文档库 最新最全的文档下载
当前位置:文档库 › 排队论练习题

排队论练习题

排队论练习题
排队论练习题

第9章排队论

9.1 判断下列说法是否正确:

(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;

(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;

(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、

3、5、7,…名顾客到达的间隔时间也服从负指数分布;

(4)对M/M/1或M/M/C的排队系统,服务完毕离开系统的顾客流也为泊松流;

(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;

(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;

(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;

(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;

(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;

(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。

M/M/1

9.2、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4人,理发时

间服从负指数分布,平均需6小时,求:

(1)理发店空闲时间的概率;

(2)店内有3个顾客的概率;

(3)店内至少有1个顾客的概率;

(4)在店内顾客平均数;

(5)在店内平均逗留时间;

(6)等待服务的顾客平均数;

(7)平均等待服务时间;

(8)必须在店内消耗15分钟以上的概率。

9.3、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6分钟。求:

(1)修理店空闲时间的概率;

(2)店内有3个顾客的概率;

(3)店内顾客平均数;

(4)店内等待顾客平均数;

(5)顾客在店内平均逗留时间;

(6)平均等待修理时间。

9.4、对M/M/1的排队模型,根据下列等式右侧的表达式分别解释θ的含义:

(1)λθμ= ; (2)P n 0θ>=() ; (3)s q L L θ=- ; (4)q s

W W θ=。

9.5、汽车平均以每5分钟一辆的到达率去某加油站加油,到达过程为泊松过程,该加油站 只有一台加油设备,加油时间服从负指数分布,且平均需要4分钟,求:

(1) 加油站内平均汽车数;

(2) 每辆汽车平均等待加油时间;

(3) 汽车等待加油时间超过2分钟的概率是多少?

9.6、设到达一个加工中心的零件平均为60件/h ,该中心的加工能力为平均75件/h 。问处于稳定状态时刻该加工中心的平均输出率是60还是75件/h ?简要说明理由。

9.7、 到达只有一个加油设备的加油站的汽车的平均到达率为60台/h ,由于加油站面积比较小又拥挤,到达的汽车平均每4台中 有一台不进入站内而离去。这种情况下排队等待加油的汽车队列(不计 正在加油的汽车)为3.5台,求进入该加油站的汽车等待加油的平均时间。

9.8、某车站候车室在某段时间内旅客以强度为50人/h 的泊松流到达,每位旅客在候车室内平均停留时间为0.5h ,服从负指数分布。问候车室内的平均候车人数为多少?

9.9、考虑一个单服务台,队长无限的排队系统,它的服务时间及到达的间隔时间均为一般的概率分布。求证:

①0(1)s q L L P =++;②s q L L ρ=+;③001P ρ=-

9.10、某车间的工具仓库只有一个管理员,平均每小时有4个工人来借工具,平均服务时间为6min 。到达为泊松流,服务时间为负指数分布。由于场地等条件限制,仓库内能借工具的人最多不能超过3个,求:

(1)仓库内没有人借工具的概率;(2)系统中借工具的平均人数;(3)排队等待借工具的平均人数;

(4)工人在系统中平均花费的时间;(5)工人平均排队时间。

9.11、汽车按泊松分布到达只有一套加油设备的加油站,平均15辆/h ,当加油站已有n 台汽车在加油或者等待加油时,新到达的汽车将按n/3的概率离去,又每辆车加油时间为平均4min 的负指数分布,试(1)画出上述排队系统的生灭过程发生概率图;(2)求处于稳定系统处于各状态的概率。

9.12、 在工厂的一个工具检测部门,要求检测的工具来自该厂各车间,平均25件/h ,服从泊松分布。检测每件工具的时间为负指数分布,平均每件2min 。试求:

(1) 该检测部门空闲的概率;

(2) 一件送达的工具到检测完毕其停留时间超过20min 的概率

(3) 等待检测的工具的平均数

(4) 等待检测的工具在8到10件间的概率

(5)分别找出在下列情况时等待检测的工具的平均数:a检测速度加快;b送达的检测工具数降低20%;c送达的检测工具数和检测速度均增大20%。

9.13、某医院有一台心电图机,要求做心电图的病人按照泊松分布到达,平均每小时5人。又为每位病人做心电图的时间服从负指数分布,平均每人10min。设心电图室除正在做的病人外,尚有5把等待的椅子。问(a)到达的病人中有多大比例椅子坐;(b)为使到达的病人至少有95%以上能有椅子坐,则在心电室至少应该设多少把等待的椅子?

9.14、一名机工负责5台机器的维修。已知每台机器平均2h发生一次故障,服从负指数分布。机工维修速度为3.2台/h,服从泊松分布。试求:

(1)全部机器处于运行状态的概率

(2)等待维修的机器的平均数

(3)若该车工负责6台机器的维修,其他各项数据不变,则上述(1),(2)的结果如何?

(4)若希望至少50%时间内所有机器能正常运转,求该机工最多负责维修的机器数。

9.15、一个有一套设备的洗车店,要求洗车的车辆平均每4min到达一辆,洗每辆车需要3min,以上均服从负指数分布。该店现在有2个车位,当店内无车时,到达车辆全部进入,当有一辆车时,只有80%进入,有两辆车时,到达车辆因为无系统服务而全部离去。要求:(1)对此排队系统画出生死过程发生率。

W?(2)求洗车设备平均利用率,及一辆进入该店的车辆在该洗车电的平均逗留时间

S

(3)为减少顾客流失,店里拟扩大租用3个车位,这样当店内已有2辆车时,到达车辆60%

P 进入,有3辆车时,新车辆仍全部经济算当租用第3车位时,该洗衣店内有n辆车的概率

n

若该车店每天营业24小时,新车位租金100元/天,洗一辆车的净盈利为5元,问该第3车位是否值得租用?

M/M/C模型

9.16、某银行有三个出纳员,顾客以平均速度为4人/分钟的泊松流到达,所有的顾客排成

队,出纳员与顾客的交易时间服从平均数为0.5分钟的负指数分布,试求:

(1)银行内空闲时间的概率;

(2)银行内顾客数为n时的稳定概率;

L;

(3)平均队列长

q

L;

(4)银行内的顾客平均数

s

(5) 在银行内的平均逗留时间s W ;

(6) 等待服务的平均时间q W 。

9.17、某电话亭有一部电话,来打电话的顾客数服从泊松分布,相继两个人到达间的平均时

间为10分钟,通话时间服从指数分布,平均数为3分钟。求:

(1)顾客到达电话亭要等待的概率;

(2)等待打电话的平均顾客数;

(3)当一个顾客至少要等待3分钟才能打电话时,电信局打算增设一台电话机,问到达速

度增加多少时,装第二台电话机才是合理的?

(4)打一次电话要等10分钟以上的概率是多少?

(5)第二台电话机安装后,顾客的平均等待时间是多少?

9.18、某商店收款台有3名收款员,顾客到达率为每小时504人,每名收款员服务率为每小 时240人,设顾客到达为泊松输入,收款服务时间服从负指数分布,求解:0,,,,q s q s P L L W W 。

9.19、某食堂有两个窗口,用餐人员以平均到达间隔时间是8分钟的泊松流大大,服务时间 服从负指数分布且平均服务时间为5分钟,试求:

(1) 窗口不空而耽搁的概率;

(2) 至少有一个服务台都空闲的概率;

(3) 两个服务台都空闲的概率。

9.20、某工具间管理相当差,平均为一个机械工服务就要12min 。现有5个机械工,平均每15min 有一个机械工来领取工具,到达为泊松分布,服务时间为负指数分布。求:

①工具保管员空闲的概率;②五个机械工都在工具间的概率;⑤系统中的平均人数;④排队的平均人数;⑤每个机械工在工具问的平均逗留时间;⑧每个机械工的平均排队时间;⑦对上述结果进行评价。

9.21、某厂医务室共有同样医疗水平的大夫2名。已知职工按泊松流来到医务室就诊,平均每小时来15人;诊病时间平均每人为6min ,并服从负指数分布。现在要问:

(1)医务室空闲的概率;(2)在医务室逗留的病人及排队等待就诊的病人各为多少?

(3)平均每一病人在医务室逗留的时间为多少?

(中)9.22、一个由两名服务员的排队系统,该系统最多容纳4名顾客。当系统处于稳定状态时,系统中恰好有n 名顾客的概率是:012341/16,4/16,6/16,4/16,1/16P P P P P =====.

试求:(1)系统中的平均顾客数s L ;(2)系统中平均排队的顾客数q L ;(3)某一时刻正在被服务的顾客的平均数;(4)若顾客的平均到达率为2人/h ,求顾客在系统中的平均逗留时间s W ;( 5)若两名服务员有相同的服务效率,利用(4)的结果求服务员服务一名顾客的平

均时间1/u 。

9.23、某排队系统中有两个服务员,顾客到达为泊松流,平均1人/h ,服务员对顾客的服务时间服从负指数分布平均每人1h 。假如有一名顾客于中午12点到达该排队系统情况下,试求:(1)下一名分别于下午1点前,1~2点间,2点之后到达的概率,(2)若下午1点前无别的顾客到达,下一名顾客于1~2点间到达的概率;(3)在1~2点间到达顾客数分别为0,1或不少于2的概率;(4)假定两个服务员于下午1点整都为顾客服务,则两个被服务的顾客于下午2点前,1:10前,1:01前均未结束服务的概率。

9.24、一个顾客来到有2名并联服务员统,服务员的服务时间平均值10min 的负指数分别,分别求下列的概率:(1)到达时2名服务员均忙碌,则该顾客需要等待时间1t 的概率分布

()1f t ;

(2)若该顾客已等了5分钟,则需要等待时间为2t 的期望值()2E t 及标准差;(3)若该顾客到达时前面已有2人在等待,则轮到其他被服务时所需的时间3t 的期望值()3E t 及标准差。

9.25、某停车场又10个停车位置。汽车到达服从泊松分布,平均10辆/h ,每辆汽车停留时间服从负指数分布,平均10min 。试求:

(2) 停车位置的平均空闲数

(3) 到达汽车能找到一个空停车位的概率

(4) 在该场地停车的汽车占总到达数的比例

(5) 每天24小时在该停车场找不到空闲位置停放的汽车的平均数。

9.26、某航空售票处有3台订票电话和2名服务员,当2名服务员在接电话处理业务时,第3台电话的呼叫将处于等待状态。若3台电话均占线,新的呼叫因不通(忙音)而转向其他售票处订票,设订票顾客的电话呼叫服从泊松分布,15λ=/h ,服务员对每名顾客的服务时间服从负指数分布,平均时间为4min 。试回答:

(1)一名顾客呼叫时立即得到服务的概率

(2)8小时营业时间内转向其他售票所订票的顾客数

(3)服务员用于为顾客服务时间占全部时间的比例

9.28、一个计算中心有三台电子计算机,型号和计算能力都是相同的。任何时间在中心的使用人数等于10。对每一个使用人,书写(和穿孔)一个程序的时间是服从于平均率为每小时0.5的指数分布。每当完成程序后,就直接送到中心上机。每一个程序的计算时间是服从

于平均率每小时为2的指数分布。假定中心是全日工作的,并略去停机时间的影响,求以下各点。

(1)中心收到一个程序时不能立即执行计算的概率;

(2)直到由中心送出一个程序为止的平均时间;

(3)等待上机的程序的平均个数;

(4)空闲的计算机的期望台数;

(5)计算机中心空闲时间的百分率;

每台计算机空闲时间的平均百分率。

9.29、一名机工负责5台机器的维修。已知每台机器平均2h发生一次故障,服从负指数分布。机工维修速度为3.2台/h,服从泊松分布。若机工工资为8元每小时,每台机器停工损失为40元每小时,确定该机工最佳的负责维修的机器数。

9.30、某机械师维修一台设备的时间服从负指数分布,平均4小时,如他使用一种

专用工具,则可将平均缩短为2小时。若规定该机械能在2小时以内维修完一台设备,付报酬100元,否则只付给80元。问该机械专用工具较之未使用专用工具时,每维修一台设备预期增加的报酬的值。

9.31、某厂有一机修组织专门修理某种类型的设备。今已知该类型设备的损坏率服从泊松分

天。但μ是一布,平均每天两台。又知修复时间服从负指数分布,平均每台的修理时间为1

μ

个与机修人员多少及维修设备机械化程度(即与修理组织年开支费用k)等有关的函数。已知

μ=+(k≥1900元)

k k

()0.10.00

又已知设备损坏后,每台每天的停产损失为4肋元,试决定该厂修理最经济的A值及/j值。(提示:以一个月为期进行计算。)

M/G/1模型(易)

9.32、某修理店只有一个修理工人,来修理的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从正态分布,平均需要6分钟,方差为1/8,求店内顾客数的期望值。

9.33、某实验室有一种贵重仪器每次使用时间为3分钟,做试验的人的到来过程为泊松过程,

L L W W。

平均每小时来18人。求此排队系统的,,,

q s q s

M/E k /1模型(易)

9.34、设做一套西装需要依次经过四道工序,某服装店内仅有一位裁缝。已知顾客前来制定西装的过程为泊松过程,平均每周到5.5人(每人定做一套西装,且每周工作6天,每天工作8小时)。每道工序所需时间服从相同参数的负指数分布,平均需要2小时。试问美味顾客从订货到做好一套西装平均需要多长时间?

9.35、到达只有一名医生的医院的病人分为三类:抢救病人,急诊病人,普通病人。抢救病

人具有最高优先级,急诊病人为次优先级。当具有较高优先级的病人到达时,医生将暂停为正在医疗的病人服务,同一优先级病人按先到先服务的规则进行。已知上述3类病人到达均服从泊松分布,平均8h 内分别为2,3,6人;医生为上述各类病人治疗时间服从负指数分布,其平均时间均为0.5h ,试求:

(1) 这三类病人分别在系统中的平均逗留时间

(2) 这三类病人的分别平均队长。

12312312312233 2.327h S S W W W W λλλλλλλλ--++=--=

运筹学第四次作业排队论问题.doc

一、汽车维修站问题 某汽车维修站只有一名修理工,一天8h 平均修理10辆汽车。已知维修时间服从负指数分布,汽车的到来服从泊松流,平均每小时有1辆汽车到达维修站。假如一位司机愿意在维修站等候,一旦汽车修复就立即开走,问司机平均需要等待多长时间。如果假设每小时有1.2辆汽车去修理,试问该维修工每天的空闲时间有多少?这对维修站里的汽车数及修理后向顾客交货时间又有怎样的影响?结合以上所求得的数据,分析汽车维修站的服务质量水平。 解:该问题是一个标准的M/M/1/2模型,即汽车司机相继到达间隔时间的分布满足负指数分布,维修工服务时间分布满足负指数分布,服务台数为c=1,系统容量限制为N=2。 (1)已知汽车的到来服从泊松流,平均到达率为=1/h λ,维修时间服从负指数分布,平均每辆汽车接受服务的时间为T=0.8h,单位时间服务车辆的数量为 1.25μ=。则根据该模型运行指标的计算公式可得出: ①系统的平均服务强度为/0.8ρλμ==; ②顾客到达后理科就能得到服务的概率,即维修站空闲,没有顾客的概率为 0+1 11N P ρ ρ -= -; ③系统的队长为1 1 (1)11N s N N L ρ ρρρ +++=---; ④系统的排队长0(1)q S L L P =--; ⑤系统的有效到达率为0(1)e P λμ=-; ⑥顾客逗留时间为0(1) s s s e L L W P λμ= = -; ⑦系统满员的概率,即顾客被拒绝的概率为1 1·1N N N P ρ ρρ +-=-; 利用LINGO 软件来求解,记有关参数1c =,系统最大容量为N=2,顾客平均到达率为1L λ==,平均每个顾客的服务时间为1 0.8T μ ==。则相应程序如 下: MODEL: sets:

排队论模型

排队论模型 随机服务系统理论是研究由顾客、服务机构及其排队现象所构成的一种排队系统的理论,又称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设计与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。由于病人到达时间的随机性或诊治病人所需时间的随机性,排队几乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一、医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复杂的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1 医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1. 输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2. 排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗,在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3. 服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的;服务时间的分布与时间有关或无关。

第六章 排队论

第六章排队论模型 排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下: 1.2.1 输入过程 输入过程是指顾客到来时间的规律性,可能有下列不同情况: (i)顾客的组成可能是有限的,也可能是无限的。 (ii)顾客到达的方式可能是一个—个的,也可能是成批的。

排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: 有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: 输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ 表示服务员为 n },n=1,2,…第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ , 1ξ2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n}也是独立的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

数学建模港口问题_排队论

排队模型之港口系统 本文通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1 M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。好。 关键词:问题提出: 一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。 那么,每艘船只在港口的平均时间和最长时间是多少 若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少 卸货设备空闲时间的百分比是多少 船只排队最长的长度是多少 问题分析: 排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。【1】 //1 M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。 蒙特卡洛方法:蒙特卡洛法蒙特卡洛(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。(2) 排队论研究的基本问题 1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。 2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。 3.最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。【3】 为了得到一些合理的答案,利用计算器或可编程计算器来模拟港口的活动。 假定相邻两艘船到达的时间间隔和每艘船只卸货的时间区间分布,加入两艘船到达的时间间隔可以是15到145之间的任何数,且这个区间内的任何整数等可能的出现。再给出模拟这个系统的一般算法之间,考虑有5艘传至的假象情况。

西电排队论大作业

西安电子科技大学 (2016年度) 随机过程与排队论 班级:XXXXXXX 姓名:XXX XXX 学号:XXXXXXXXXX XXXXXXXXXXX

一步转移概率矩阵收敛快慢的影响因素 作者姓名:XXX XXX 指导老师姓名:XXX (西安电子科技大学计算机学院,陕西西安) 摘要:根据课程教材《排队现象的建模、解析与模拟【西安电子科技大学出版社曾勇版】》,第[1.3马尔可夫过程]中,马尔可夫过程链n时刻的k步转移概率结果,当k=1时,得到一步转移概率。进而得到一步转移概率矩阵P(1)。为研究此一步转移概率矩阵(下称一步矩阵)的收敛特性以及影响其收敛快慢的因素,使用MATLAB实验工具进行仿真,先从特殊矩阵开始做起,发现规律,然后向普通矩阵进行拓展猜想,并根据算术理论分析进行论证,最终得出一步矩阵收敛快慢的影响因素。 关键词:一步转移概率矩阵 MATLAB 仿真猜想 一、问题概述 我们讨论时一步矩阵的特性应从以下两方面来分析: (1)矩阵P(n)在满足什么条件时具有收敛特性; 对于矩阵P(n),当P(n)=P(n+1)时,我们说此矩阵具有收敛特性,简称矩阵 P(n)收敛。 (2)若一个一步矩阵具有收敛特性,那么其收敛速度与什么有关? 首先,我们需要明确什么是一步矩阵收敛: 对于一般的一步矩阵P 、矩阵An+1、矩阵An,若有: An+1=AnP=An 那么称该一步转移矩阵可收敛。 二、仿真实验 1、仿真环境 本次采用的是MATLAB仿真实验软件进行仿真实验 2、结果与分析 【1】、特殊矩阵:单位矩阵与类单位矩阵 从图(1)和图(2)可以看出,单位矩阵不具有收敛特性,类单位矩阵并非单位矩阵但是经过n次后也变为单位矩阵,所以此矩阵也不具有收敛特性。此类矩阵也易证明其不具有收敛性。

排队论习题及答案

《运筹学》第六章排队论习题 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求: (1)系统内没有顾客的概率; (2)系统内顾客的平均数;

西电排队论大作业完整版

西电排队论大作业 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

西安电子科技大学 (2016年度) 随机过程与排队论 班级: XXXXXXX 姓名: XXX XXX 学号: XXXXXXXXXX XXXXXXXXXXX 一步转移概率矩阵收敛快慢的影响因素 作者姓名:XXX XXX 指导老师姓名:XXX (西安电子科技大学计算机学院,陕西西安) 摘要:根据课程教材《排队现象的建模、解析与模拟【西安电子科技大学出版 社曾勇版】》,第[马尔可夫过程]中,马尔可夫过程链n时刻的k步转移概率结 果,当k=1时,得到一步转移概率。进而得到一步转移概率矩阵P(1)。为研究 此一步转移概率矩阵(下称一步矩阵)的收敛特性以及影响其收敛快慢的因素,使 用MATLAB实验工具进行仿真,先从特殊矩阵开始做起,发现规律,然后向普通矩 阵进行拓展猜想,并根据算术理论分析进行论证,最终得出一步矩阵收敛快慢的影 响因素。 关键词:一步转移概率矩阵 MATLAB 仿真猜想 一、问题概述 我们讨论时一步矩阵的特性应从以下两方面来分析: (1)矩阵P(n)在满足什么条件时具有收敛特性; 对于矩阵P(n),当P(n)=P(n+1)时,我们说此矩阵 具有收敛特性,简称矩阵 P(n)收敛。 (2)若一个一步矩阵具有收敛特性,那么其收敛速度与什么有关

首先,我们需要明确什么是一步矩阵收敛: 对于一般的一步矩阵P 、矩阵An+1、矩阵An,若有: An+1=AnP=An 那么称该一步转移矩阵可收敛。 二、仿真实验 1、仿真环境 本次采用的是MATLAB仿真实验软件进行仿真实验 2、结果与分析 【1】、特殊矩阵:单位矩阵与类单位矩阵 从图(1)和图(2)可以看出,单位矩阵不具有收敛特性,类单位矩阵并非单位矩阵但是经过n次后也变为单位矩阵,所以此矩阵也不具有收敛特性。此类矩阵也易证明其不具有收敛性。 图(1)单位矩阵图(2):类单位 矩阵 【2】、一般单位矩阵 图(3):一般一步矩阵Ⅰ 图(4):一般一步矩阵 从图(3)和()可以看出他们分别在18次和4次后收敛到一个稳定的值 3、根据实验的猜想 根据在单位矩阵和一般单位矩阵和一般一步矩阵中得到的结果,可以对得出如下结论:类单位矩阵、单位矩阵是不具有收敛性的,而一般的一步矩阵是有收敛性的,而且收敛速率有快有慢。 对于上面结论中的状况,我们首先观察如上四个矩阵,不难发现,在矩阵收敛的最终结果矩阵中,其每行和均为1,而且每列上的值均为相同值。最终概率分布结果也是矩阵收敛后的一行。 所以根据上述的结果及分析做出如下猜想: 每一列比较均匀的矩阵收敛速度较快;与类单位矩阵类似的矩阵收敛速度较慢。 在极限情况下,有如下情况:

(完整word版)《运筹学》_第六章排队论习题及_答案

《运筹学》第六章排队论习题 转载请注明 1. 思考题 (1)排队论主要研究的问题是什么; (2)试述排队模型的种类及各部分的特征; (3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义; (4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分 布的主要性质; (6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系 与区别。 2.判断下列说法是否正确 (1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间 服从负指数分布; (2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分 顾客合起来的顾客流仍为普阿松分布; (3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序, 则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大 量实际系统的统计研究,这样的假定比较合理; (6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后, 系统将进入稳定状态; (7)排队系统中,顾客等待时间的分布不受排队服务规则的影响; (8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的 平均等待时间少于允许队长无限的系统; (9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有 关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人 看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。 3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负 指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间; (7)一个顾客在店内逗留时间超过15分钟的概率。 4.设有一个医院门诊,只有一个值班医生。病人的到达过程为Poisson 流,平均到达时间间隔为20分钟,诊断时间服从负指数分布,平均需12分钟,求: (1)病人到来不用等待的概率; (2)门诊部内顾客的平均数; (3)病人在门诊部的平均逗留时间; (4)若病人在门诊部内的平均逗留时间超过1小时,则医院方将考虑增加值班医生。问 病人平均到达率为多少时,医院才会增加医生? 5.某排队系统只有1名服务员,平均每小时有4名顾客到达,到达过程为Poisson 流,,服务时间服从负指数分布,平均需6分钟,由于场地限制,系统内最多不超过3名顾客,求:

课程设计 银行排队论分析

南京理工大学 课程考核论文 课程名称:课程设计 论文题目:银行服务数据的统计分析 姓名:李其然 学号:1111850114 成绩: 任课教师评语: 签名: 年月

【摘要】 排队论是运筹学的一个重要分支,又称随机服务系统理论,是研究由随机因素的影响而产生拥挤现象的科学。它通过研究各种服务系统在排队等待中的概率特性,来解决服务系统的最优设计与最优控制问题。随着社会文明的发展与进步,排队已成为和我们生活密不可分的话题。去银行、商场等随机性服务机构购物,如在结算时出现长时排队等待现象,是件让人头痛的事情,有时会因此取消购物计划。身为商家,如何在最低成本运营的情况下最大化的为顾客提供优质服务,减少顾客无谓的等待时间,是重多经营者亟待解决的问题。因此,根据排队论的知识来优化银行的排队系统是具有现实意义的。 计算机模拟就是利用计算机对所研究系统的内部结构、功能和行为进行模拟。由于排队论的应用已越来越广泛,排队特征、排队规则和服务机构也变得 越来越复杂,解析方法已无法求解,而计算机模拟是求解排队系统和分析排队 系统性能的一种非常有效的方法,并且计算机模拟具有成本低,运行速度快, 准确度高的优点。将排队论与计算机模拟结合起来,是今后排队论发展的必然趋势。 在银行中客户排队是一个常见的现象,特别是近年来随着客户规模的不断,扩大以及营业厅扩建速度跟不上客户需求增长的矛盾愈显突出。因此,为平稳波动的客户,需求与移动营业厅有限的服务能力之间的矛盾,提升客户满意度,开展缩短客户等待时长,优化营业厅服务的项目刻不容缓。本文基于需求管理的理论,运用现代项目管理工具,针对南京交通银行营业厅进行顾客达到时间(间隔)、服务员完成服务时间等资料的收集和对客户进行问卷调查、访谈的基础上,对数据进行统计分析,包括数据的均值、众数、中位数、方差指标,并做经验分布函数、拟合数据分布、分布参数的估计、分布假设检验,来反映目前交通银行营业厅排队现状。之后,从客户角度出发,分析了造成移动营业厅排队问题的原因,进而从缴费类型和对时间与价格敏感度两个角度对客户的需求进行了分析,总结出适合缩短客户等待时长的项目管理方案。并在此基础上提出基于需求管理的解决移动营业厅排队问题。 【关键词】:统计特征;分布假设;分布检验

西电排队论大作业

一步转移概率矩阵的收敛特性 陈灿枫03124016 一步转移概率矩阵的特性应从以下两方面来分析: 第一:什么矩阵具有收敛特性即P^n=P^(n+1)。 第二:若一个转移矩阵(以下称一步转移概率矩阵为转 移矩阵)有收敛性,那么其收敛的速度与什么有关呢? 对于一般的一步转移矩阵P 若有:A n+1=A n P=A n 那么称该一步转移矩阵可收敛。A n P=A n 关于那些一步转移矩阵能够收敛我用MATLAB验证 了几个比较具有代表性的矩阵: 1.单位矩阵 可以看到单位矩阵不具有收敛性。 2.类单位矩阵 类单位矩阵我们可以看到原本并非单位矩阵但是经过n 次后也变为单位矩阵。由此可见此矩阵也不具有收敛特性。此类矩阵也易证明其不具有收敛性。 3.一般一步转移概率矩阵(1)我们可以看到经过18次后矩阵收敛到一个稳定的值。 4.一般一步转移概率矩阵(2) 从这个矩阵我们可以看到该一步转移概率矩阵只经过 了4次就趋于稳定收敛了。 有上述的四个例子我们能够总结:类单位矩阵单位矩阵是不具有收敛性的而一般的一步转移矩阵是有收敛性,而且收敛有快有慢。 那么是什么影响了一步转移概率矩阵的收敛的快慢呢?我们分析一下上述例子中的最后两个例子不难发 现两个矩阵自后收敛的矩阵都有一个特性那就是列都 是相同的这个也易证明: 矩阵相乘行乘列的和列相同即行相加的和乘列 行的和根据转移矩阵特性为1 所以也就收敛了。 若一开始的矩阵就是上面的转移矩阵那么他也就是收敛最快的因为他已经收敛了。我们再来对比(1)和(2)。不难发现矩阵(1)的列的差值比矩阵(2 )的

要大即矩阵(1)的方差要大的多。那么我们就可以猜 测是不是列的相似度越高其收敛的的速度也就越快呢。那么用什么指标去判断一个矩阵的列值得相似程度 呢? 最先想到的就是矩阵的行列式的值,因为第一列为0 的行列式值为0。不难看出矩阵收敛后的矩阵行列式值 为0。 那么我们计算一下上述两个矩阵的行列式的值。 从上述的验证中可以看到矩阵1的行列式的绝对值为0.0255 而矩阵2的行列式绝对值为6*10-6远小于行列 式1中的值而正好矩阵1的列值相似度要小于矩阵2。 上述只是总结性的验证,并没用理论的知识来证明该过程是否准确。那么行列式的值是否真的能刻画一步转移概率矩阵的收敛快慢呢? 我们先看类单位矩阵的行列式的值为1 而且不难证明所以得一步转移概率矩阵的行列式的值得绝对值都 在[0,1]之间。假设一个n阶一步转移概率矩阵其行列式的表达式为:Det(P)=a11*(-1)1+1Det(c(11))+a12* (-1)1+2Det(c(12))….+a1n*(-1)1+n Det(c(1n))。 由上式可以看出若列值的差值越大那么行列式的 值就取决于该列的值中的较大的值,若行列式的列差值比较小那么最终行列式降阶到2阶是计算得到的值为对角线相减由于列值相差小所以所得到的值也会相 对较小,也会比较靠近0。 而差值越大决定因素也会由列中较大值决定以此类推到最后降阶到2阶时起决定因素的系数都为列中的较大值而最后的二阶行列式由于差值较大所以计算的结果也会比较大整体行列式的值都会靠近1。换个角度可以将单位矩阵看成1和很多无穷小ε组成。那么其决定因素就为1 那么其行列式的值就为1了。 所以我认为,利用一步转移概率矩阵的行列式的值来刻画矩阵的收敛快慢是可行的行列式的值越小其收敛的越快。 后记:到此也结束了由于这篇大作业总结是在较早时间完成的,但是在之后的学习中也就是在学习了离散马尔科夫练的性质之后发现一个问题就是我在猜想 一步转移概率矩阵是否能收敛的问题上还是考虑的不 够全面漏掉了很多重要的问题我也在这儿举例验证 一下:P=[0 1 0;0.5 0 0.5; 0 1 0] 就是这个3阶的矩阵也是书上的一个例题的矩阵这个矩阵并不是上述我说的类单位矩阵或者是单位矩阵。而是一个一般的矩阵(就是有点对称)然而这个矩阵是没有办法收敛的其N次的值是在两个值之间循环跳动的。我算了一下这个矩阵的Det 发现值为0 但是并没有上述验证中的列相同达到收敛的规律。但是其行列式的值也为0.之后我算了一下他的秩发现是2 也就是说秩的值小于阶的值而我 之前举得例子中秩的值都是等于阶的值。之后我又验证了一个矩阵P=[0.1 0.1 0.1 0.7;0 0.2 0.2 0.6;0 0 0.4 0.6;0.1 0.1 0.1 0.7] 这是一个非满秩的矩阵所以他的行 列式的值一定为0与我上述的结论冲突了所以我上述的结论应建立在给出的一步转移概率矩阵为满秩的情 况下才能成立。若不为满秩的话则可以算其各列的方差的平均值来进行比较单位矩阵的列平均方差为(n-1)/n 而其他的一步转移概率矩阵则介于0-(n-1)/n之间。

排队论1

引言 自从有战争之日起,战争主要由进攻方和防御方两方构成。而在现代战争中,进攻方将可能实施大规模的导弹袭击。面对这种大量导弹来袭,防御方需要拥有强大的防御系统。 防御系统是一个随机服务的系统,对每一枚进攻的导弹进行防御服务,在不考虑战场电子干扰的前提下,雷达将探测所有的进攻导弹数据,对导弹的攻击目标进行预测。本文根据排队论建立多层导弹防御服务模型,研究防御系统的概率规律性,为防御过程提供最优决策依据。 摘要: 基于排队论的基本理论,建立对于实际的导弹防御阵地与被攻击单位的实际问题的处理和解析模型,详细的讨论了多层部署的方法进行防御的实际的可能性和作用。并对实际的导弹防御问题中多层次的设施分配与服务的概率进行了作战假设和模拟并评价实际的作战效能,具有一定的现实的参考性和实用性。 关键词:排队论;服务概率;效能评估;导弹防御系统 排队论 假设: (1)假设目标的进入防御阵地的过程符合排队论的基本理论,即时损失制排队系统,在此假设中我们假设敌方目标为顾客,我方防御阵地为服务台,分别对于顾客进行服务来进行对于模型的简化处理。 (2)我方的防御阵地分为远中近三个不同的层次对于敌方的目标进行拦截,我们可以认为我方的三层的防御阵地的防御范围是不相重叠的,即对于进入区域的目标只指定一个通道(一架防御设施)进行拦截。 (3)服务(防御)的规则是先到先行服务,不考虑被拦截的目标的优先级。如果当前的防御系统都在进行防御行动,则此时的敌方单位不受我方的防御限制进行突破,而在此敌方单位离开防御范围之前有空闲的通道,则系统同样对此目标进行服务。 (4)敌方单位在经过我方防御阵地时,不会对于我方的防御阵型造成冲击,即防御系统将保持良好,可以继续使用,可以继续对后继的敌方单位拦截。防御阵地模型的建立: 防御阵地拦截敌方单位在排队论的角度来看,是顾客接受串联服务台服务的过程,当一级服务台无法满足顾客的需求或者无法对顾客进行服务时,顾客则进入下一级的服务台。并且每一层的拦截能力相同。 数学模型: 防御阵地系统由第一层防御、第二层防御、第三层防御组成,这三层防御雷达探测到信号就进行拦截,假设这三层防御的雷达只对该层服务,即超越该层不进行探测。因此用图表示防御阵地系统如下: 防御系统的拦截服从泊松分布,又因为是串联服务的过程,防御过程表示为:A。期中第一项A表示相继到达时间间隔分布是指数分布,第二项M /M /1/1/

排队论

排队论大作业 学院名称:信息工程与自动化学院专业班级:通信092 姓名:罗鹏飞 学号:200910404214

论排队论在信息系统中的应用 ——论排队论在医疗排队系统中应用 罗鹏飞200910404214 在我国,医院就医排队是一种经常遇见的非常熟悉的现象,它每天以这样或者是那样的形式出现在我们面前,患者对于一般常见病、多发病通常选择在门诊就诊,往往需要排队等待接受某种服务。门诊业务流程具有一下特点:病人流量大、随机性强、患者经历门诊环节多,反复排队等待,形成综合性大医院“”三长一短”的现象。“三长一短”的核心是服务时间及排队的问题。经过调查研究发现,不同于基于经验的管理方法,排队论能较为科学、量化地分析医院的排队系统,并提出合理的整改意见。而中国正处于医院应用阶段的排队论系统,大多都是凭经验建立的单一的门诊、体检、取药、检验、住院、结算等各环节的独立系统。这时就需要一个能够辅助患者贯穿整个就诊流程的全程排队解决方案,以缩短病人就诊时间,提高看病效率。排队论就是对排队现象和拥挤现象进行定量研究的理论。 本研究通过测量案例医院门诊挂号和收费窗口患者到达的规律、服务台的设置以及服务时间的规律等,应用排队论的理论、方法与模型,分析评价门诊挂号、收费窗口服务流程效率等,并对该服务系统提出优化措施,从而得出基本结论及具体措施:医院要通过义务分流来控制客户流,减少客户亲自到医院办理义务的次数,从而达到不排队或少排队的目的。 关键词:等待时间;服务强度;排队模型;概率分布 正文: 一个特定的模型可能会有多种假设,同时也需要通过多种数量指标来加以描述。由于受实际所处情况的影响,我们只需要选择那些起关键作用的指标作为模型求解的对象。尽管我们希望得到关于系统行为的详细信息,但研究中所能给出的一切结果都只能是一个稳态指标。稳态指标并不意味着系统以某种固定的方式有规律地运转,他们所提供的仅仅是这个系统经历长期运转所反映的数学期望值。在

烙饼问题、排队论、合理安排时间练习题

合理安排时间 一、认真填一填。 1 2、一只平底锅里只能同时煎2条鱼,用它煎1条鱼需要4分钟(正、反面各2分钟)。那么,煎3条鱼至少需要()分钟。 3、小强在每天早晨要做的事是:起床4分钟,洗漱、整理房间6分钟,收拾书包2分钟,做早饭(用煤气灶煮鸡蛋)10分钟,吃早饭6分钟。小强在( )的同时可以(),经过合理安排,做完这些事情最少要用()分钟。 4、小强、小亮、小明三个同学去办公室找张老师检查作业。张老师检查他们作业需要的时间分别是5分钟、2分钟、4分钟,想要使三个同学等候时间的总和最少,应该按()→()→()的顺序进行检查。 二、判断对错。 1、有很多事情要做时,能同时做的事尽量同时做,这样可以节省时间。() 2、用一只平底锅煎菜饼。如果煎一张菜饼需要2分钟(正、反两面各需要1分钟),那么煎10张饼最少需要20分钟。() 3、有甲、乙两只船要卸货,且只能一船一船地卸。给甲船卸货要3小时,给乙船卸货要2小时。先给甲船卸货能使两只船等候时间的总和最少。() 三、细心选一选。 1、甲、乙、丙3人各拿一个水桶到一个水龙头前等候打水。甲打满一桶水要2分钟,乙需要4分钟,丙需要3分钟。要使他们打水等候的时间总和最少,他们打水的顺序应是()。 A、甲、乙、丙 B、丙、乙、甲 C、甲、丙、乙 D、乙、丙、甲 2、有20根火柴,两人轮流取,每次只能取1根或2根,谁取到最后一根火柴谁就赢。小红先取走1根,你要想确保获胜,你接着应取()根。 A、1 B、2 四、解决问题我最棒。 1、爸爸杀好鱼后,小明帮爸爸烧鱼。他按照爸爸告诉他的工序(如下图),有条理的把鱼烧熟后共花了20分钟: →

基于MMS排队论的病床安排模型

CUMCM2009 B 题眼科病床的合理安排 医院就医排队是大家都非常熟悉的现象,它以这样或那样的形式出现在我们 面前,例如,患者到门诊就诊、到收费处划价、到药房取药、到注射室打针、等 待住院等,往往需要排队等待接受某种服务。 我们考虑某医院眼科病床的合理安排的数学建模问题。 该医院眼科门诊每天开放,住院部共有病床 79 张。该医院眼科手术主要分 四大类:白内障、视网膜疾病、青光眼和外伤。附录中给出了20 08 年7 月13 日至2008 年9 月11 日这段时间里各类病人的情况。

白内障手术较简单,而且没有急症。目前该院是每周一、三做白内障手术, 此类病人的术前准备时间只需1、2 天。做两只眼的病人比做一只眼的要多一些, 大约占到60%。如果要做双眼是周一先做一只,周三再做另一只。 外伤疾病通常属于急症,病床有空时立即安排住院,住院后第二天便会安排 手术。 其他眼科疾病比较复杂,有各种不同情况,但大致住院以后2-3 天内就可以 接受手术,主要是术后的观察时间较长。这类疾病手术时间可根据需要安排,一 般不安排在周一、周三。由于急症数量较少,建模时这些眼科疾病可不考虑急症。

该医院眼科手术条件比较充分,在考虑病床安排时可不考虑手术条件的限 制,但考虑到手术医生的安排问题,通常情况下白内障手术与其他眼科手术(急 症除外)不安排在同一天做。当前该住院部对全体非急症病人是按照FCFS(First come, First serve)规则安排住院,但等待住院病人队列却越来越长,医院方面希 望你们能通过数学建模来帮助解决该住院部的病床合理安排问题,以提高对医院 资源的有效利用。 问题一:试分析确定合理的评价指标体系,用以评价该问题的病床安排模型 的优劣。

排队论基础教学大纲

排队论基础课程教学大纲 一、课程说明 课程编号: 课程名称:排队论基础/Fundamentals of Queueing Theory 课程类别:选修 学时/学分:32/3 先修课程:概率论 适用专业:统计学;数学与应用数学和信息与计算数学 教材、教学参考书: 1.陆传赉. 排队论[M],第2版.北京:北京邮电大学出版社,2009 2.唐应辉,唐小我. 排队论—基础与分析技术[M].北京:科学出版社,2006 3.邓永录. 随机模型及其应用[M].北京:高等教育出版社,1994 二、课程设置的目的意义 排队论又名随机服务系统理论,是研究拥挤现象的一门数学学科,它通过研究各种服务系统在排队等待中的概率特性,来解决系统的最优设计和最优控制。排队论是随机运筹学的重要分支,也是应用概率的重要分支,所研究的问题有很强的实际背景。随着计算机技术的迅猛发展,排队论的科学研究日新月异,其应用领域也不断扩大。目前,排队论的科学研究成果已广泛应用于通信工程、交通物流运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、制造系统和系统可靠性等众多领域,并取得了丰硕成果。排队论在科学技术及国民经济发展中起到了直接的重要作用,而且已成为从事通信、计算机、工业工程等领域的专家、工程技术人员和管理人员必不可少的重要数学工具之一。通过本课程的学习,让学生掌握排队论的基本理论与方法,能对现实生活中的一些排队现象进行分析和建模;通过与不同的学科知识相结合,能对所考虑具体问题的分析结果和模型进行评价,并给出合理的设计和控制机制。本课程的学习,不仅帮助学生掌握排队系统分析和建模的基本技能,了解本学科的特点和发展前沿,而且让学生在资料收集、建模与计算、结果的分析与评价等整个过程得到较全面的训练。 三、课程的基本要求 知识要求:掌握排队论的基本理论与方法;掌握转移率矩阵、补充变量法、嵌入马氏链以及计算马氏排队网络平稳分布的各种基本方法。了解排队论在管理科学中应用的若干前沿发展方向。 能力要求:能够运用马氏链的基本理论与方法对复杂排队系统进行计建模与计算;能分析系统的转移概率;能够处理系统稳态存在性问题,包括合理运用恰当的排队论分析方法(补充变量,嵌入马氏链和矩阵分析方法);能用Matlab软件及其相应的工具箱进行计算、分析和模拟仿真。 素质要求:不仅掌握建立排队模型、分析系统运行行为的基本方法,而且能对具体问题的分析结果和模型进行评价,并给出系统合理的设计和最优控制机制。 四、教学内容、重点难点及教学设计

排队论公式

1 排队论公式 构成排队模型的三个主要特征指标 (1) 相继顾客到达间隔时间的分布; (2) 服务时间的分布; (3) 服务台的个数。 根据这三个特征对排队模型进行分类的Kendall 记号: X/Y/Z X :表示相继到达间隔时间的分布; Y :表示服务时间的分布; Z :并列的服务台的数目。 表示相继到达间隔时间和服务时间的各种分布符号 M ——负指数分布(M 是Markov 的字头,因为负指数分布具有无记忆性,即Markov 性) D ——确定型(deterministic) E k ——k 阶爱尔朗(erlang)分布 G —— 一般(general)服务时间的分布 Kendall 符号的扩充 X/Y/Z/A/B/C 其中前三项的意义不变,后三项的意义分别是: A :系统容量限制N ,或称等待空间容量。 B :顾客源数目m 。分有限与无限两种,∞表示顾客源无限,此时一般∞也可省略不写。 C :服务规则,如先到先服务(FCFS),后到后服务(LCFS),优先权服务(PR)等。 (例如某排队问题为M/M/1/∞/∞/FCFS ,则表示顾客到达间隔时间为负指数分布(即泊松流);服务时间为负指数分布;有1个服务台,系统等待空间容量无限(等待制);顾客源无限,采用先到先服务规则。) 一、M/M/1/∞/∞ 设1λρμ =<, 则: 01P ρ=-; s L λ μλ=-,q L ρλμλ=-;1s W μλ =-,q W ρμλ=- 故而:s s L W λ=,q q L W λ=;1s q W W μ=+,s q L L λμ=+ 二、M/M/1/N/∞(系统容量有限) 设λρμ =,则:

2005年中国大学生数学建模竞赛论文(排队论模型解决出租车最佳数量预测)I

目录 1问题的提出----------------------------------------------------------------------------------------------3 2模型建立与求解----------------------------------------------------------------------------------------3 2.1问题1:居民出行强度和出行总量预测-----------------------------------------------------3 2.1.1问题分析-------------------------------------------------------------------------------------3 2.1.2符号约定-------------------------------------------------------------------------------------4 2.1.3居民消费支出预测-------------------------------------------------------------------------5 2.1.4城市居民人口预测-------------------------------------------------------------------------8 2.1.5出行强度预测-------------------------------------------------------------------------------8 2.1.6出行总量预测------------------------------------------------------------------------------11 2.1.7出租车人口预测模型---------------------------------------------------------------------14 2.2问题2:出租车最佳数量预测---------------------------------------------------------------16 2.2.1问题分析------------------------------------------------------------------------------------16 2.2.2符号约定------------------------------------------------------------------------------------17 2.2.3服务系统模型------------------------------------------------------------------------------18 l 2.2. 3.1来客速率---------------------------------------------------------------------------18 m 2.2. 3.2服务速率---------------------------------------------------------------------------19 b 2.2. 3.3单车对单人服务速率-----------------------------------------------------------19 2.2. 3.4状态及状态转移---------------------------------------------------------------------19 2.2. 3.5模型建立------------------------------------------------------------------------------21 2.2. 3.6模型求解------------------------------------------------------------------------------22 2.2.4最优化模型---------------------------------------------------------------------------------24 2.2.4.1模型建立------------------------------------------------------------------------------24 2.2.4.2模型求解------------------------------------------------------------------------------26 2.2.5模型的验证---------------------------------------------------------------------------------26 2.3问题3:价格调整方案模型------------------------------------------------------------------28 2.3.1问题分析------------------------------------------------------------------------------------28 2.3.2符号约定------------------------------------------------------------------------------------29

相关文档
相关文档 最新文档