文档库 最新最全的文档下载
当前位置:文档库 › 基于RBF神经网络的块控制器设计

基于RBF神经网络的块控制器设计

神经网络pid控制matlab程序

%Single Neural Adaptive PID Controller clear all; close all; x=[0,0,0]'; xiteP=0.40; xiteI=0.35; xiteD=0.40; %Initilizing kp,ki and kd wkp_1=0.10; wki_1=0.10; wkd_1=0.10; %wkp_1=rand; %wki_1=rand; %wkd_1=rand; error_1=0; error_2=0; y_1=0;y_2=0;y_3=0; u_1=0;u_2=0;u_3=0; ts=0.001; for k=1:1:1000 time(k)=k*ts; yd(k)=0.5*sign(sin(2*2*pi*k*ts)); y(k)=0.368*y_1+0.26*y_2+0.1*u_1+0.632*u_2; error(k)=yd(k)-y(k); %Adjusting Weight Value by hebb learning algorithm M=4; if M==1 %No Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*u_1*x(1); %P wki(k)=wki_1+xiteI*u_1*x(2); %I wkd(k)=wkd_1+xiteD*u_1*x(3); %D K=0.06; elseif M==2 %Supervised Delta learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1; %P wki(k)=wki_1+xiteI*error(k)*u_1; %I wkd(k)=wkd_1+xiteD*error(k)*u_1; %D K=0.12; elseif M==3 %Supervised Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*x(1); %P wki(k)=wki_1+xiteI*error(k)*u_1*x(2); %I wkd(k)=wkd_1+xiteD*error(k)*u_1*x(3); %D K=0.12; elseif M==4 %Improved Heb learning algorithm wkp(k)=wkp_1+xiteP*error(k)*u_1*(2*error(k)-error_1); wki(k)=wki_1+xiteI*error(k)*u_1*(2*error(k)-error_1); wkd(k)=wkd_1+xiteD*error(k)*u_1*(2*error(k)-error_1); K=0.12; end x(1)=error(k)-error_1; %P

音乐喷泉控制器的设计毕业论文.doc

音乐喷泉控制器的设计 目录 摘要 0 引言 (1) 第一章总体设计方案 (2) §1.1 音乐喷泉控制系统整体设计 (2) §1.2 方案比较 (2) §1.3 系统框图 (3) 第二章硬件电路的设计 (4) §2.1 电源电路 (4) §2.2 单片机控制电路设计 (4) §2.3 输入、出电路的设计 (5) 第三章软件程序流程图 (6) §3.1 系统整体流程图 (6) §3.2 喷池数据 (7) 第四章调试过程和调试方法 (8) §4.1 硬件调试 (8) §4.2 软件调试 (8) 第五章总结与展望 (9) 参考文献 (9) 附录 (10) 摘要 音乐喷泉控制器是音乐喷泉的核心部分。在音乐喷泉中,喷头的多姿造型和缤纷的水下灯光都受喷泉控制器的控制。由于不同的喷泉对水泵和彩灯组数的要求各不相同,因此可以设计一种简单、通用、组数可灵活扩充的喷泉控制器。本喷泉控制器采用全数字集成电路设计,可以灵活改变水泵和彩灯的组数。

本课题利用单片机作为控制核心,设计出了一种控制简单,成本较低且易于推广使用小型音乐喷泉的控制系统。系统原理:是用单片机根据音乐的强弱对电机,水泵或阀门进行控制,以便控制喷泉水柱的高低。输入为音乐成正比的电压信号,输出为对水泵转速或阀门的控制量。 关键词:单片机,音乐喷泉,控制器 The musical fountain controller Abstract The musical fountain controller is the musical fountain heart. In the musical fountain, the nozzle varied modeling and the riotous submarine light all receive the eruptive fountain controller the control. Is various as a result of the different eruptive fountain to the water pump and the color lamp bank number request, therefore designs the eruptive fountain controller which one kind simple, general, the group number may expand nimbly to become an eruptive fountain designer's topic. This eruptive fountain controller uses the entire digital circuit design, may change the water pump and the colored lantern group number nimbly. This topic research using single chip microcomputer as control core, devised a simple control, low costAnd easy to popularize the use of small music fountain control system. System according to the principle: is the music with single-chip computerStrength of the motor control, water pump and valve, in order to control the discretion of the water fountain. Input for music intoDirect voltage signal output is on the pump rotation speed, the control quantity or valve. Key Words:microcontroller,usic fountain,controller 引言 德国发明家奥图皮士特先生在1930年提出喷泉的相关理论,随后他在百货商店和餐馆前建造小型的喷泉。经过多年来的发展,音乐喷泉的设计变的多样化,构造变得复杂化。在1952年的夏天,在西柏林的工业展览中,一个美国人看到了奥图皮士特先生音乐喷泉的表演,并把它带回纽约。1953年1月15日音乐喷泉在美国首次表演,表演期间超过150万人观看。在音乐喷泉走向全世界的同时,各种新技术也不断地运用在音乐喷泉上,使其表演变得复杂和美丽,给人们带来无限的乐趣,提高了人们的生活质量。

Cache实验

Caches实验 杨祯 15281139 实验目的 1.阅读分析附件模拟器代码 2.通过读懂代码加深了解cache的实现技术 3.结合书后习题1进行测试 4.通过实验设计了解参数(cache和block size等)和算法(LRU,FIFO 等)选择的优化配置与组合,需要定性和定量分析,可以用数字或图表等多种描述手段配合说明。 阅读分析模拟器代码

课后习题 stride=132下直接相连映射 1)实验分析 由题意得:cachesize=256B blockinbyte=4*4B Noofblock=256B/16B=16个组数位16 array[0]的块地址为0/4=0 映射到cache的块号为0%16=0 array[132]的块地址为132/4=33 映射到cache的块号为33%16=1

第一次访问cache中的0号块与1号块时,会发生强制性失效,之后因为调入了cache中,不会发生失效,所以 misscount=2 missrate=2/(2*10000)=1/10000 hitcount=19998 hitrate=9999/10000 实验验证

stride=131下直接相连映射 实验分析 由题意得:cachesize=256B blockinbyte=4*4B Noofblock=256B/16B=16个组数位16 array[0]的块地址为0/4=0 映射到cache的块号为0%16=0 array[131]的块地址为131/4=32 映射到cache的块号为32%16=0 第一次访问cache中的0号时,一定会发生强制性失效,次数为1;之后因为cache中块号为0的块不断地被替换写入,此时发生的是冲突失效,冲突失效次数为19999, 则发生的失效次数为19999+1=20000 所以 misscount=20000 missrate=20000/(2*10000)=1

基于单片机的音乐喷泉设计

基于单片机的音乐喷泉设计 第一章音乐喷泉控制系统硬件设计 1.1控制系统硬件总设计方案 1.2音乐信号的采集 1.2.1 音频放大电路的设计 1.2.2 采样定理 1.3 单片机电路 1.3.1 单片机的概述 1.3.2 时钟电路的设计 1.4 AD转换电路 1.4.1 ADC0809与单片机AT89C51的连接 1.4.2输入电路 1.5潜水泵调速硬件方案设计 1.6灯光硬件方案设计 1.7解决系统时间滞后硬件电路设计. 第二章喷泉控制系统软件设计 2.1喷池数据 2.2主程序框图. 2.3 控制潜水泵软件设计模块 2.3.1 潜水泵开关调速的原理 2.3.2潜水泵开关调速的软件设计 2.4控制电磁阀软件设计模块 2.5 歌曲存储模块 2.5.1音频脉冲的产生 2.5.2音乐程序 2.6灯光控制模块 2.7看门狗子程序 2.7实验仿真

第一章音乐喷泉控制系统硬件设计 1.1 控制系统硬件总体设计方案 该音乐喷泉控制系统的总体结构如图2.1所示,由音乐输入系统、数模转换系统、单片机控制系统和输出控制系统等组成。 图1.1 系统总体结构框图 1.2音乐信号的采集 前面已经介绍过,本文的研究针对的是采用外部音源的喷泉系统,因此在对音乐信号进行特征识别前首先要完成对模拟音乐信号的采集。音乐信号的采集主 要包括音频放大和 A/D 转换两个过程,下面分别进行分析。 1.2.1 音频放大电路的设计 外部音源信号的幅度一般较弱,因此必须要对原信号进行放大处理后才能送入 A/D 转换器。本文选择了 LM386 芯片设计音频放大电路。LM386 是美国国家半导体公司(NS)推出的系列功率放大集成电路的一种,LM386 具有功耗低、工 作电压范围宽、所需外围元件少等特点,在电子设备的音频放大电路设计中应 用非常广泛,它使用了 10 只晶体管构成了输入级、电压增益和电流驱动级。 其中 T1~T6 组成 PNP 型复合差分放大器,T5、T6 为镜像恒流源,作为 T3、 T4 的有 6/32 源负载,使输入级有稳定的增益。电压增益级由接成共发射极状态的 T7 承担,其负载也使用了恒流源,整个集成功放的开环增益主要由该级决定。T8、T9 复合为一个 PNP 管,和 T10 共同组成互补对称射极输出电路,以供给负载以足 够的电流。D1、D2 提供了 T8、T9、T10 所需的偏置,使末级偏置在甲乙类状态。R5~R7 构成内部反馈环路。从图 3.2.1 可以看出,LM386 采用双列 8 脚 封装结构,它的工作电压范围为 4~12V,静态电流 4mA,最大输出功率 660mW,最大电压增益 46dB,增益带宽 300kHz,谐波失真 0.2%。 图1.2.1 LM386 封装形式及引脚定义 在 LM386 的 DataSheet 上,提供了两种典型放大电路的设计方案。一种是在LM386 的 1 脚和 8 脚之间不接其他元件,此时放大电路的增益仅由内部电 阻 R5~R7决定,为 20 倍数(26dB),这种方式外部电路元件最少,也最为经济。另一种通 过在 1 脚和 8 脚之间串接不同的阻容元件,改变放大电路的交流反馈量,从 而改变放大电路的闭环增益。音乐信号的放大采集如图 2.2.2 所示。外部音源(声卡、CD 机等)的模拟音乐信号分左、右声道分别进入放大电路,经过信号放大后,得到幅值放大后的音频信号。从图 3.2.2 可以看出放大电路的具体设计。在 LM386 的 1 脚和 8 脚之间串接一个 10 微法的电容 C4,使内部电 阻 R6 被交流旁路,放大电路的增益能达到最大值,200 倍数(46dB)。再对 音频放大电路的外围电路进行设计,电路中电容 C1、C6 作为隔直电容,电位 器 P1 用于调节音量的大小,元件 R2、C5 有助于旁路高频噪音和改善输出的 音质。电容 C3 作为去耦电容,一方面是本集成电路的蓄能电容,另一方面旁 路掉该器件的高频噪声。电容 C2 则是作为旁路电容,将信号的中高频噪音旁 路到地。经过放大电路的音频信号就送入 A/D 转换器进行采样,这里 A/D转

现代cache技术的研究 课程设计报告

计算机组成与体系结构课程设计报告题目:现代计算机cache技术的研究 学生姓名:谱 学号: 10204102 班级:10204102 指导教师:谌洪茂 2013 年1月6日

摘要 随着集成电路制造技术的持续发展,芯片的集成度和工作速度不断增加,功耗密度显著增大,功耗已经成为计算机系统设计中与性能同等重要的首要设计约束。在现代计算机系统中,处理器速度远远高于存储器速度,Cache作为处理器与主存之间的重要桥梁,在计算机系统的性能优化中发挥着重要作用,但Cache也占据着处理器的大部分能耗。处理器及其Cache存储器是整个计算机系统能耗的主要来源,降低其能耗对于优化计算机系统,特别是嵌入式系统,有着重要的意义。本文主要研究体系结构级的低能耗技术,利用优化Cache结构和动态电压缩放两种技术来实现处理器及其Cache的低能耗。本文首先详细地分析了低能耗Cache技术的研究现状,将该技术总结为基于模块分割的方法、基于路预测的方法、添加一级小Cache的方法、优化标识比较的方法和动态可重构Cache的方法等五大类,并在此基础上,提出了带有效位预判的部分标识比较Cache、带有效位判别的分离比较Cache、基于程序段的可重构Cache等三种Cache结构。然后从不同的实现层面分析比较了现有的电压缩放技术及其缩放算法,提出了一种基于程序段的动态电压缩放算法。最后结合可重构Cache和动态电压缩放技术,提出了一种基于程序段的可重构Cache及处理器电压自适应算法。本文通过仿真实验证明了上述几种方法的有效性。本文所取得的研究成果主要有: 1.一种带有效位预判的部分标识比较Cache(PTC-V Cache)。组相联Cache实现了高命中率,但同时也带来了更多的能耗。本文针对组相联Cache,提出了一种带有效位预判的部分标识比较Cache,它能够有效地节省Cache中信号放大器和位线的能耗。结果表明,PTC-V Cache平均能够节省指令Cache中约55%的能耗。 2.一种带有效位判别的分离比较Cache(SC-V Cache)。该Cache基于路暂停Cache结构,在此基础上,设计了有效位判断和分离标识比较器。它能缩短标识比较的时间,并且减少对无效数据块读取的能耗,以确保同时获得高性能和低能耗。该方案很大程度上节省了路暂停Cache的平均能耗,尤其对于大容量Cache。 3.一种基于程序段的可重构Cache自适应算法PBSTA。该算法使用建立在指令工作集签名基础上的程序段监测状态机来判断程序段是否发生变化,并做出容量调整决定;在程序段内,该算法使用容量调整状态机来指导Cache进行容量调整。与先前的算法相比,该算法不仅有效地降低了Cache存储系统的能耗,而且减少了不必要的重构所带来的性能损失。 4.一种基于程序段的动态电压缩放算法PBVSA。该算法使用程序段监测状态机来判断程序段是否发生变化,并做出CPU电压和频率调整决定,在程序段内,该算法通过计算该程序段的频率缩放因子β(片外工作时间与片上工作时间的比例关系)来设定CPU的电压和频率。结果表明,该算法在保证系统性能的前提下,有效地降低了处理器的能耗。 5.一种基于程序段的可重构Cache 与处理器电压自适应算法CVPBSTA。该算法结合PBSTA算法与PBVSA算法的特点,使用程序段监测状态机来判断程序段是否发生变化,并做出Cache容量及CPU电压和频率的调整决定。在程序段内,该算法采用了与PBSTA相似的Cache容量调整策略和与PBVSA相似的CPU电压和频率调整策略,先后对Cache容量及CPU电压和频率进行调整。结果表明,该算法在保证性能的前提下,更大程度上地节省了系统的能耗。

pid神经网络控制器的设计

第三章 PID 神经网络结构及控制器的设计 在控制系统中,PID 控制是历史最悠久,生命力最强的控制方式,具有直观、实现简单和鲁棒性能好等一系列优点。但近年来随着计算机的广泛应用,智能控制被越来越广泛的应用到各种控制系统中。智能控制方法以神经元网络为代表,由于神经网络可实现以任意精度逼近任意函数,并具有自学习功能,因此适用于时变、非线性等特性未知的对象,容易弥补常规PID 控制的不足。将常规PID 控制同神经网络相结合是现代控制理论的一个发展趋势。 3.1 常规PID 控制算法和理论基础 3.1.1 模拟PID 控制系统 PID(Proportional 、Integral and Differential)控制是最早发展起来的控制策略之一,它以算法简单、鲁捧性好、可靠性高等优点而梭广泛应用于工业过程控制中。 PID 控制系统结构如图3.1所示: 图3.1 模拟PID 控制系统结构图 它主要由PID 控制器和被控对象所组成。而PID 控制器则由比例、积分、微分三个环节组成。它的数学描述为: 1() ()[()()]t p D i de t u t K e t e d T T dt ττ=+ +? (3.1) 式中,p K 为比例系数; i K 为积分时间常数: d K 为微分时间常数。 简单说来,PID 控制器各校正环节的主要控制作用如下: 1.比例环节即时成比例地反映控制系统的偏差信号()e t ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

2.积分环节主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数i T ,i T 越大,积分作用越弱,反之则越强。 3.微分环节能反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。 具体说来,PID 控制器有如下特点: (1)原理简单,实现方便,是一种能够满足大多数实际需要的基本控制器; (2)控制器能适用于多种截然不同的对象,算法在结构上具有较强的鲁棒性,在很多情况下,其控制品质对被控对象的结构和参数摄动不敏感。 3.1.2 数字PID 控制算法 在计算机控制系统中,使用的是数字PID 控制器,数字PID 控制算法通常又分为位置式PID 控制算法和增量式PID 控制算法。 1.位置式PID 控制算法 由于计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,故对式(3.1)中的积分和微分项不能直接使用,需要进行离散化处理。按模拟PID 控制算法的算式(3.1),现以一系列的采样时刻点kT 代表连续时间t ,以和式代替积分,以增量代替微分,则可以作如下的近似变换: t kT = (0,1,2,3...)k = ()()()k k t j j e t dt T e jT T e j ==≈=∑∑? ()()[(1)]()(1) de t e kT e k T e k e k dt T T ----≈= (3.2) 式中,T 表示采样周期。 显然,上述离散化过程中,采样周期T 必须足够短,才能保证有足够的精度。为了书写方便,将()e kT 简化表示()e k 成等,即省去T 。将式(3.2)代入到(3.1)中可以得到离散的PID 表达式为: 0(){()()[()(1)]}k D p j I T T u k K e k e j e k e k T T ==+ + --∑ (3.3) 或 0 ()()()[()(1)]}k p I D j u k K e k K e j K e k e k ==++--∑ (3.4) 式中,k ——采样序号,0,1,2...k =; ()u k ——第k 次采样时刻的计算机输出值;

cache性能分析实验报告

计算机系统结构实验报告 名称: Cache性能分析学院:信息工程 姓名:陈明 学号:S121055 专业:计算机系统结构年级:研一

实验目的 1.加深对Cache的基本概念、基本组织结构以及基本工作原理的理解; 2.了解Cache的容量、相联度、块大小对Cache性能的影响; 3.掌握降低Cache失效率的各种方法,以及这些方法对Cache性能提高的好处; 4.理解Cache失效的产生原因以及Cache的三种失效; 5.理解LRU与随机法的基本思想,及它们对Cache性能的影响; 实验平台 Vmware 虚拟机,redhat 9.0 linux 操作系统,SimpleScalar模拟器 实验步骤 1.运行SimpleScalar模拟器; 2.在基本配置情况下运行程序(请指明所选的测试程序),统计Cache总失效 次数、三种不同种类的失效次数; 3.改变Cache容量(*2,*4,*8,*64),运行程序(指明所选的测试程序), 统计各种失效的次数,并分析Cache容量对Cache性能的影响; 4.改变Cache的相联度(1路,2路,4路,8路,64路),运行程序(指明所 选的测试程序),统计各种失效的次数,并分析相联度对Cache性能的影响; 5.改变Cache块大小(*2,*4,*8,*64),运行程序(指明所选的测试程 序),统计各种失效的次数,并分析Cache块大小对Cache性能的影响; 6.分别采用LRU与随机法,在不同的Cache容量、不同的相联度下,运行程序 (指明所选的测试程序)统计Cache总失效次数,计算失效率。分析不同的替换算法对Cache性能的影响。 预备知识 1. SimpleScalar模拟器的相关知识。详见相关的文档。 2. 复习和掌握教材中相应的内容 (1)可以从三个方面改进Cache的性能:降低失效率、减少失效开销、减少Cache命中时间。 (2)按照产生失效的原因不同,可以把Cache失效分为三类: ①强制性失效(Compulsory miss)

基于S函数的RBF神经网络PID控制器

基于径向基函数的神经网络的PID控制器 摘要 RBF神经网络在分类问题中得到了广泛的应用,尤其是模式识别的问题。许多模式识别实验证明,RBF具有更有效的非线性逼近能力,并且RBF神经网络的学习速度较其他网络快。本文在具有复杂控制规律的S函数构造方法的基础上,给出了基于MATLAB语言的RBF神经网络PID控制器,及该模型的一非线性对象的仿真结果。 关键词:S函数;RBF神经网络PID控制器;Simulink仿真模型径向基函数(RBF-Radial Basis Function)神经网络是由J.Moody和C.Darken 在20世纪80年代末提出的一种神经网络,它具有单隐层的三层前馈网络。由于它模拟了人脑中局部调整、相互覆盖接受域(或称野-Receptive Field)的神经网络结构,因此,RBF神经网络是一种局部逼近网络,已证明它能以任意精度逼近任意连续函数。 1.S函数的编写方法 S函数是Simulink中的高级功能模块,Simulink是运行在MATLAB环境下用于建模、仿真和分析动态系统的软件包。只要所研究的系统模型能够由MATLAB语言加以描述,就可构造出相应的S函数,从而借助Simulink中的S 函数功能模块实现MATLAB与Simulink之间的沟通与联系,这样处理可以充分发挥MATLAB编程灵活与Simulink简单直观的各自优势。当系统采用较复杂的控制规律时,Simulink中没有现成功能模块可用,通常都要采用MATLAB编程语言,编写大量复杂而繁琐的源程序代码进行仿真,一是编程复杂、工作量较大,二来也很不直观。如果能利用Simulink提供的S函数来实现这种控制规律,就可以避免原来直接采取编程的方法,不需要编写大量复杂而繁琐的源程序,编程快速、简捷,调试方便,则所要完成的系统仿真工作量会大大减少。 RBF神经网络PID控制器的核心部分的S函数为: function [sys,x0,str,ts]=nnrbf_pid(t,x,u,flag,T,nn,K_pid,eta_pid,xite,alfa,beta0,w0) switch flag,

神经网络PID控制

基于神经网络PID控制算法在多缸电液伺服系统同步控制中的仿真 研究 丁曙光,刘勇 合肥工业大学,合肥,230009 摘要:本文介绍了神经网络控制原理,提出了神经网络PID算法,通过选定三层神经网络作为调节函数,经过Simulink仿真确定了神经网络PID控制器的参数,设计了神经网络PID控制器。推导出多缸液压同步控制系统在各种工况下的传递函数,并把该控制器应用到多缸液压同步控制系统中。经过仿真研究表明该控制器控制效果良好,能满足多缸液压同步的控制要求。 关键词:多缸同步;PID算法;仿真;神经网络 Study on the simulation and appllication of hydraulic servo system of straihtening machine based on Immune Neural network PID control alorithm DING Shu-guang, GUI Gui-sheng,ZHAI Hua Hefei University of Technology, Hefei 23009 Abstract:The principle of immune feedback and immune-neural network PID algorithm was respectively.An immune-neural network PID controller was designed by which an adaline neural network was selected as antibody stay function and parameters of the immune-neural network PID controller were determined by simulation.The transfer function of the hydraulic servo system of crankshaft straightenin on were introduced in different working conditions.The immune-neural network PID controller was applied to hydraulic system of crankshaft straightenin.The simulation and equipment were done,and results show that its control effectiveness is better and can meet the needs of he hydraulic servo-system of crankshaft straightening hydraulic press. Key words:straightening machine; Immune control arithmetic; simulation;neural network 0引言 精密校直液压机(精校机)液压伺服系统是精校机的执行环节,高精度液压位置伺服控制是精校机的关键技术之一,它保证了液压伺服控制系统的控制精度、稳定性和快速性,是完成校直工艺的必要条件。因此,精校机液压伺服控制系统的研究,为精校机产品的设计和制造提供了理论依据,对校直技术和成套设备的开发具有重大的意义[1]。 精校机液压位置伺服系统是一个复杂的系统,具有如下特点:精确模型难建立,要求位置控制精度高、超调量小、响应快、参数易变且难以确定[1]。因此该系统的控制有较大的难度。传统的PID控制虽然简单易行,但参数调整困难,具有明显的滞后特性,PID 控制很难一直保证系统的控制精度,Smith预估补偿 国家重大科技专项资助(项目编号:2009ZX04004-021)安徽省自然科学基金资助(项目编号:090414155)和安徽省科技攻关项目资助(项目编号:06012019A)制方法从理论上为解决时滞系统的控制问题提供了一种有效的方法,但是Smith预估器控制的鲁棒性差,系统性能过分依赖补偿模型的准确性,限制了它在实际过程中的应用[1~5]。 近年来,人们开始将生物系统的许多有益特性应用于各种控制中[1~5],取得了一定成果。自然免疫系统使生物体的一个高度进化、复杂的功能系统,它能自适应地识别和排除侵入肌体的抗原性异物,并且具有学习、记忆和自适应调节功能,以维护肌体内环境的稳定。自然免疫系统非常复杂,但其抵御抗原(antigen)的自适应能力十分显著。生物信息的这种智能特性启发人们利用它来解决一些工程难题,这就引起多种免疫方法的出现。人工免疫系统就是借鉴自然免疫系统自适应、自组织的特性而发展起来的一种智能计算技术。该算法在大量的干扰和不确定环境中都具很强的鲁棒性和自适应性,在控制、优化、模式识别、分类

基于PLC的音乐喷泉控制系统设计(1)..

毕业设计(论文) 题目基于PLC的音乐喷泉 控制系统设计 专业电气工程及其自动化 班级 11电气2班 学生张军(20113264 ) 指导教师李林 职称工程师 高科学院 2015 年

摘要 摘要 音乐喷泉是近年来出现的一种园林建筑与花式观赏相结合的一种产物,它集合声、光、色、形于一体,并产生千变万化的水景。随着可编程控制器的迅速发展,音乐喷泉对控制系统的要求也越来越高,使得越来越多的控制部分需要用可编程控制器来实现。 本课题结合任务书的要求,以音乐喷泉为研究对象,采用三菱PLC作为喷泉的控制器。设计的控制方式有两种:一种是固定程序运行方式。是按事先设计好的步骤一步一步进行,循环执行。另一种控制方式是通过音乐控制喷泉。是通过PLC的中断程序采集播放音乐的音频信号,PLC对采集的音频信号进行标准化算法,将运算的数据转换成模拟量,通过模拟量输出口输出去控制变频器的输出频率,从而控制水泵转速,达到控制喷泉水柱的高低跟随音乐强弱的变化。 本次设计对音乐喷泉控制系统的总体功能进行了分析,并且对可编程控制技术、变频控制技术的应用、发展趋势作了简要介绍,以及音乐喷泉控制总体设计方案、电气系统的整体设计和PLC程序设计思路、变频参数设置。本次设计改善了音乐喷泉系统的控制品质,提高了音乐喷泉控制系统的稳定性。 关键词:音乐喷泉,控制系统,可编程控制器,变频器

ABSTRACT ABSTRACT In recent years, music fountain is the emergence of a garden building combined with a fancy watch a product, its collection of sound, light, color, shape, and generates kaleidoscope waterscape. Along with the rapid development of the programmable controller, music fountain is becoming more and higher to the requirement of control system; make more and more need to use PLC to realize control part. This topic combined with the requirements of the specification, with music fountain as the research object; adopt Mitsubishi PLC as the controller of the fountain model. Design of the control method has two kinds: one is fixed program operation mode. According to design a good steps in advance step by step, execution cycles. Another way of control is through the music fountain control. By PLC interrupt program audio signal collection and play music, audio signal of PLC to standardize algorithm, the algorithm of data into analog and output by analog output to control the output frequency of frequency converter, so as to control water pump speed, to control the fountain water column height to follow music strength changes. The design of music fountain control system's overall function is analyzed, and the programmable control technology, the application of variable frequency control technology, the development trends are briefly introduced, as well as the music fountain control overall design, the overall design of the electric system and PLC program design and parameter setting of inverter. This design improves the music fountain system control quality; improve the stability of music fountain control system. KEY WORDS: Musical fountain,Control system,PLC,frequency

Cache控制器设计实验

实验3 Cache 控制器设计 1、实验目的 (1)掌握Cache控制器的原理及其设计方法。 (2)熟悉FPGA应用设计及EDA 软件的使用。 (3) 熟悉Vivado软件的使用及FPGA应用设计。 2、实验原理 Cache是介于CPU与主存之间的小容量存储器,包括管理在内的全部功能由硬件实现,对程序员是透明的,在一定程度上解决了CPU与主存之间的速度差异、与主存容量相比,Cac he的容量特不小,它保存的内容只是内存内容的一个子集,且Cache与主存的数据交互以块为单位、把主存中的块放到Cache中时必须把主存地址映射到Cache中,即确定位置的对应关系,并采纳硬件实现,以便CPU给出的访存地址能够自动变换成Cache地址。由于程序访问的局部性,使得主存的平均读出时间接近Cache的读出时间,大大提高了CPU的访存效率、 地址映射方式有全相联方式、直截了当相联方式、组相联方式,本实验采纳的是直截了当方式,这种变换方式简单而直截了当,硬件实现特不简单,访问速度也比较快,然而块的冲突率比较高、其主要原则是:主存中一块只能映象到Cache的一个特定的块中、假设主存的块号为B,Cache的块号为b,则它们之间的映象关系能够表示为:b=B mod Cb其中,Cb是Cache的块容量、设主存的块容量为Mb,区容量为Me,则直截了当映象方法的关系如图3、19所示。把主存按Cache的大小分成区,一般主存容量为Cache容量的整数倍,主存每一个分区内的块数与Cache的总块数相等、直截了当映象方式只能把主存各个区中相对块号相同的那些块映象到Cache中同一块号的那个特定块中、例如,主存的块0只能映象到Cache的块0中,主存的块1只能映象到Cache的块1中,同样,主存区1中的块Cb(在区1中的相对块号是0)也只能映象到Cache 的块0中、依照上面给出的地址映象规则,整个Cache地址与主存地址的低位部分是完全相同的。

基于神经网络的PID控制

基于神经网络的PID控制 课程名称:智能控制 任课教师: 学生姓名: 学号: 年月日

摘要:本文基于BP神经网络的PID控制方法设计控制器,通过BP神经网络与PID的控制相结合的神经网络控制基本原理和设计来自适应的功能调节PID的的三个参数,并根据被控对象的近似数学模型来输出输入与输出并分析BP神经网络学习速率η,隐层节点数的选择原则及PID参数对控制效果的影响。计算机的仿真结果表示,基于BP神经网络的PID控制较常规的PID控制具有更好的自适应性,能取得良好的的控制结果。 关键字:BP算法神经网络 PID控制 Abstract:In this paper, based on BP neural network PID control method designed controller, through the BP neural network PID control with a combination of neural network control basic principles and design features adaptively adjusting the PID of the three parameters, and based on the controlled object approximate mathematical model to analyze the output and the input and output BP n eural network learning rate η, hidden layer nodes and PID parameter selection principle effect of the control . Computer simulation results indicated that based on BP neural network PID control compared with conventional PID control has better adaptability , can achieve good control results . Keyword:BP algorithms neural networks PID control 1引言 PID控制是最早发展起来的应用经典控制理论的控制策略之一,由于算法简单,鲁棒性好和可靠性高,被广泛应用于工业过程并取得了良好的控制效果。随着工业的发展,对象的复杂程度不断加深,尤其对于大滞后、时变的、非线性的复杂系统,常规PID控制显得无能为力。因此常规PID控制的应用受到很大的限制和挑战。 神经网络在控制系统中的应用提高了整个系统的信息系统处理能力和适应能力,提高了系统的智能水平。此外,神经网络具有逼近任意连续有界非线性函数的能力,对于非线性系统和不确定性系统,无疑是一种解决问题的有效途径。本文将常规PID控制与神经网络控制相结合,发挥各自的优势,形成所谓的智能PID控制。采用BP神经网络方法设计的控制系统具有更快的速度(实时性)、更强的适应性和更好的鲁棒性。 2 基于BP神经网络的PID控制 PID控制要取得较好的控制结果,必须通过调整好比例、积分和微分三种控制作用,形成控制量中既要相互配合又相互制约的关系。神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现最佳组合的PID控制。采用BP网络,可以建立参数Kp、Ki、Kd自学习的PID控制器。基于BP神经网络的PID控制系统结构由常规的PID控制器和神经网络两个部分构成。 2.1常规的PID控制器 PID控制器由比例(P)、积分(I)、微分(D)3个部分组成,直接对被控对象进行闭环控制,并且三个参数 Kp、Ki、Kd为在线调整方式。 2.2 神经网络 根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最

根据spim的cache实验

汕头大学实验报告 学院: 工学院系: 计算机系专业: 计算机科学与技术年级: 13实验时间: 2015.6.16 姓名: 林子伦学号: 2013101030实验名称:基于SPIM-CACHE的Cache实验 一.实验目的: (1)熟悉SPIM-CACHE模拟器环境 (2)深入认识CACHE的工作原理及其作用。 二.实验内容: (1)阅读实验指导书资料(虚拟教室提供了英文论文的电子版本); (2)下载SPIM-CACHE软件,理解英文论文的基本内容之后,给出几种典型的cache配置,运行英文论文提供的代码,记录运行时CACHE命中率等重要数据;(3)运行Fig.4代码,了解mapping functions 即映射规则 (4)运行Fig.7代码,了解temporal and spatial locality 即时空局部性,进一步理解cache的工作原理; (5)运行Fig.8代码,运行学习replacement algorithms 即替代算法,理解其工作原理。 三.实验地点,环境 实验地点:软件工程实验室 实验环境: 操作系统:Microsoft Windows 8 中文版 处理器:Intel(R) Core(TM) i3-3120M CPU @ 2.50GHz 2.50GHz 内存: 4.00GB(3.82GB 可用) 四.实验记录及实验分析(80%): 4.1实验前配置: 1) 按下图配置好Spim设置

2)关于实验中cache设置如下(具体配置根据下面实验要求) ——》 ——》 Cache size ——cache大小 Block size ——块大小 Mapping ——组相连 4.2实验一:fig4.s 实验目的:Algorithm and corresponding code to study mapping functions Cache配置:256-B size, 16-B line size, four-way set associative 实验操作: 1) Ctrl+O 打开运行代码fig4.s 代码如下: .data 0x10000480 Array_A: .word 1,1,1,1,2,2,2,2 .data 0x10000CC0 Array_B: .word 3,3,3,3,4,4,4,4 .text .globl _start _start: la $2,Array_A li $6,0 li $4,8 loop: lw $5,0($2) add $6,$6,$5 addi $2,$2,4

相关文档