2根工艺性试验,确定三轴搅拌桩机喷浆量、钻进速度、提升速度、搅拌次数等参数。待工艺试验经检测满足设计和质量要求后,方能进行大面积施工。 4.1 场地整平 清除一切地面和地下障碍物,场地低洼处先抽水和清淤,分层务实回填粘性土,必要时可以搅拌石灰或水泥,确保桩机站位处地基稳定。 4.2 桩位布置 按设计图排列布置桩位,在现场用经纬仪或全站仪定出每根桩的桩位,并做好标记,每根桩位误差±5CM。(对于SMW工法桩,放样后做好测量技术复核单,报监理复核验收,确认无误后方能进行三轴搅拌桩施工) 4.3 桩机就位 搅拌桩机到达作业位置,由当班机长统一指挥,移动前仔细观察现场情况,确保移位平稳、安全,待桩机就位后,用吊锤检查调整钻杆与地面垂直角度,确保垂直度偏差不大于1%。在桩机架上画出以米为单位的长度标记,以便钻杆入土时观察、记录钻杆的钻进深度,确保搅拌桩长不少于设计桩长。 4.4 备制水泥浆 按成桩工艺试验确定配合比拌制水泥浆,待压浆前将水泥浆倒入储浆桶中,

三轴水泥搅拌桩施工

三轴水泥搅拌桩施工1、施工工艺示意图:

2、施工准备 (1)桩机配备:拟安排一台SF636K 型三轴水泥搅拌桩机进行水泥搅拌桩的施工。负责基坑止水帷幕的施工。 (2)施工顺序:三轴水泥搅拌桩待搅拌桩止水帷幕施工完7天后,方可进行围护桩的施工。 (3) 三轴水泥搅拌桩施工程序示意图 三轴水泥搅拌桩施工顺序采用跳槽式双孔全套复搅式连接施工,示意如下图: 施工顺序5施工顺序3施工顺序4施工顺序2施工顺序1 跳槽式双孔全套复搅式连接施工示意图 3、障碍物清理及路基加固 根据地质勘察报告分析及本场地工程桩施工实际情况显示,场地土质均比较均匀,基本无障碍物。 因连续施工对施工土体的均匀性要求较高,故在施工前应对围护施工区域地下障碍物进行探测清理(包括灌注桩施工范围也必须清除干净,以免在后期灌注桩施工时遇到障碍物,而在开挖清除时容易损坏水泥土搅拌桩。) 因本场地地表较为软弱,对今后施工形成安全隐患。为此从搅拌桩边向外侧

填筑一条厚40cm,宽15m的道路作为桩机行走道路。施工时再配备路基板,做到双重保险,以防桩机倾覆酿成安全事故。 4、测量放线 根据甲方提供坐标基准点、总平面布置图、围护工程施工图,具体详见附图。按图放出桩位控制线,设立临时控制桩,做好技术复核单,并请甲方及监理验收。 5、开挖沟槽 根据基坑围护边线用0.4m3挖机开挖槽沟,沟槽尺寸为800×1200㎜,并清除地下障碍物,开挖沟槽土体应及时处理,以三轴水泥搅拌桩正常施工。 6、桩机就位 由当班班长统一指挥桩机就位,桩机下铺设路基板,移动前看清上、下、左、右各方面的情况,发现在障碍物应及时清除,移动结束后检查定位情况并衣时纠正;桩机应平稳,平正,并用经纬仪或线锤进行观测以确保钻机的垂直度;三轴水泥搅拌桩桩定位偏差应不小于10㎜,成桩后桩中心偏位不得超过30㎜,桩身垂直度偏差不得超过1/150。 7、水泥土配合比 根据三轴水泥搅拌桩的施工特点,水泥土配合比的技术要求如下:(1)、设计合理的水灰比,使其确保水泥土强度。 (2)、水泥掺入比的设计,必须确保水泥土强度,降低土体置换率,减轻施工时对环境的扰动影响。 (3)、根据设计要求并结合工程实际情况确定其基本配合比为:水灰比为 1.5; 42.5级普通硅酸盐水泥掺量为20%。现场配备磅秤一台,控制水泥用量。(4)、三轴水泥搅拌桩施工时每班组需做试块同条件养护,28天无侧限抗压强度不小于1.0Mpa。

搅拌桩水泥掺量计算

搅拌桩水泥掺量计算有关水泥土搅拌桩的计算 (一)搭接的水泥土搅拌桩每幅桩截面积的计算: 见每幅搅拌桩的截面积计算表(SMW工法)。 (二)水泥土搅拌桩水泥用量的计算: 根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。当设计未表明被加固土体的重度时,土的重度按18KN/m3来计算水泥土搅拌桩的水泥用量。有的围护工程设计提出土的重度按19KN/m3计算。换算公式:1tf/m3=m3≈10KN/m3 18KN/m3÷10KN/m3=m3 加固土体的水泥用量=被加固土体的重度×水泥掺量 如:常用的水泥掺量为13%或15% 1、当水泥掺量为13%,土的重量按m3 水泥用量=m3×13%=m3=234kg/m3 即:加固1m3土体的水泥用量为234kg 2、当水泥掺量为15%,土的重量按m3 水泥掺量=m3×15%=m3=270kg/m3 即:加固1m3土体的水泥用量为270kg (三)每幅水泥土搅拌桩每m段的水泥用量计算: 1、当水泥掺量为13%,截面积按㎡ 每m段的水泥用量=234kg/m3×㎡×1m=

2、当水泥掺量为13%,常规截面积按㎡ 每m段的水泥用量=234kg/m3×㎡×1m= (四)水泥土搅拌桩的灰浆密度计算: 水泥密度3t/m3 水的密度1t/m3 1、当水灰比为 即:1t水泥:水两体拌和后的重量为 两体拌和后的体积=1/3m3+1m3= 灰浆密度=重量÷体积=÷=m3 2、当水灰比为 即:1t水泥:水两体拌和后的重量为 两体拌和后的体积=1/3m3+1m3= 灰浆密度=重量÷体积=÷=m3 (五)每幅水泥土搅拌桩每m段的浆量计算: 根据上述(三)和(四)可得知 1、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。1t水泥可拌制灰浆 即:1kg水泥可拌制灰浆 则:每m段浆量=×= 2、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。则:每m段浆量=×= 3、当水灰比,水泥掺量13%,每幅桩截面积按㎡时,每m段的水泥用量为。1t水泥可拌制灰浆

三轴搅拌桩技术交底

三轴搅拌桩技术交底 按照图纸要求在靠近地铁隧道侧采纳两排φ850(桩长为22 米)三轴搅拌桩进行深基础围护,地连墙外侧的搅拌桩水泥掺量为20%,内侧的搅拌桩水泥掺量为15%。φ850的SMW 工法施工时保证墙体的连续性和接头的施工质量,水泥土搅拌桩搭接250mm,以达到止水作用在无任何专门情形下,搅拌桩施工必须连续不间段进行,如因专门缘故导致搅拌桩不能连续施工,间隔时刻超过24h 的,冷缝处应最少有一组搅拌桩的长度和地连墙相同,以免地墙成槽时搅拌桩裂开并下沉,另外,必须在其接头处外侧加补一根桩,以保证止水成效。 转角处采纳“十”字接头的形式,即在接头处两边都多打出半幅桩,以保证转角处的止水成效。转角处外排搅拌桩应向外扩20cm,以便地连墙端头的成槽。施工中,如遇到地下障碍物、暗浜或其他勘察报告未述及的不良地质现象,应及时通知设计、业主、监理会同处理。关于暗浜区域,应适当提升SMW 搅拌桩的水泥掺量,具体数据将与设计一起协商确定。 一、施工预备 1、施工前,必须会同有关部门进行施工场地的预备,保证围护结构沿线道路平坦、畅通、施工场地路差不多以能走50t 吊车为准。 2、施工前,应把握场内的地质资料,把握不良地质现象、地下障碍物、暗浜等、并采取响应的措施。 3、选择与地质条件、成桩深度匹配的三轴搅拌机进场并试转正常;做好进场 设备的修理保养,做到相应配套,性能良好,应用方便,器具齐全。 4、按照设计图,确定合理的施工顺序。 5、平坦垫实场地、铺设钢板及路基箱,必须做到施工时不下陷,确保安全施工。 6、设备组装保养,须经专业检测部门检测合格,并经总包、监理检验合格后,挂牌使用。 7、按规定搭设水泥库。水泥进库必须具备出厂质量证明书,进货时应对其品种、相应标号、包装、出厂日期进行检验,并按有关规定储存。

三轴水泥搅拌桩的计算方法

工程量的计算(加固时整幅打桩,止水时套接一孔): 定额的工程量计算规则是按桩径截面积乘以桩长,采用多轴施工搅拌桩的工程量计算关键在于桩截面积的确定,仍采用“桩径截面积”则不可行,应该扣除桩径截面一次形成的重叠部位面积,如下图为三轴搅拌桩,一次成活三个桩径断面,应扣除两个部位的重叠面积。 设桩径为850mm,桩轴(圆心)矩为600mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.85/2)2×3.1416×3=1.7024m2 圆心角: θ=2×acos(0.3/0.425)=90.1983° 一个扇形面积:S2=(0.85/2)2×3.1416×90.1983/360=0.1423 m2三角形面积: S3=(0.4252-0.32)1/2×2×0.3/2=0.0903 m2 一个弓形面积: S4=S2-S3=0.1423-0.0903=0.052 m2 每次成活桩截面积: S=S1-4×S4=1.7024-0.052*4=1.495m2 套接一孔: 每幅桩平均断面积 为(1.4944+1.7024/3)/2=1.031m2

设桩径为650mm,桩轴(圆心)矩为450mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.65/2)2×3.1416×3=0.9955m2 圆心角: θ=2×acos(0.225/0.325)=92.3738° 一个扇形面积:S2=(0.65/2)2×3.1416×92.3738/360=0.085 m2三角形面积: S3=(0.3252-0.2252)1/2×2×0.3/2=0.0528 m2 一个弓形面积: S4=S2-S3=0.085-0.0528=0.0322 m2 每次成活桩截面积: S=S1-4×S4=0.9955-0.0322*4=0.8667m2 套接一孔: 每幅桩平均断面积 为: (0.9955+0.3318-0.0322*4)/2=0.599m2

关于三轴搅拌桩的计算方法

关于多轴水泥搅拌桩的计价释疑 当搅拌桩施工工艺与计价定额不同时,有关的工程量计算和计价规则也应随着调整, 工程量的计算: 定额的工程量计算规则是按桩径截面积乘以桩长,采用多轴施工搅拌桩的工程量计算关键在于桩截面积的确定,仍采用“桩径截面积”则不可行,应该扣除桩径截面一次形成的重叠部位面积,如下图为三轴搅拌桩,一次成活三个桩径断面,应扣除两个部位的重叠面积。 设桩径为850mm,桩轴(圆心)矩为600mm,则每次成活桩截面积S为三个圆面积扣减4个重叠的弓形面积,计算方式为: 原面积: S1=(0.85/2)2×3.1416×3=1.7024m2 圆心角:θ=2×acos(0.3/0.425)=90.1983° 一个扇形面积:S2=(0.85/2)2×3.1416×90.1983/360=0.1423 m2 三角形面积: S3=(0.4252-0.32)1/2×2×0.3/2=0.0903 m2 一个弓形面积: S4=S2-S3=0.1423-0.0903=0.052 m2 每次成活桩截面积: S=S1-4×S4=1.7024-0.052*4=1.4944m2 水泥的掺量:水泥掺量的问题主要是因水泥搅拌桩的“套打”工艺产生,一般设计往往只给出一个掺量比例,而没有考虑套打部位时重叠部位截面范围掺量比例的确定,特别是当采用整个桩径断面套打时,如三轴搅拌桩按整个桩径套打时,其断面情况如下图:

因水泥搅拌桩所谓的“套打”和搅拌不是分别计算的子目,假设设计要求水泥搅拌桩全断面“套打”,搅拌涉及的水泥掺入比仅简单规定为15%,故原设计的水泥掺入比是指一次成活时或多次成活后的标准要求不明确,如是前者,则“套打”部位如不考虑扣除一次成活扣除的弓形部位,上图计算3次处将为45%、计算2次部位为20%了?如为后者,而计算一次处却为不超过5%了,所以设计仅简单明确一个水泥掺入比例是不够的,应明确水泥掺入比例是指何中情况下的。 而且所谓的掺入水泥比例定额是按搅拌时地基土的容重考虑的,在第一次成活时地基土容重必定小于第二次成活时的地基土容重,所以,设计还应该明确搅拌桩成活后的地基土应该达到的容重,这样在造价计算时建施双方就不会有争议了。 一、三轴搅拌桩 1、 多排坝体 图1.1.1 1次成活计算1次 2次成活计算3次 1次成活计算2次 2次成活计算2次

三轴水泥搅拌桩

四、施工方案 1、设计要求 Φ850mm三轴水泥搅拌桩水泥采用P42.5级普通硅酸盐水泥,水泥掺入比不小于20%,即每立方米被搅拌土体中水泥掺入量不小于360Kg。水泥搅拌桩28 天无侧限抗压强度qu不小于1.0MPa,渗透系数不超过10-7cm/s。 2、施工主要设备配备 三轴水泥搅拌桩施工投入主要机械设备为(按照进度要求可增加机械数量): 其他相关设备如测量经纬仪、水准仪、长卷尺及重线锤、水泥浆比重计等若干。 3、施工工艺流程 三轴水泥搅拌桩施工工艺流程如下:

4、施工准备 ①、熟悉并掌握设计施工图纸,充分了解设计意图,如有疑问,及时向设计单位报告解决。 ②、编制相关施工方案,并报业主、监理单位审批同意后执行。 ③、按要求对甲供材料进行抽样送检,原材复试合格后投入使用。 ④、召开项目部全体人员会议,向施工人员及操作人员做好施工技术和安全技术交底,使职工了解设计意图,掌握施工要领和关键工序及安全操作规程,做到分工明确,职责分明。 5、测量放样和场地清理 根据设计要求,先把场地进行清理整平,然后进行放样,该项工作的测量放样包括两个内容:一是根据设计资料放出打设宽度;二是根据设计画出布桩平面图,标明排列编号,放出具体桩位,施工前必须经过监理复核。

6、开挖沟槽 根据三轴搅拌桩桩位中心线用PC200挖机开挖槽沟,沟槽尺寸为宽1.2m,深1~1.2m,并清除地下障碍物。开挖导向沟槽余土应及时处理,以保证桩机水平行走 7、桩机就位 由现场施工员、桩机班长统一指挥桩机就位,桩机下铺设钢板及路基板,移动前看清前、后、左、右各位置的情况,发现有障碍物应及时清除,移动结束后检查定位情况,及时纠正,桩位偏差不大于50mm。桩机应平稳、平正,并用经纬仪或线锤进行观测,确保钻机的垂直度,搅拌桩垂直度精度不低于1/200。 8、制备水泥浆液及浆液注入 开钻前对拌浆工作人员做好交底工作,在施工现场配备电脑计量的自动搅拌系统和散装水泥罐,以确保浆液质量的稳定。水泥浆液的水灰比为1.5~2.0,水泥掺量不小于20%,即每立方米被搅拌土体中水泥掺入量至少为360Kg(被搅拌土体密度以1800Kg/m3计)。 水泥浆配制好后,停滞时间不得超过2小时,因故搁置超过2小时以上的拌制浆液,应作废浆处理,严禁再用。搭接施工的相邻搅拌桩施工间隔不得超过12小时。注浆时通过2台注浆泵2条管路同Y型接头在H口进行混合,注浆压力为1.5Mpa~2.5Mpa,注浆流量为80~120L/min/每台。 9、钻进搅拌提升 三轴水泥搅拌桩止水帷幕采用两喷两搅的施工工艺,水泥和原状土须均匀搅拌,下沉和提升过程中均为注浆搅拌,同时严格控制下沉和提升速度:下沉速度为0.5~1.0m/min,提升速度为1.0~1.5m/min,在桩底部分宜重复搅拌注浆。 另外,按照三轴搅拌桩的施工工艺,三轴搅拌机在下钻时,注浆的水泥用量占总数的70%~80%,而提升时为20%~30%。按照技术交底要求均匀、连续

三轴水泥搅拌桩施工方案资料讲解

中铁十局集团有限公司 亳州市建安隧道工程 三轴水泥搅拌桩施工方案 中铁十局集团有限公司亳州市建安隧道工程项目经理部 二零一六年十月

目录 1 编制说明 0 1.1编制依据 0 1.2编制原则 0 1.3适用范围 0 2 工程数量及水文情况 0 2.1主要工程数量 0 2.2工程地质条件 0 3 施工计划 (1) 3.1施工进度计划 (1) 3.2机械投入计划 (2) 3.3人员投入计划 (2) 4 施工方案与工艺 (2) 4.1测量放线 (3) 4.2开挖沟槽 (3) 4.3三轴搅拌桩孔位定位 (3) 4.4钻机就位 (3) 4.5钻进施工 (4) 4.6水泥浆配合比 (4) 4.7置换土处理 (5) 4.8施工记录 (5) 5.施工安全保证措施 (5) 5.1机械作业及设备使用安全措施 (5) 5.2用电安全预防措施 (6) 6.施工质量保证措施 (6)

6.1三轴水泥搅拌桩施工质量控制措施 (6) 6.2夜间施工保证措施 (8) 7.文明施工及环境保护保证措施 (8) 7.1文明施工保证措施 (8) 7.2环境保护措施 (9)

三轴水泥搅拌桩施工方案 1 编制说明 1.1 编制依据 (1)亳州市建安隧道工程施工图及其它相关设计资料; (2)国家及公路行业现行有关施工规范、验收标准。 (3)亳州市建安隧道工程实施性施工组织设计; (4)我集团公司以往积累的施工经验,拥有的技术装备力量、机械设备状况、管理水平、工法及科技成果。 1.2 编制原则 (1)根据设计图纸结合现场实际情况,制定科学合理、经济适用、切实可行的施工方案,确保建安隧道工程三轴水泥搅拌桩的各项技术经济指标及施工工期等要求得以实现。 (2)充分考虑三轴水泥搅拌桩施工过程中的重、难点。 (3)合理利用现场资源配置,施工中合理安排施工顺序。 1.3 适用范围 本方案适用于亳州市建安隧道工程三轴水泥搅拌桩分项工程,施工里程为K0+347~K0+830。 2 工程数量及水文情况 2.1 主要工程数量 主要工程数量表如下: (1)地形地貌 工程沿线场地为涡河漫滩及河床地貌。岸边地面标高36.50~38.60m,堤顶标高约40m,两堤内宽度约为300m,涡河水面常水位宽度约210m,水面标高约35m,最大水深7.50m。工程沿线分布的⑤、⑦层为承压含水层,⑤层水头标高约32m,⑦层水头标高约33m。

搅拌桩水泥掺量计算

搅拌桩水泥掺量计算 有关水泥土搅拌桩的计算 (一)搭接的水泥土搅拌桩每幅桩截面积的计算: 见每幅搅拌桩的截面积计算表(SMW工法)。 (二)水泥土搅拌桩水泥用量的计算: 根据上海地区的岩土工程勘察报告得知:土的重度(r0)在16~20KN/m3之间,大多为18KN/m3左右。当设计未表明被加固土体的重度时,土的重度按 18KN/m3来计算水泥土搅拌桩的水泥用量。有的围护工程设计提出土的重度按19KN/m3计算。 换算公式:1tf/m3=9.80665KN/m3≈10KN/m3 18KN/m3÷10KN/m3=1.8tf/m3 加固土体的水泥用量=被加固土体的重度×水泥掺量 如:常用的水泥掺量为13%或15% 1、当水泥掺量为13%,土的重量按1.8t/m3 水泥用量=1.8t/m3×13%=0.234t/m3=234kg/m3 即:加固1m3土体的水泥用量为234kg 2、当水泥掺量为15%,土的重量按1.8t/m3 水泥掺量=1.8t/m3×15%=0.270t/m3=270kg/m3 即:加固1m3土体的水泥用量为270kg (三)每幅水泥土搅拌桩每m段的水泥用量计算: 根据每幅搅拌桩的截面积计算表(SMW工法),φ700mm的每幅桩截面积为 0.70224549㎡,计算时按0.702㎡。 1、当水泥掺量为13%,截面积按0.702㎡ 每m段的水泥用量=234kg/m3×0.702㎡×1m=164.27kg 2、当水泥掺量为13%,常规截面积按0.71㎡ 每m段的水泥用量=234kg/m3×0.71㎡×1m=166.14kg (四)水泥土搅拌桩的灰浆密度计算: 水泥密度3t/m3 水的密度1t/m3 1、当水灰比为0.5 即:1t水泥:0.5t水两体拌和后的重量为1.5t 两体拌和后的体积=1/3m3+0.5/1m3=0.83m3 灰浆密度=重量÷体积=1.5t÷0.83m3=1.8t/m3 2、当水灰比为0.55 即:1t水泥:0.55t水两体拌和后的重量为1.55t 两体拌和后的体积=1/3m3+0.55/1m3=0.883m3

三轴水泥搅拌桩配比表

E南端深坑止水帷幕配比表 三轴水泥搅拌桩桩长见下张表格,直径0.85米,水泥掺量20%,水灰比1.5~2.0。现场一桶容量体积:1.77m3 21米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥11300kg,水16.95m3 中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥7800kg,水11.7m3 18.15米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥9770kg,水14.655m3 中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥6740kg,水10.11m3 17.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥9470kg,水14.21m3 中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥6540kg,水9.81m3 16.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥8930kg,水13.40m3 中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥6170kg,水9.25m3 15.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥8400kg,水12.59m3

每桶水泥浆液需要加入水泥5800kg,水8.69m314.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥7860kg,水11.79m3中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥5420kg,水8.14m313.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥7320kg,水10.98m3中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥5050kg,水7.58m312.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥6780kg,水10.17m3中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥4680kg,水7.02m311.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥6240kg,水9.36m3中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥4310kg,水6.46m310.6米:大幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥5700kg,水8.56m3中幅需要桶的水泥浆液 每桶水泥浆液需要加入水泥3940kg,水5.91m3

通过水灰比确定水泥浆中水泥用量

小导管注浆: 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况下会考虑到小导管注浆。 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在~,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度,环向间距20~50cm。 一般情况下,水泥浆水灰比一般是选择1:1,或者是1:种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。 已知水的密度是1g/1cm3,水泥的密度一般是~3.3g/cm3; 水灰比为1:的水泥浆密度计算过程为: 理论计算:(*1+1*)/=2.4g/cm3 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测试。 水灰比为1:1水泥浆密度计算过程为: 理论计算:(*1+1*1)/2=2.05g/cm3 其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;m/+m/1=1(m为质量,考虑到水灰比为1:1) 则1方水泥浆需要750kg水泥 如果水灰比为1: 说明: 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶剂,饱和或不饱和进行计算,容易走入误区; 则:m/+0.5m/1=1 则1方水泥浆需要1。2t水泥。 基本上实际情况与此相符 通过已知水泥的用量,可以反推水泥浆的方量 而这正是实际施工中最需要的数据,所以在现场收方时一般通过数水泥袋的包数就可以知道水泥浆的方量,再通过已知水泥浆每方的单价,确定注浆的成本。 比如说现场实际使用1t水泥,则知道水灰比,就完全可以确定水泥浆体积v。 1/+1/1=v 则v=1.32m3 业主基本上给的水泥浆单价一般在800~850元/m3 则:*825=1091元 其实很多时候设计院在设计过程中通过公式来计算水泥浆方量,但在实际计量工作中未必会采纳,因为实际情况与设计未必相符,如考虑到围岩裂隙发育,破碎,往往注浆量远远大于设计值,因此强烈建议在现场收方中必须通过所用水泥确定水泥浆方量是可行的、科学的、符合实际的。 还有一种情况是: 例如:纯水泥浆的用水量按水泥的35%计算,水泥密度为3100kg/m3、表观密度为1200kg/m3,试计算每立方米纯水泥浆的用量。 解: 1、计算虚体积系数 水灰比=*水泥表观密度/水表观密度=*1200/1000=

三轴水泥土搅拌桩施工方案

X.12.5.10 三轴水泥土搅拌桩施工方案 本工程小商品市场站附属结构出入口止水帷幕采用φ850@600mm三轴水泥土搅拌桩。 1、搅拌桩施工工艺施工准备 A 场地布臵 (A) 设备进场前,场地必须达到“三通一平”,大型机械行走路线软弱地面必须加垫料夯实、夯平。 (B) 清除障碍物的区域,必须及时回填素土并用挖机分层夯实,确保地基承载力,为三轴搅拌桩施工提供条件。 (C) 开挖沟槽前,应摸清地下管线等障碍物,并采取有效的措施将施工区域内的地上、地下障碍物清除和处理完毕。 B材料准备及材料使用计划 (A) 本工程三轴搅拌桩止水帷幕施工采用P.S.A32.5级普通硅酸盐水泥,水泥分批进场;选择合格的水泥供应商,确保使用设计强度等级的水泥,做好各类材料质量复试工作,杜绝不合格材料进入工地。 (B) 编制水泥需用量计划和分批进场计划,并按照分批进场计划及时组织进场,按照“施工区域划分及场布图”指定的位臵堆放整齐。 C技术准备 (A)施工前召开施工技术人员及设计人员的技术交底会,熟悉设计图纸和有关《规程》,明确施工图纸要求及有关质量检验评定标准,明确工程质量保证措施、施工安全措施及文明施工要求。 (B)明确施工方案,熟悉施工顺序,协调各工种各工序之间关系,做到安排合理,精心组织,确保工程质量。 2、三轴水泥土搅拌桩工艺流程 水泥搅拌桩施工工艺主要流程为:

图13-- 水泥土搅拌墙典型施工顺序 ④完成一幅墙体搅拌⑤下一循环开始 ③钻杆搅拌提升②桩底重复搅拌①钻进搅拌下沉三轴水泥搅拌桩施工示意图 三轴泥搅拌桩施工工艺流程图

3、三轴水泥土搅拌桩施工工序 (1)测量放样 施工前,根据设计图纸,定位放线,开挖沟槽,然后放第一组桩柆,根据设计图纸尺寸带线。 (2)制备水泥浆 水泥用量按设计标准为土体质量的15%,水灰比为0.45。施工中加水可使用定量容器进行用水量控制。 (3)预拌下沉喷浆 待水泥搅拌桩机的冷却水循环正常后,启动搅拌桩机电机,放松搅拌桩机吊索,使搅拌桩机沿导向架搅拌切土下沉,下沉速度可由电机的电流监测表控制。下沉速度≤0.8m/分,工作电流不应大于70A。开始喷浆搅拌,喷浆过程中,不断搅拌水泥浆。随时观察设备运行及地层变化情况,钻头下沉至设计深度位臵时,停止钻进。 (4)提升喷浆 提升钻头喷浆。喷浆过程中,不断搅拌水泥浆,防止其离析,并通过电脑自动计录,喷浆量,离地面50cm时,停止喷浆。 (5)二次搅拌喷浆 第一次喷浆完成后,继续二次下沉进行补浆喷浆,搅拌至设计位臵深度。 (6)清洗 若桩机停止施工或施工间歇时间太长时,向水泥浆搅拌桶中加入清水,开启灰浆泵,清洗全部管中残存的水泥浆。直至基本干净。并将粘附在搅拌头的软土清洗干净 (7)移位 桩机移至进行下一桩位,重复进行上述步骤的施工。

小导管注浆量计算

小导管注浆量计算 Hessen was revised in January 2021

竖井小导管注浆量计算 一、注浆量计算 方法一: Q=Ahnα(1+β) Q—注浆量; A—注浆范围岩层表面积; h—注浆有效长度; n—地层孔隙率(根据地层而定); α—注浆孔隙充填率,一般在~或通过试验; β—浆液损失率,一般取10~30%; 其中A=(+)*2*(**2),(+)*2为注浆周长,(**2)为注浆扩散高度; h为注浆有效长度,由于导管水平夹角为30°故h=cos30° *3.0m=2.6m; n为,设计给出天然孔隙比(e0=V孔/(V总- V孔)=,推出天然孔隙率n=V孔/V总=;(注:n的取值现场实际情况较其它类似情况大得多); α注浆孔隙充填率,估取; β浆液损失率,估取20%;(注:未考虑现场涌水量过大,20%为保守估计值); 据上,当小导管每环间距时: Q=(+)*2*(**2)****(1+)

=38.76m3 则每延米注浆量Q==25.84m3 故总的注浆量Qm=*=为图纸注浆范围) 方法二(参照横通道小导管注浆计算原理,即按总量计算注浆 量): 每环注浆总量:Q=S*G*L = * ** =38.656m3 S——注浆扩散范围面积(扩散范围暂为0.7m); G——岩体孔隙率(根据孔隙比换算成孔隙率),本围岩孔隙率较大,暂取较小值39%。 L——导管有效长度,m,为 3.0m; 则每延米注浆量Q= =25.77m3 故总的注浆量Qm=*=为图纸注浆范围) 二、水泥-水玻璃双液计算 竖井注浆为水泥-水玻璃双液,体积配合比根据实际需要现场调配,其依据是根据文献《山东交通科技》(见附件)一书总第一百 六十九期(2004年12月)对隧道注浆(水泥-水玻璃双浆液)的探讨,现场体积配合比根据实际调配为1:(水泥浆:水玻璃),水 泥浆重量比为1:1(水泥:水)。水泥浆密度为m3,水玻璃密度为m3,计算如下:

注浆量计算书

注浆量的确定 为了减小和防止地面沉降,在盾构掘进中,要尽快在脱出盾构后的衬砌背面环形建筑空隙中充填足量的浆液材料。根据地质条件,确定浆液配比、注浆压力、注浆量及注浆起讫时间对同步注浆能否达到预期效果起关键作用。 二次(或多次)压浆是弥补同步注浆的不足,减少地表沉降的有效辅助手段,可使盾构在穿越建筑物、地下管线时,大大降低地面沉降。 1.注浆目的 (1) 使管片尽早支承地层,减少地基沉陷量,保证环境安全; (2) 确保管片衬砌早期稳定性; (3) 作为隧道衬砌防水的第一道防线,提供长期、匀质、稳定防水功能; 2.注浆方式 盾构机掘进过程中形成的管片与土体之间的空隙将采用注浆回填,浆液是通过运浆车送到洞内,注浆与掘进保持同步,采用同步注浆。 盾构推进中的同步注浆和衬砌壁后补压浆是充填盾构壳体与管片圆环间的建筑间隙和减少后期土体变形的有效手段,同时也可加强隧道的稳定性,也是盾构推进施工中的一道重要工序。为了防止盾构机注浆孔堵塞,同步注浆选择具有和易性好、泌水性小的浆液进行及时、均匀、定量压注,确保其建筑空隙得以及时和足量的充填,浆液配比如表9-9。压浆量和压浆点视压浆时的压力值和地层变形监测数据而定。压浆属一道重要工序,须指派专人负责,对压入位置、压入量、压力值均作详细记录,并根据地层变形监测信息及时调整,确保压浆工序的施工质量。 所配出的浆液应具备以下性能: (1) 不堵塞盾构机注浆孔; (2) 和易性好,能更好地充填盾构推进造成的间隙; (3) 可以防止因浆液固结体积减小而引起的地面沉降;

(4) 提供一个围绕隧道衬砌的长期、匀质、稳定的防水层; 注浆量可根据监测信息分析视情况而定,浆液配比也可视情况适当进行调整。 在盾构掘进的过程中,每环注浆量控制在建筑空隙150%~200%,为减少地下的后期变形,必要时进行衬砌壁后注浆,注浆参数及注浆点的选择根据实际情况而定(待100m试验段施工得出的数据而定)。二次注浆采用水泥浆,但在隧道开挖对地表建筑物或管线有较大影响的地段,为减少地面沉降,选择速凝型浆液,在水泥浆中添加适当比例的水玻璃。 各项控制压力的选择考虑以下因素: (1) 注浆位置的水压力和土压力; (2) 不能使管片因受压而错位变形; (3) 不会对盾尾密封刷造成损害; (4) 既能防止地面下沉超限,又不导致地面隆起超限; (5) 浆液不会进入土仓 上述压力在初步确定以后,还要根据地质情况和地面监测结果等进行调整。 注浆操作既可人工又可自动,控制开关设在盾构机操作盘上。 每环掘进之前,都要确认注浆系统的工作状态处于正常,并且浆液储量足够,掘进中一旦注浆系统出现故障,立即停止掘进进行检查和修理。 3.注浆主要参数 (1) 注浆压力 根据注浆目的要求调整注浆压力,充分充填盾构施工产生的地层空隙,避免由此引起的地表沉陷,影响地表建筑物与地下管线的安全。同时,防止过大的注浆压力引起地表有害隆起或破坏管片衬砌。同步注浆注浆压力应大于开挖面的土压力,一般可控制在1.1~1.2倍的静止土压力范围内。 (2) 注浆量 Q=V·λ λ—指注浆率(一般取150%~200%) V—盾构施工引起的空隙(m3) V=π(D2-d2)L/4 D—指盾构切削外径(m)(削切外径11.93m)

水泥搅拌桩配比

水泥土搅拌桩配合比 一、使用部位:软基处理。 二、设计依据及日期:施工图纸等;2008年12月20日。 三、组成材料:(1)水泥:采用唐山红日水泥厂生产的“升辉”牌 P.S.A32.5级水泥。 (2)水:采用地下水。 四、设计步骤: 根据设计图纸要求,确定水泥土搅拌桩每延米水泥用量为58kg,按W/C=0.50计算每延米用水量为29 kg,每延米用水泥浆为87 kg。按不同的水灰比配制水泥浆,搅拌3min后测定水泥浆比重见下表: 试验人:复核:技术负责人: 《桥涵工程试验检测》试题(第01卷)

一、填空题 1.公路工程质量检验和等级评定的依据是《公路工程质量检验评定标准》JTG F/80—2004; 2.跨径小于5m或多孔桥总长小于8m的桥称为涵洞。3.直径小于28mm的二级钢筋,在冷弯试验时弯心直径应为3d,弯曲角度为 180。 4.钢筋冷弯到规定角度时,弯曲处不得发生裂纹,起 层或断裂等现象为合格。 5.根据电桥的测量电路,对应变电桥的测量方法有单点测量、半桥测量、全桥测量。 6.在洛氏硬度为60±2的钢钻上,回弹仪的率定值应 为80±2。 7.锚具、夹具和连接器工程中常规检验项目有硬度检验、外观检验、静载锚固试验。

8.橡胶支座的常规检验项目有外观、解剖、力学性能、 尺寸。 9.公路工程质量等级评定单元划分为分项工程、分部 工程、单位工程。 10.桥涵工程中所用料石的外观要求为不易风化、无裂 纹、石质均匀。 11.衡量石料抗冻性的指标为质量损失率、耐冻系数。12.碱集料反应对混凝土危害有膨胀、开裂甚至破 坏。 13.混凝土试块的标准养生条件应为温度20±3℃,相 对温度≥90%。 14.混凝土试块的劈裂试验是间接测试混凝土抗拉强度 的试验方法。 15.钻芯取样法评定混凝土强度时,芯样的长度与直径之比应在 1.00~2.00 范围之内。

三轴水泥土搅拌桩及SWM工法桩施工方案

三轴搅拌桩及SWM工法桩 施工方案 2015年8月

1、三轴水泥土搅拌桩施工方法及主要技术措施 1.1设备选用及施工方法 本工程三轴水泥土搅拌桩采用JB-160型三轴式钻孔机进行施工。Ф850@600 三轴搅拌桩共计约350000,桩长约为:K7+726--K7+755(22米),K7+755--K7+815(22米),K7+815--K7+965(21米),K7+965--K8+020(10米)。具体详见本工程围护图纸。 本单位计划安排1台三轴搅拌桩机在K7+726南侧向东施工,具体施工顺序详见桩机运行路线图。桩机开始施工前测量复核桩位后开始施工。

三轴水泥土搅拌桩施工机械图(采用步履式) Ф850@600三轴水泥土搅拌桩,即边轴正旋转注浆搅拌、中轴反旋转喷气搅拌水泥土的施工方法,根据设计要求本工程采用四搅两喷(上下均搅拌,下沉喷浆,即两上两下)施工工艺。 三轴搅拌桩施工完毕,土方开挖前,应先做降水试验,进行帷幕验证,验证止水帷幕的止水效果。 1.2施工工艺流程 1.3施工技术要求及措施 1.3.1清除地下障碍、开挖沟槽 三轴搅拌桩施工前应首先清除地下障碍,凡大于150㎜以上石块、砼块应尽量清除干净,并填素土,遇到河道段需要修筑围堰、抽水、清淤、回填素土填平,此后用挖掘机开挖宽1200㎜、深1200~1500㎜导槽。

机械施工平台要求平整,平整度不大于50mm,并用履带式挖掘机认真碾压密实,然后铺设路基箱,确保钻机稳定。 所以本工程施工之前先确认三轴搅拌桩施工位置有无在用管线及废掉的管线位置。先进行下方障碍物清理完毕后方挖沟进行下部工序。 1.3.2测量放线 根据建设单位提供的导线点作为起算依据。在现场布设施工控制点兼水准点并进行测量、计算。施工控制点测量采用全站仪,按方向四测回及全圆观测法测量,其成果满足规范要求。 利用复测过的坐标控制点和设计坐标值,经计算并复核有关测量数据后,准确放出三轴水泥土搅拌桩中心线位置。根据设计图纸,测放桩位﹑并编号,测量桩位地面标高,确定钻孔深度。 1.3.3施工顺序

相关文档