文档库 最新最全的文档下载
当前位置:文档库 › 矩阵式变频电路及变频器

矩阵式变频电路及变频器

矩阵式变频电路及变频器
矩阵式变频电路及变频器

矩阵式交---交变频器

姓名

摘要:本文介绍了矩阵式变频电路及变频器的工作原理和调制策略,文中遵循理论和实际相结合的原则,对变频器的工作原理和调制策略作了详细的分析。

关键词:变频、工作原理、调制策略

引言:随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。矩阵式变频器是一种交-交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。

一、拓扑结构的发展

矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。

矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构

(1)由三相交流变换到两组直流,或者一组可变换极性的直流;

(2)从三相交流变换到单相交流;

(3)从单一直流变换到三相交流,也就是通常所说的逆变器;

(4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑;

(5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。

二、矩阵式变频电路的基本工作原理

(1)利用单相输入

u为

对单相交流电压us进行斩波控制,即进行PWM控制时,输出电压

o

式中c T ——开关周期;on t ——一个开关周期内开关导通时间;σ——占空比

不同的开关周期中采用不同的s ,可得到与Us 频率和波形都不同的Uo

单相交流Us 波形为正弦波,可利用的输入电压部分只有单相电压阴影部分,因此Uo 将受到很大局限,无法得到所需输出波形。

(2)利用三相相电压

把输入改为三相,就可利用三相相电压包络线中所有的阴影部分,理论上所构造的Uu 的频率可不受限制,但如uu 必须为正弦波,则其最大幅值仅为输入相电压ua 幅值的0.5倍。

(3)利用三相线电压

用图1-a 中第一行和第二行的6个开关共同作用来构造输出线电压uuv ,可利用6个线电压包络线中所有的阴影部分,当uuv 必须为正弦波时,最大幅值就可达到输入线电压幅值的0.866倍,正弦波输出条件下矩阵式变频电路理论上输出输入电压比最大。

图1 矩阵式变频电路的主电路拓扑及其开关单元

a) 矩阵式变频电路的主电路拓扑 b) 一种常用的开关单元

以相电压输出方式为例分析矩阵式交交变频电路的控制,利用对开关S11、S12和S13的控制构造输出电压uu ,为防止输入电源短路,任何时刻只能有一个开关接通,负载一般是阻感,负载电流具有电流源性质,为使负载不开路,任一时刻必须有一个开关接通。

图2 构造输出电压时可利用的输入电压部分

a) 单相输入 b) 三相输入构造输出相电压 c) 三相输出构造输出线电压

u 相输出电压uu 和各相输入电压的关系为

式中σ11、σ12和σ13——一个开关周期内开关S11、S12、S13的导通占空比

对于三相有

uo=s ui

o U i U σ称为调制矩阵

σ矩阵中各元素确定后,输入电流ia 、ib 、ic 和输出电流iu 、iv 、iw 的关系也就确定了

ii =σT*io

式中 ii io

即是矩阵式变频电路的基本输入输出关系式。

对实际系统来说,输入电压和所需要的输出电流是已知的。

式中Uim 、Iom ——输入电压和输出电流的幅值;

wi、wo——输入电压和输出电流的角频率;

jo——相应于输出频率的负载阻抗角。

变频电路希望的输出电压和输入电流分别为

式中Uom、Iim——输出电压和输入电流的幅值;φi ——输入电流滞后于电压的相位角当期望的输入功率因数为1时,φi =0。把这几个式子结合,可得

如能求得满足式(4-35)和式(4-36)的s ,就可得到希望的输出电压和输入电流。

三、矩阵式变频器的特点

与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点:

(1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值;

(2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角;

(3)采用四象限开关,可以实现能量双向流动;

(4)没有中间储能环节,结构紧凑,效率高;

(5)输入电流波形好,无低次谐波;

(6)具有较强的可控性。

矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。

四、矩阵式变换器调制策略

目前,矩阵变换器的调制策略常用开关函数矩阵来描述,开关函数的确定即矩阵式变换器调制策略主要有以下三种方法:

(1)直接变换法

是通过对输入电压的连续斩波来合成输出电压,它可分为坐标变换法、谐波注入法、双电压瞬时值控制法。这些方法虽各有一定的优点,但也存在其不足,如坐标变换法矩阵变换器的输出电压偏低;谐波注入法计算量大,开关状态复杂,对控制系统要求很高。

(2)间接变换法

此法可称为交—直—交等效变换法、空间矢量调制法。目前在矩阵式变换器中研究较多也较为成熟。它将交—交变换虚拟为交—直和直—交变换,等效为整流和逆变,其具体实现时整流和逆变是一步完成的,低次谐波得到了较好的抑制。其控制方案较为复杂,缺少有效的动态分析支持。在此基础上,丹麦学者ChristianKlumpner等人研究出一种多边形磁链调制法,这也是一种基于间接调制模型的新型调制方法。在采样期间,只用到逆变阶段的一个有效矢量和一个零矢量,使得定子磁链误差达到最小;而在整流阶段,按照输入电流参考矢量角误差最小的原则,只选单个电流矢量。因此,在采样期间,就可以减少开关的次数,尤其在低频调制阶段,可以提高输出电压的精度;同时又可以对输入电流矢量进行直接控制。该方法由于磁链按多边形投影,而多边形非常接近圆,因而使得电机漏磁减到最少。其主要优点有可以准确估计输入电流;直接控制输入电流矢量角;减少开关次数,提高脉冲分辨率;提高输入端开关频率。

(3)电流控制法

它以输出电压为控制目标,一般要求电流为对称正弦量,因此变换器输出电流要跟踪给定电流呈正弦变化。它有两种基本实现方法:滞环电流控制法和预测电流控制法。

滞环电流跟踪法是将三相输出电流信号与实测的输出电流信号相比较,根据比较结果和当前的开关电源状态决定开关动作,它具有容易理解、实现简单、响应快、鲁棒性好等优点,但开关频率不够稳定,谐波随机分布,且输入电流波形不够理想,存在较大的谐波等。

预测电流控制法的基本思想是利用变换器下一开关周期的期望电流值和当前的实际电流值可以计算出符合电流变化的变换器输出电压矢量,然后在变换器的虚拟逆变器中运用空间矢量法合成这一输出电压矢量,就可以达到跟踪输出电流的目的,但复杂性和计算量将有所增加。

以上所有这些调制策略均各有其优越性,不同程度地存在问题,而影响这些方法研究应用的深度和广度,在不同的场合下侧重点不同,应采用不同的调制策略来进行研究。

五、矩阵变频器的应用前景

矩阵变换器由于具有输入电流为正弦量、双向功率流动、输入功率因数可调等优越性能,其应用研究与前景可从几个方面来探讨:

(1)应用于转速较低的传动系统

矩阵变换器的电压传输比受到一定限制,在输出频率较高时会出现输出电压不足的现象,不太适合调速范围较高的场合;它不需要更换电解电容的,因而可以在低频大功率变频调速系统中长时间可靠工作。

(2)作为电源产品

与目前的电源产品相比,矩阵变换器有一定优越性,如功率因数高、无中间储能环节、结构紧凑寿命长,在这方面,矩阵式变换器的研究有良好的市场前景。

(3)用于高压大功率变换

在需要高压的场合,可以将矩阵式变换器串联使用,达到高压大功率输出的目的。(4)用于功率因数校正

由于矩阵式变换器的输入功率因数可以任意调节,其调制策略和实现技术在某些场合可以用于校正电路的功率因数。由于它具有柔性变换能力,可以作为一种通用的电力变换器来实现电力变压器的某些性能,作为无功补偿器来提高电网利用率。

矩阵变换器在风力发电、热电机组直流电源、感应电动机调速、电力系统应用(如统一潮流控制器UPFC)以其优越的性能都可以做些可行的应用研究。

矩阵式交—交变频器作为一种具有优良控制性能和发展前途的新型变频电源。它的研究工作在国内外引起了广泛的重视,己经取得了较大的成果。虽然矩阵式变换器依然存在很多的问题有待进一步解决如输出电压传输比低是矩阵式变换器存在的主要缺点;如IGBT成本较高、控制电路较复杂,适合用于大功率的应用场合。然而,矩阵变换器可以在变频调速中的应用研究既可产生节能的重大经济效益,又避免了因谐波污染带来电力系统环保问题,是一种“绿色”的变换器。随着研究的不断深入,电力电子器件和应用技术以及微机控制技术的发展,控制理论的日益完善,成本的不断降低,矩阵式变换器必将以其独特的优点在未来产品化方面形成优势,日益接近实用化。

总而言之,矩阵变频器使用了三相电压输入来控制输出电压,这就不仅能吸收任何电流杂波,也能提供一个清洁的输出电压,也就是说“可以有效地进行输入电源电流控制与输出电压控制”。这也是矩阵变频器吸引人们的一个重要点:能大大降低输入电流谐波的产生,只有大约传统交-直-交变频器的20%以下。而且矩阵变频器的电流几乎是正弦波,即使在带载情况下,也是如此。当有再生发电时,电流能以180°转换并反馈到电网中,而且也是以正弦波方式。在再生制动方式的工作中,矩阵变频器不需要制动电阻或特殊的变换器。反馈回的电亦无需额外的设备(如变压器等)进行处理。总之,传动能在四象限高效率地运行。另外一个吸引点就是矩阵变频器去掉了直流电容,作为有一定寿命地铝电解电容,交-直-交变频器就必须在一定年限更换电容,如5~8年,矩阵变频器就能长时间可靠工作。

参考文献:

[1]陆海慧,陈伯时,夏承光.矩阵式交交变换器[J].电力电子技术,1997(1):105-108.。

[2]陈希有,韦奇.直接实现式矩阵变换器换流方法的改进[J].电气传动自动化,2002(2):11-14。

[3]陆海慧,等.矩阵式交-交变换器[J].电力电子技术,1997(2):105-107。

[4]庄心复.交-交矩阵变换器的控制原理与实验研究[J].电力电子技术,1994,28(2):1-5。

[5]陈伯时,等.矩阵式交-交变换器及其控制[J].电力电子技术,1999(1):8-10。.

[6]王兆安,刘进军.电力电子技术[M].北京:机械工业出版社,2009(5)。

变频器控制方式选型(精)

变频器控制方式选型 概述:本文介绍了通用变频器的控制方式,以及在实际应用中如何选择合理的型号。 关键词:控制方式选型 1引言 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 2变频器控制方式 低压通用变频输出电压为380~690V,输出功率为0.75~560kW,工作频率为0~500Hz,它的主电路都采用交直交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流 Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁

车用新型AC_DC矩阵式变换器汇总

2011年8 月电工技术学报 Vol.26 No. 8 第26卷第8期 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2011 车用新型AC-DC 矩阵式变换器 徐壮殷冠贤徐殿国 (哈尔滨工业大学电气工程及自动化学院哈尔滨 150001) 摘要针对车用电子系统容量扩大和传统PWM 整流器缺点问题,为实现输入单位功率因数和一级降压整流,去除死区时间引起的谐波带来的影响,本文提出一种新型基于42V PowerNet的车用双向AC-DC 矩阵变换器。在基于三相 - 三相矩阵变换器理论基础上,推演出AC-DC 矩阵 变换器的整流调制策略,并研究了开关序列和换相的方法,采用优化AV 法调制策略来控制整流器。运用四步换流策略解决了开关换相存在的短路、断路风险和死区时间问题,仿真和实验结果验证了车用新型AC-DC 矩阵式整流器的有效性和正确性。 关键词:AC-DC 变换器矩阵变换器功率因数四步换流中图分类号:TM464 A New Bidirectional AC-DC Converter Using

a Matrix Converter Topology Xu Zhuang Yin Guanxian Xu Dianguo (Harbin Institute of Technology Harbin 150001 China) Abstract The expansion of automotive electronic system and the disadvantage of the conventional rectifier should not be ignored. To achieve unity power factor and complete the step-down rectification in single stage, this paper presents a new type of AC-DC matrix converter with 42V for automotives. It removed the impact of harmonics which is caused by the dead time and reduced the cost of the system. In this paper, the modulation strategy of AC-DC matrix converter derived from that of three-phase – three-phase matrix converter and the methods of commutation are studied. The optimized modulation strategy named AV method is used to control the switch-state. The four-step commutation strategy is a solution of the risks for short circuit, open circuit and the dead-time problem. The experimental results based on DSP system and the simulation results demonstrate the validity and effectiveness of the system. Keywords :AC-DC converter, matrix converter, power factor, four-step current commutation 1 引言 随着汽车电子系统容量的扩大,极限功率为3kW 左右的传统14V 供电系统已经逐渐过渡到42V 系统,其中42V 为整流器工作时的直流端电压,蓄电池电压为36V 。而42V 车用整流器在汽车行驶过程中将发电机所发出的变频变幅的交流电变换为42V 直流电。21世纪汽车的发展受到能源、环保和 安全的三大挑战。未来车辆对电能的需求和效率的要求使得设计适合的车用整合起动发电系统(ISA )显得尤为必要。目前的解决方案离真正意义上的ISA 还有一定的距离。考虑到中国和世界巨大的市场,ISA 的研发对中国的汽车产业将带来相当大的益处。ISA 系统(见图1)起动时由电动机带动引擎,当达到预定转速

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护 1、概述 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机

变频驱动与控制技术介绍

变频驱动技术

绪论 以交流(直流)电动机为动力拖动各种生产机械的系统我们称之为交流(直流)调速系统,也称交流(直流)电气拖动系统。变频调速技术是交 流电气传动系统的一种。 目的 根据设备和工艺的要求通过改变电动机速度或输出转矩改变终端设备的速度或输出转矩。 意义 序号意义有代表意义的行业或设备 1节能风机、水泵、注塑机 2提高产品质量机床、印刷、包装等生产线 3改善工作环境电梯、中央空调 注:并不是所有的设备使用调速装置后都可以节能

调速系统构成 中间传动机构 交流电源输入 终端机械 交流电机 直流调速装置 直流输出 皮带轮、齿轮箱等风机、泵等 直流电机 交流调速装置 交流输出 执行机构 变频器

交、直流调速系统的特点 直流调速系统特点: ●控制对象:直流电动机 ●控制原理简单,一种调速方式●性能优良,对硬件要求不高●电机有换向电刷(换向火化)●电机设计功率受限 ●电机易损坏,不适应恶劣现场●需定期维护交流调速系统特点: ●控制对象:交流电动机 ●控制原理复杂,有多种调速方式●性能较差,对硬件要求较高 ●电机无电刷,无换向火化问题●电机功率设计不受限 ●电机不易损坏,适应恶劣现场●基本免维护

国内调速技术现状 (1)晶闸管交流器和开关断器件(DJT、IGBT、VDMOS)斩波器供电的直流调速设备。 随着交流调速的发展,该设备在缩减,但由于我国旧设备改造任务多,以及它在几百至一千多kW范围内价格比交流调速低得多,所以在短期内有一定市场。国产设备能满足需要,部分出口。自行开发的控制器多为模拟控制,近年来主要采用进口数字控制器配国产功率装置。 (2)IGBT等逆变器供电的交流变频调速设备。这类设备的市场很大,总容量占的比例不大,但台数多,增长快,应用范围从单机扩展到全生产线,从简单的V/f控制到高性能的矢量控制。约有50家工厂和公司生产,其中合资企业占很大比重。 (3)负载换流式电流型晶闸管逆变器供电的交流变频调速设备。这类产品在抽水蓄水能电站的机组起动,大容量风机、泵、压缩机和轧机传动方面有很大需求。国内只有少数科研单位有能力制造,目前容量最大做到12MW。功率装置国内配套,自行开发的控制装置只有模拟式的,数字装置需进口,自己开发应用软件。 (4)交-交变频器供电的交流变频调速设备。这类产品在轧机和矿井卷扬传动方面有很大需求,台数不多,功率大。主要靠进口,国内只有少数科研单位有能力制造。目前最大容量做到7000~8000kW。功率部分国产,数字控制装置进口,包括开发应用软件。

变频器基本电路图

变频器基本电路图 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元

件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50 RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为2 0KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护

变频器的结构原理图解

变频器的结构原理图解 可以简单的说,交交变频器需要使用太多元件,不好控制,而交直交使用的元件少,控制简单,所以目前大多使用交直交结构的变频器。 1、变频器的发展也同样要经历一个徐徐渐进的过程,最初的变频器并不是采用这种交直交:交流变直流而后再变交流这种拓扑,而是直接交交,无中间直流环节。这种变频器叫交交变频器,目前这种变频器在超大功率、低速调速有应用。其输出频率范围为:0-17(1/2-1/3 输入电压频率),所以不能满足许多应用的要求,而且当时没有IGBT,只有SCR,所以应用范围有限。 交交变频器其工作原理是将三相工频电源经过几组相控开关控制直接产生所需要变压变频电源,其优点是效率高,能量可以方便返回电网,其最大的缺点输出的最高频率必须小于输入电源频率1/3或1/2,否则输出波形太差,电机产生抖动,不能工作。故交交变频器至今局限低转速调速场合,因而大大限制了它的使用范围。

矩阵式变频器是一种交交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。虽然矩阵变换器有很多优点,但是在其换流过程中不允许存在两个开关同时导通的或者关断的现象,实现起来比较困难。矩阵变换器最大输出电压能力低,器件承受电压高也是此类变换器一个很大缺点。应用在风力发电中,由于矩阵变换器的输入输出不解耦,即无论是负载还是电源侧的不对称都会影响到另一侧。另外,矩阵变换器的输入端必须接滤波电容,虽然其电容的容量比交直交的中间储能电容小,但由于它们是交流电容,要承受开关频率的交流电流,其体积并不小。

变频器完整电路图(清晰版)

6&+('$ $ & 6 3&% $&2',&( '$7$ 25,*,1$/( 8/7,0$ 5(9 *8,'$ 5(9 15 )* 5(9 352*(77,67$ 9,7$/, )$%,2&200(66$ 8 '(6&5,=,21(6&+('$ &219(57,725( 6,1862,'$/( ',*,7$/( (/(1&2 '2&80(17$=,21( O DVWHULVFR LQGLFD OD GRFXPHQWD]LRQH LQWHUHVVDWD GDOO XOWLPD PRGLILFD 120( 120( 120( 120( 120( ( B ( B ( B ( B ( B ( B ( B / B 7 B 7 B 0 B 127( ', 0217$**,2 1 0217 '$ 87,/,==$5( 3(5 ,/ &20321(17( 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 1 0217 3(51 0217 3(5 5(9 '$7$ (6(*8,7$ '$'(6&5,=,21( 02',),&$ 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH ( SURP VX ULFKLHVWD GHOO?XIILFLR 647 6LJ 3DVTXHWWL q VSRVWDWR QHOOD GLVWLQWD FRQ OD OHWWHUD ILQDOH 7 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD ,O FRGLFH 3RQWH UDGGUL]]DWRUH q VWDWR WROWR GDOOD GLVWLQWD SHUFKp XWLOL]]DWR QHOO?DVVLHPH GHOO?D]LRQDPHQWR 5XQQHU %DVH 3URJHWWLVWD 9,7$/, )DELR &RPPHVVD 9DULDWR LO YDORUH GHOOD UHVLVWHQ]D 5 GD RKP D RKP ,QVHULWL L FRGLFL GHOOH IDVFHWWH QHOOH PLQXWHULH GHOOD VFKHGD

矩阵式变换器四步换流的仿真研究

矩阵式变换器四步换流的仿真研究 郭有贵,朱建林 (湘潭大学信息工程学院 湖南湘潭 411105) 摘 要:利用SIM U L IN K 对矩阵变换器的四步换流进行了仿真,验证了理论的正确性。关键词:矩阵变换器;四步换流;SIM U LI NK 仿真;电流 中图分类号:T P 337 文献标识码:A 文章编号:1004373X (2003)0706202 A Simulation Study on Four step Commutation for Matrix C onverters GU O Y oug ui,ZHU Jianlin (Colleg e of Info rmatio n Engineering ,Xi a ng tan University ,Xiangta n,411105,China) Abstract :Simula tes t he fo ur st ep comm ut atio n fo r mat rix conv erter s by means o f SIM U L IN K .It ver ifies the cor rectness o f four step commutat ion theo ry. Keywords :mat rix co nv ert er s;fo ur st ep co mmutatio n;SIM U LI NK simulatio n;cur rent 收稿日期:200301 02 矩阵式变换器的安全换流非常重要,否则,将导致开关管的损坏。换流是指将负载电流从一个双向开关管换到另一个双向开关管。在调制过程中,矩阵式变换器开关管通断状态不断改变,从而使换流始终存在于矩阵式变换器的运行过程中,因此,安全换流是矩阵式变换器控制策略中一项至关重要的问题。 同一输出相的双向开关的换流方法主要有3种:(1)插入死区延时法。他不能工作在电流连续的情况下,且开关损耗大,但控制方法简单。 (2)N.Burany 提出的一种四步换流策略,可实现半软开关换流。被认为是最有前途的方法。 (3)台湾学者潘晴财教授提出的一种基于电流滞环调制的谐振式软开关换流策略。这仅限于电流滞环调制的矩阵式变换器换流。1 四步换流 1.1 2个双向开关之间的换流 如图1所示,1和2是同一输出相的2个双向开关,1c 和2c 是开关1和2的正向开关,1nc 和2nc 是反向开关。假定电流方向为正向,现在要关断开关1,开通开关2,要保证电流连续,又不能出现短路情况,共要经过4步才能完成: 1关断开关1的反向开关1nc,由于电流是正向流动,这一步不会带来开关损耗。 o开通开关2的正向开关2c ,打开2c 后,如果开关2所连接的电压高于开关1所连接的电压,那么电流将自动换流到2c 中。 ?关断开关1的正向开关1c,由于电流有一半的可能已经换流到2c 中了,所以1c 的关断有50%的可能性为零电流关断。 ?开通开关2的反向开关2nc 。 图1 四步换流法 这样的四步换流策略,既禁止了电源发生短路的开关组合,又保证了在任意时刻给负载电流提供了至少一条流通路径,且换流过程中有一半的可能性实现软开关中的零电流关断,所以被称为四步半软开关换流法。 如果电流是反相流动的,仍采用原来的换流顺序,将导致不安全后果。电流为反向时要按以下顺序进行:第1步,关断1c;第2步,开通2nc;第3步,关断1nc;第4步,开通2c 。 1.2 3个双向开关之间的换流 在矩阵式变换器中,每一输出相通过3个双向开 62 郭有贵等:矩阵式变换器四步换流的仿真研究

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

矩阵式变换技术

矩阵式变换技术 1、引言 随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。 与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点: (1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值; (2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角; (3)采用四象限开关,可以实现能量双向流动; (4)没有中间储能环节,结构紧凑,效率高; (5)输入电流波形好,无低次谐波; (6)具有较强的可控性。 矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。 2、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Bu rany提出了一种四步换流策略,可实现半软开关换流。 2.1 拓扑结构 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 三相输入、三相输出的交—交矩阵变换器电路拓扑结构如图1所示。

矩阵变换器研究综述

矩阵变换器研究综述 1 引言 随着电力电子技术的迅速发展,交-交变频器在传动系统中已经得到了广泛的应用,但也存在一些固有的缺陷,因此研究新型的既有优良控制性能和输入电流品质而又成本低、结构紧凑、性能可靠的交-交变频器已成为当前的发展趋势。 矩阵式变换器是一种直接交-交变频器,与传统的自然换流变频器相比,具有以下优点: l 无中间直流环节,结构紧凑,体积小,效率高,便于实现模块化; l 无需较大的滤波电容,动态响应快; l 能够实现能量双向流动, 便于电动机实现四象限运行; l 控制自由度大,输出电压幅值和频率范围连续可调; l 输入功率因数可控,带任何负载时都能使功率因数为1.0; l 输出电压和输入电流的低次谐波含量较小; l 实现功率集成后能够改善变换器内部的电磁兼容性,其输出的pwm电压和输入功率因数可调的特点能够改善电动机、变换器与电源之间的电磁兼容性[1]。 矩阵变换器的原理在80年代被提出,由于具有性能优良的潜在优势,越来越引起人们的重视,有逐步取代交-直-交变频器、周波变流器的趋势[2]。特别是它具有本身不产生谐波污染的同时,能够对电网进行无功补偿的能力,其总体性能高于其它变换器。在日益关注可持续发展问题,大力推行电力环保、绿色电源的今天,研究与开发矩阵式变换器特别具有现实意义。 矩阵变换器的关键技术主要包括:主回路的拓扑结构和工作原理、安全换流技术、调制策略和保护电路设计等,下面就这些关键技术的研究进行一一介绍。

2 主回路拓扑结构和工作原理 矩阵变换器的名称来源于它的矩阵状拓扑结构。一个m相输入、n相输出的矩阵变换器,由m×n个双向开关组成,它们排列成矩阵形状,分单级和双级两种。 图1 单级矩阵变换器拓朴结构 2.1 单级矩阵变换器 常规的矩阵变换器是一种单级交-交变换器(见图1),其结构简单,可控性强,但存在以下缺陷: l 最大电压增益为0.866,并且与控制算法无关; l 主电路的9个双向开关存在控制和保护问题,应采用安全换流技术; l 必须采用复杂的pwm控制和保护策略,同时要求复杂的箝位保护电路。 单级矩阵变换器的理论和控制技术得到了飞速的发展,但仍然停留在实验阶段,而不能在工业中推广应用,原因在于: l 其控制策略复杂,计算量大; l 四步换流法增加了控制的难度, 降低了系统的可靠性; l 开关数量多,系统成本过高[3,4]。

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

科沃—工控维修的120 .gzkowo. 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路科沃—电梯维修的120 .gzkowo. 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,部都具有保护功能。

矩阵式变频电路及变频器

矩阵式变频电路及变频器 姓名:陈剑飞学号:65090522 摘要:本文介绍了矩阵式变频电路及变频器的工作原理和调制策略,文中遵循理论和实际相结合的原则,对变频器的工作原理和调制策略作了详细的分析。 关键词:变频、工作原理、调制策略 引言:随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。矩阵式变频器是一种交-交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。 一、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.V enturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 二、矩阵式变频电路的基本工作原理 (1)利用单相输入 对单相交流电压us进行斩波控制,即进行PWM控制时,输出电压uo为

变频器的矩阵式交—交控制方式

VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是: ——控制定子磁链引入定子磁链观测器,实现无速度传感器方式; ——自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别; ——算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制; ——实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。 矩阵式交—交变频具有快速的转矩响应(《2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(《+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/ab13620542.html,。

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

海尔变频空调电路原理及图纸

海尔变频空调电路原理及图纸 海尔变频空调电路原理及图纸 海尔牌变频空调器早期在市场上主要有:KFR-20Gw/(BP)、KFR-28GW/A(BP)、KFR-32Gw/(BP)、KFR-36GW /(BP)、KFR-40Gw/(BP)、KFR-50Lw/(BP)和带有负离子发生器的健康型空调器KFR-25Gw/BP×2(F)、KFR-50LW/(BPF)等。他们的变频控制原理基本相同,本文主要以KFR-50LW(BP)金元帅柜机王为例,分析控制电路的工作原 理,以抛砖引玉。 图1是室内机控制电路原理图,图2是室外机控制电路原理图,两个原理图均是作者依据实物绘制,仅供参考。 一、室内机控制电路原理 室内机控制电路采用变频空调专用芯片 47C862AN-Gc5l。 该芯片内部除了写入空调器专用程序外,还包含有CPU 微处理器、程序存贮器、数据存贮器、输入输出接口和定时计数器电路等电路,可对输入的信号进行运算和比较,根据运算和比较的结果,对室外机、风机、定时、制冷制热、抽 湿等工作状态进行控制。 1.ICI(47C862AN-GC51)主要引脚功能 (1)35、64脚为供电端,典型的工作电压为+5V。

(2)芯片的32、33、34、39、48、60为接地端。 (3)31脚是蜂鸣器接口。CPU每接到一次用户指令,31脚便输出一个高电平,蜂鸣器鸣响一次,以告知用户CPU 已接到该项指令。若整机已处于关机状态,遥接器再输出关 机指令,蜂鸣器也不响。 (4)36、37、38是温度采集口,其中36、37脚为室内机热 交换器温度输入口,38脚为室内温度输入口。 (5)复位电路由20脚和ICl03、R101、D101、C103、C109构成,低电平有效。空调器每次上电后,复位电路产生一个低电压,使CPU程序复位。当机器正常工作时,复位端为高 电平。 (6)62脚为开关控制端开关控制口(多功能口),低电平有效。应急运转时,按住电源开关,使该脚连续3秒以上持续高电平,蜂鸣器连响两下,机器即可进入应急运转状态。该脚处在低电平时,56脚输出一个高电平,点亮电源指示灯LEDl,同时cPu执行上次存贮的工作状态。若为初次上电,用户没有输入任何指令时,CPu指行自动运行程序。室内温度在大于27℃时制冷,小于21℃时制热,大于21℃且小于27℃ 时,为抽湿状态。 (7)红外线接收器收到控制信号后,经46脚输入微处理器与温度采集的数据,一起控制空调器的运行状态,完成遥控 信号的接收。

相关文档