文档库 最新最全的文档下载
当前位置:文档库 › 电子科大图论-第二次作业

电子科大图论-第二次作业

电子科大图论-第二次作业
电子科大图论-第二次作业

图论及其应用第二次作业

要求:1、交电子档给助教【助教给每个班设置邮箱,助教设置提交回复】;

2、第7章授课结束前均可以提交;

3、希望能够独立完成。

1.判断图4-43所示的四个图是否可以一笔画。

上面四个图都是连通图,看是否能一笔画成问题本质上看图是否存在欧拉迹;连通图有欧垃迹当且仅当G 最多有两个奇点。

(a )不可以 有4个奇点

(b )可以 一个奇点

(c )可以 两个奇点

(d )可以 没有奇点

2.(1)画一个有欧拉闭迹和哈密尔顿圈的图;

(2)画一个有欧拉闭迹但没有哈密尔顿圈的图;

(3) 画一个有哈密尔顿圈但没有欧拉闭迹的图;

(4)画一个既没有欧拉闭迹也没有哈密尔顿圈的图。

3. 设n 阶无向简单图G 有m 条边。证明:若m ≥???

? ??-21n +2,则G 是哈密尔顿图。

(b

) (c

) (d ) 图4-43

证明:G 是H 图。若不然,因为G 是无向简单图,则n ≥3,由定理1:若G 是n ≥3的非单图,则G 度弱于C m,n 。于是有:

2,1()()(2)(1)(1)2

1111(1)(2)(1)(21) 1.222m n E G E C m n m n m m n n n m m m n m ??≤=

+---+-??--????=+-------≤+ ? ????? 这与条件矛盾!所以G 是H 图。

4. 在图4-45中,哪些图是哈密尔顿图?哪些图中有哈密尔顿路?

(a)非哈密尔顿图,没有哈密尔顿路

(b)哈密尔顿图 (abcdejhfiga)

(c)哈密尔顿图 (kjdhbagciefk)

(d)非哈密尔顿图 有哈密尔顿路(hjaidebcgf)

(e)不是哈密尔顿图,因为有割点a ,有哈密尔顿路(jaibcedkgfh )

5. 证明:若G 没有奇点,则存在边不重的圈C 1, C 2,…, C m ,使得,E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。

证明:将G 中孤立点除去后的图记为G 1,则G 1也没有奇点,且δ(G 1),则G 1含圈C 1,在去掉()11G E C -的孤立点后,得图G 2,显然G 2仍无奇度点,且δ(G 2)≥ 2,从而G 2含圈C 1,如此重复下去,直到圈C m ,且G m -E (C m )全为孤立点为止,于是得到E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。

e (a )

(b ) e (c ) h

(d ) 图4-45 (e )

6. 证明:若G 有2k >0个奇点,则存在k 条边不重的迹Q 1, Q 2,…, Q k ,使得,E (G ) = E (Q 1)∪E (Q 2)∪…∪E (Q k )。

证明:不失一般性,只就G 是连通图进行证明。设G=(n,m)是连通图。令v 1,v 2,...v k ,v k+1,...,v 2k 是G 的所有奇度点。在v i 与v i+k 间连新边e i 得图G *(1≤i ≤k)。则G *是欧拉图,因此,由Fleury 算法得欧拉环游C,在C 中删去e i (1≤i ≤k ),得k 条边不重的迹Q i (1≤i ≤k );

E (G ) = E (Q 1)∪E (Q 2)∪…∪E (Q k )

7. 证明:若

(1)G 不是二连通图,或者

(2)G 是具有二分类(X ,Y )的偶图,这里|X |≠|Y |,

则G 是非哈密尔顿图。

证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有()2w G v -≥,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:()w G v S -< ,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。

(2)因为G 是具有二分类(X ,Y )的偶图,又因为|X |≠|Y |,在这里假设|X |≦|Y |,则有()w G X Y X -=>,也就是说:对于v(G)的非空顶点集S ,有:()w G S S -<成立,则可以得出G 是非Hamilton 图。

8、证明:若G 有哈密尔顿路,则对于V 的每个真子集S ,有ω(G –S )≤|S |+1。

证明:G 有H 图,设C 是G 的H 圈,则对V(G)的任意非空子集S ,容易知道:

()()||G S C S S ωω-≤-≤,必然有:()||1G S S ω-≤+。

9.对下列问题给出一个好算法:

(1)构作一个图的闭包;

(2)若某图的闭包是完全图,求该图的哈密尔顿圈。

(1)构作一个图的闭包:

根据图的闭包定义,构作一个图的闭包,可以通过不断在度和大于等于n 的非邻接顶点对间添边得到。据此设计算法如下:

图的闭包算法:

1) 令G0=G ,k=0;

2) 在Gk 中求顶点u0与v0,使得:

00()()max{()()|uv ()}

k k k k G G G G k d u d v d u d v E G +=+? 3) 如果

00()()k k G G d u d v n +≥则转4);否则,停止,此时得到G 的闭包。 4) 令100,1

k k G G u v k k +=+=+,转2)。 复杂性分析:在第k 次循环里,找到点u 0与v 0,要做如下运算:(a )找到所有不邻接点对---需要n(n-1)/2次比较运算;(b )(b )计算不邻接点对度和---需要做n(n-1)/2-m(G)次加法运算;(c )选出度和最大的不邻接点对---需要n(n-1)/2-m(G)次比较运算。所以,总运算量为:

211(1)2(1)m(G)()22n n n n O n ??-+--= ???

所以,上面的闭包算法是好算法。

(2)若某图的闭包是完全图,求该图的H 圈。

方法:采取边交换技术把闭包中的一个H 圈逐步转化为G 的一个H 圈。

该方法是基于如下一个事实:

在闭包算法中,100

k k G G u v +=+,0u 与0v 在G k 中不邻接,且度和大于等于n ,如果在G k+1中有H 圈C k+1如下:

100120(,,,...,,)k n G u v v v u +-= 我们有如下断言:

在G k+1上,1,i i v v +?使得001,()i i k u v v v E G +∈若不然,设0()k G d u r =那么在G k 中,至少有r 个顶点与v 0,则0()(1)k G d v n r n r ≤--<-这样与u 0,v 0在G k 中度和大于等于n 矛盾! 上面结论表明:可以从C k+1中去掉u 0v 0而得到新的H 圈,实现H 圈的变交换。由此,我们设计算法如下:

1) 在闭包构造中,将加入的边依次加入次序记为(1)

i e i N ≤≤,这里,N=n(n-1)/2-m(G).在G N 中任意取出一个H 圈C N ,令k=N;

2) 若e k 不在C k 中,令

11,k k k k k G G e C C --=-=;否则转3); 3) 设00k k e u v C =∈,令1k k k G G e -=-;求C k 中两个相邻点u 与v 使得

u 0,v 0,u ,v 依次排列在C k 上且有:001,()k uu vv E G -∈,令

10000{,}{u ,}k k C C u v uv u vv -=-+

4) 若k=1,转5);否则,令k=k-1,转2);

5) 停止。C 0为G 的H 圈。

复杂性分析:一共进行N 次循环,每次循环运算量主要在3),找满足要求的邻接顶点u 与v,至多n-3次判断。所以总运算量:N(n-3),属于好算法。

10.(1)证明:每个k 方体都有完美匹配(2k ≥);

(2)求2,n n n K K 和中不同的完美匹配的个数。

(1) 证明每个k 方体都是k 正则偶图。

事实上,由k 方体的构造:k 方体有2k 个顶点,每个顶点可以用长度为k 的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。

如果我们划分k 方体的2k 个顶点,把坐标之和为偶数的顶点归入X ,否则归入Y 。显然,X 中顶点互不邻接,Y 中顶点也如此。所以k 方体是偶图。

又不难知道k 方体的每个顶点度数为k,所以k 方体是k 正则偶图。由推论:k 方体存在

完美匹配。

(2) 我们用归纳法求K2n 和Kn,n 中不同的完美匹配的个数。

K2n 的任意一个顶点有2n-1种不同的方法被匹配。所以K2n 的不同完美匹配个数等于(2n-1)K2n-2,如此推下去,可以归纳出K2n 的不同完美匹配个数为:(2n-1)!!

同样的推导方法可归纳出K n, n 的不同完美匹配个数为:n!

11.证明:一棵树最多只有一个完美匹配。

证明:若不然,设M1与M2是树T 的两个不同的完美匹配,那么M1ΔM2≠Φ,容易知道:T[M1ΔM2]每个非空部分顶点度数为2,即它存在圈,于是推出T 中有圈,矛盾。

12.对每1k >,找出一个没有完美匹配的k 正则简单图的例子。

证明:设K 为奇数,作G 如下:取2k-1个顶点1221,,...,k v v v - ,在奇脚标顶点和偶脚标顶点之间两两连以外边,再连接13572523,,...,k k v v v v v v --边,所得图记为0G ,显然除0G 除21k v -外其余顶点的度均为k ,而21k v -的度为k-1,取k 个两两不相交的0G 的拷贝和一个新顶点0v ,并把每个0G 拷贝中对应于21k v -的顶点与0v 相连以边。最后所得的图记为G ,显然G 是k-正则的简单图。又由于0G 含2k-1个顶点,则G 的顶点数为:k*(2k-1)+1。所以如果G 有一个完美匹配M 的话,则2*(21)11|M|=22

k k k k -+-=- 。假设M 是G 的一个完美匹配,则其边应来自k 个独立的0G ,和跟0v 相关联的一条边。

而每个0G ,其包含的顶点数为2k-1,所以0G 能提供给M 的边最多为k-1条,k 个这样的0G 能提供给M 的边最多为k*(k-1),因此M 最多包含的边为k*(k-1)+1

当k 为偶数时,取G=K k+1,则G 的顶点数为k+1,显然G 的顶点数为奇数,所以G 无完美匹配。

13.证明63n K -有一个3-因子分解。

证明:K6n-2= K 2(3n-1) , 所以,可以分解为6n-3个边不重的1因子之和。而任意3个1因子可以并成一个3因子。所以,共可以并成2n-1个3因子。即K6n-2可以分解为2n-1个3因子的和。

14.给出分4,4K 为生成林的一个最小分解。

证明:首先将其分解为4条路112...i i i i i i n i n P x y x y y x -+--+= 脚标按模4计算。

114233

221344

332411

443122P x y x y x P x y x y x P x y x y x P x y x y x ====

即为

4,4K 的生成森林的一个最小分解。

15.证明:若n 是偶数,且1

2)(+≥n G σ,则n 阶图G 有3-因子。 证明:因δ(G)≥n/2+1 ,由狄拉克定理:n 阶图G 有H 圈C .又因n 为偶数,所以C 为偶圈。于是由C 可得到G 的两个1因子。设其中一个为F1。考虑G1=G-F1。则δ(G1)≥n/2。于是G1中有H 圈C1。作H=C1∪F1。显然H 是G 的一个3因子。

16.对0k >,证明: 每个k 正则偶图是1-可因子分解的;

证明:因为每个k (k>0)正则偶图G 存在完美匹配,设Q 是它的一个一因子,则G-Q 还是正则偶图,由归纳可知,G 可作一因子分解。

17.证明:一棵树G 有完美匹配当且仅当()1o G v -=对所有的v ∈V (G ) 成立。 证明:

必要性:一方面:若G 有完美匹配,由托特定理:o(G-v)≦1;另一方面:若树G 有完美匹配,则显然G 为偶阶树,于是 o(G-v)≥1;所以:o(G-v)=1。

充分性:由于对任意点v ∈V(G), 有o(G-v)=1。设Cv 是G-v 的奇分支,又设G 中由v 连到G-v 的奇分支的边为vu ,显然,由u 连到G-u 的奇分支的边也是uv 。 令M={e(v):它是由v 连到G-v 的奇分支的边,v ∈V(G) }则:M 是G 的完美匹配。

18. 对n ≥1,K 4n +1 是4-可因子分解的。

证明:K 4n +1=K 2(2n)+1,所以,可以分解为2n 个边不重的2因子之和,而任意2个2因子

可以并成一个4因子。所以,共可以并成n 个4因子。即K 4n +1可以分解为n 个4因子之和。所以:n ≥1,K 4n +1 有一个4因子分解。

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

电大离散数学作业答案05作业答案

离散数学作业5 离散数学图论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足 的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n 2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论第二次作业

图论第二次作业Newly compiled on November 23, 2020

图论第二次作业 一、 第四章 (1)画一个有Euler 闭迹和Hamilton 圈的图; (2)画一个有Euler 闭迹但没有Hamilton 圈的图; (3)画一个有Hamilton 圈但没有Euler 闭迹的图; (4)画一个既没有Euler 闭迹也没有Hamilton 圈的图; 解:(1)一个有Euler 闭迹和Hamilton 圈的图形如下: (2)一个有Euler 闭迹但没有Hamilton 圈的图形如下: (3)一个有Hamilton 圈但没有Euler 闭迹的图形如下: (4)一个既没有Euler 闭迹也没有Hamilton 圈的图形如下: 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1:

图论及其应用答案电子科大

图论及其应用答案电子科 大 Newly compiled on November 23, 2020

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两 个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通, 而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从 u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

图论讲义第2章-连通性

第二章 图的连通性 在第一章中已经定义连通图是任二顶点间都有路相连的图。对于连通图,其连通的程度也有高有低。例如,下列三个图都是连通图。对于图G 1,删除一条边或一个顶点便可使其变得不连通;而对于图G 2,至少需要删除两条边才能使其不连通,也可以删除一个顶点使其不连通;对于图G 3,要破坏其连通性,则至少需要删除三条边或三个顶点。 本章主要讨论如何通过图的顶点集、边集和不交的路集合的结构性质来获知图的连通性程度。通过研究割边和割点来刻画1连通图的特性;定义连通度和边连通度来度量连通图连通程度的高低;通过不交路结构和元素的共圈性质来反映图的2连通和k 连通性。 §2.1 割点和割边 定义2.1.1 设)(G V v ∈,如果)()(G w v G w >?,则称v 为G 的一个割点。 (注:该定义与某些著作中的定义有所不同,主要是在环边的顶点是否算作割点上有区别)。 例如,下图中u , v 两点是其割点。 定理2.1.1 如果点v 是简单图G 的一个割点,则边集E (G)可划分为两个非空子集1E 和2E ,使得][1E G 和][2E G 恰好有一个公共顶点v 。 证明留作习题。 推论2.1.1 对连通图G ,顶点v 是G 的割点当且仅当v G ?不连通。 定理2.1.2 设v 是树T 的顶点,则v 是T 的割点当且仅当1)(>v d 。 证明:必要性:设v 是T 的割点,下面用反证法证明1)(>v d 。 若0)(=v d ,则1K T ?,显然v 不是割点。 若1)(=v d ,则v T ?是有1)(??v T ν条边的无圈图,故是树。从而)(1)(T w v T w ==?。因此v 不是割点。 以上均与条件矛盾。 充分性:设1)(>v d ,则v 至少有两个邻点u ,w 。路uvw 是T 中一条),(w u 路。因T 是树,uvw 是T 中唯一的),(w u 路,从而)(1)(T w v T w =>?。故v 是割点。证毕。

电子科技大学-图论第二次作业

习题四: 3.(1)画一个有Euler 闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler 闭迹和Hamilton圈的图; (2)一个有Euler闭迹但没有Hamilton圈的图; (3) 一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 4.设n阶无向简单图G有m条边,证明:若,则是图。证明: G是H图。 若不然,因为G是无向简单图,则,由定理1:若G是的非单图,则G 度弱于某个.于是有:

2,1()()(2)(1)(1)2 11 1(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ??≤= +---+-??-??=+------- ? ?? -??≤+ ??? 这与条件矛盾!所以G 是H 图。 8.证明:若G 有 个奇点,则存在条边不重的迹 ,使得 . 证明:不失一般性,只就G 是连通图进行证明。设G=(n, m)是连通图。令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k): 12()() () ()k E G E Q E Q E Q = 10.证明:若: (1)不是二连通图,或者 (2)是具有二分类的偶图,这里 , 则是非Hamilton 图。 证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本 上的相关定理:若是Hamilton 图,则对于 的任意非空顶点集,有: ,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则是非Hamilton 图 (2)因为是具有二分类 的偶图,又因为 ,在这里假设 ,则有,也就是说:对于 的非空顶点集,有: 成 立,则可以得出则是非Hamilton 图。 11.证明:若有Hamilton 路,则对于V 的每个真子集S ,有 .

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

电子科技大学-图论第二次作业

习题四: 3. (1)画一个有Euler闭迹和Hamilton圈的图; (2) 画一个有Euler闭迹但没有Hamilton圈的图; (3) 画一个有Hamilton圈但没有Euler闭迹的图; (4) 画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler闭迹和Hamilton圈的图; (2)—个有Euler闭迹但没有Hamilton圈的图; ⑶一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 4. 设n阶无向简单图G有m条边,证明:若2 ) * ',则G是血加此"图。证明:G是H图。 若不然,因为G是无向简单图,则n芝3,由定理%若G是n芝3的非单图,则G 、一 ...C … 度弱丁某个阵".于是有:

- - 1 2 E(G)| E(C m,n ) - m (n 2m)(n m 1) m(m 1) 1. 这与条件矛盾!所以G 是H 图 若G 有个奇点,则存在k 条边不重的迹Q1?Q 矿心,使得 E(G) = E(Q 】)U E(Q J U E(Q 3) U …U E(Q k ) 证明:不失一般性,只就 G 是连通图 进行证明。设 G=(n, m)是连通图。令 虬 V 2,…,v,V k+1,…,v 是G 的所有奇度点。在V i 与v i+k 问连新边e i 得图G* (1三隹k). 则G*是欧拉图,因此,由Fleury 算法得欧拉环 游C 在C 中删去e i (1m M k).得 k 条边不重的迹Qi (1 MiMk): E(G) E(Q1^E(Q2^^E(Qk) 10. 证明:若: (1) G 不是二连通图,或者 (2) G 是具有二分类|(X,Y)的偶图,这里|X” |Y| 则G 是非Hamilton 图。 证明:(1) G|不是二连通图,则G 不连通或者存在割点v ,俨任-v) >2 ,由丁课本 上的 相关定理:若G 是Hamilton 图,则对丁*勇)的任意非空顶点集S,有: w(G- S) < |S|,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则G 是非 Hamilton 图 (2)因为是具有二分类(XI)的偶图,乂因为|X|丰1丫1,在这里假设|X| < |Y|,则有 w(G- X) = |Y|>|X|,也就是说:对北(G)|的非空顶点集S,有:w(G-S)>||S|成 立,则可以得出 则G 是非Hamilton 图。 11. 证明:若有Hamilton 路,则对丁 V 的每个真子集S,有w(G - S) ' |S | +】. 证明:G 是H 图,设C 是G 的H 圈。则对V(G)的任意非空子集S,容易知道: (C S) S 1 1 -(m 1)(m 2) (m 1)(n 2m 1) 8.证明

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G 应该是连通图,可以找出一个反例,比如图G 是一个有孤立结点的图。

电子科大图论-第二次作业

图论及其应用第二次作业 要求:1、交电子档给助教【助教给每个班设置邮箱,助教设置提交回复】; 2、第7章授课结束前均可以提交; 3、希望能够独立完成。 1.判断图4-43所示的四个图是否可以一笔画。 上面四个图都是连通图,看是否能一笔画成问题本质上看图是否存在欧拉迹;连通图有欧垃迹当且仅当G 最多有两个奇点。 (a )不可以 有4个奇点 (b )可以 一个奇点 (c )可以 两个奇点 (d )可以 没有奇点 2.(1)画一个有欧拉闭迹和哈密尔顿圈的图; (2)画一个有欧拉闭迹但没有哈密尔顿圈的图; (3) 画一个有哈密尔顿圈但没有欧拉闭迹的图; (4)画一个既没有欧拉闭迹也没有哈密尔顿圈的图。 3. 设n 阶无向简单图G 有m 条边。证明:若m ≥??? ? ??-21n +2,则G 是哈密尔顿图。 (b ) (c ) (d ) 图4-43

证明:G 是H 图。若不然,因为G 是无向简单图,则n ≥3,由定理1:若G 是n ≥3的非单图,则G 度弱于C m,n 。于是有: 2,1()()(2)(1)(1)2 1111(1)(2)(1)(21) 1.222m n E G E C m n m n m m n n n m m m n m ??≤= +---+-??--????=+-------≤+ ? ????? 这与条件矛盾!所以G 是H 图。 4. 在图4-45中,哪些图是哈密尔顿图?哪些图中有哈密尔顿路? (a)非哈密尔顿图,没有哈密尔顿路 (b)哈密尔顿图 (abcdejhfiga) (c)哈密尔顿图 (kjdhbagciefk) (d)非哈密尔顿图 有哈密尔顿路(hjaidebcgf) (e)不是哈密尔顿图,因为有割点a ,有哈密尔顿路(jaibcedkgfh ) 5. 证明:若G 没有奇点,则存在边不重的圈C 1, C 2,…, C m ,使得,E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。 证明:将G 中孤立点除去后的图记为G 1,则G 1也没有奇点,且δ(G 1),则G 1含圈C 1,在去掉()11G E C -的孤立点后,得图G 2,显然G 2仍无奇度点,且δ(G 2)≥ 2,从而G 2含圈C 1,如此重复下去,直到圈C m ,且G m -E (C m )全为孤立点为止,于是得到E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。 e (a ) (b ) e (c ) h (d ) 图4-45 (e )

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

2014离散数学作业5答案

2014离散数学作业5答案

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求本学期第15周末前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4 度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W ≤|S| . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 姓 名: 翟伟铮 学 号:1337001258063 得 分: 教师签名:

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而 在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

电大离散数学作业答案作业答案

电大离散数学作业答案作 业答案 RUSER redacted on the night of December 17,2020

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2010年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {}f {}c e ,. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 不含奇数度结点 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于︱V ︱ ,则在G 中存在一条汉密尔顿回路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 S W ≤ . 7.设完全图K n 有n 个结点(n 2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e= v -1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 4 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. 答:错误。应叙述为:“如果图G 是无向连通图,且其结点度数均为偶数,则图G 存在一条欧拉回路。” 2.如下图所示的图G 存在一条欧拉回路. 答:错误。因为图中存在奇数度结点,所以不存在欧拉回路。 姓 名: 学 号: 得 分: 教师签名:

电子科大图论-第二次作业(4、5章)-答案

习题四 3.(1)画一个有Euler 闭迹和Hamilton圈的图; (2)画一个有Euler 闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler 闭迹和Hamilton圈的图; (2)一个有Euler闭迹但没有Hamilton圈的图; (3) 一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 7. 将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。这样E(G) = E(G1)并E(G2)…并E(Gm).命题得证。 10.证明:若: (1)不是二连通图,或者 (2)是具有二分类的偶图,这里,

则是非Hamilton图。 证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本上的相关定理:若是Hamilton图,则对于的任意非空顶点集,有:,则该定理的逆否命题也成立,所以可以得出:若不是二连通图,则是非Hamilton图 (2)因为是具有二分类的偶图,又因为,在这里假设,则有 ,也就是说:对于的非空顶点集,有:成立,则可以得出则是非Hamilton图。 习题五 1.(1)证明:每个k方体都有完美匹配(k大于等于2) (2) 求K2n和K n,n中不同的完美匹配的个数。 证明一:证明每个k方体都是k正则偶图。 事实上,由k方体的构造:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。如果我们划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又不难知道k方体的每个顶点度数为k,所以k方体是k正则偶图。 由推论:k方体存在完美匹配。 证明二:直接在k方体中找出完美匹配。 设k方体顶点二进制码为(x1,x2,…,x k),我们取(x1,x2,…,x k-1,0),和(x1 ,x2,…,x k-1,1) 之间的全体边所成之集为M.显然,M中的边均不相邻接,所以作成k方体的匹配,又容易知道:|M|=2k-1.所以M是完美匹配。 (2) 我们用归纳法求K2n和K n,n中不同的完美匹配的个数。 K2n的任意一个顶点有2n-1种不同的方法被匹配。所以K2n的不同完美匹配个数等于(2n-1)K2n-2,如此推下去,可以归纳出K2n的不同完美匹配个数为:(2n-1)!!同样的推导方法可归纳出K n, n的不同完美匹配个数为:n! 6.证明:K2n的1-因子分解的数目为(2n)!/(2^n*n!)。 因为 K2n的不同完美匹配的个数为(2n-1)!!。所以,K2n的一因子分解数目为(2n-1)!!个,即2n)!/(2^n*n!),命题得证。

相关文档
相关文档 最新文档