文档库 最新最全的文档下载
当前位置:文档库 › 复杂二次分式函数极值的快速解法

复杂二次分式函数极值的快速解法

复杂二次分式函数极值的快速解法
复杂二次分式函数极值的快速解法

复杂二次分式函数极值的快速解法

在高考中,我们经常会碰到二次分式函数问题,这类问题通常比较麻烦, 有时运算量很大,很难在短时间内解决.所以本文将研究求解二次分式函数单调性,值域,极值的简便方法.希望能得到一个极值通用公式, 以便在考试中套用,节约时间.

二次分式函数具有形式22(,()0)Ax Bx C

y f x Dx A Ex B F

++==

++不同时为. 我们将要研究它的定义域,值域,单调性,极值.

1. 定义域和有界性

20Dx Ex F ++=当方程有解,设12122,0(=Dx Ex x x x x F ++≤)是两个根 .则函数定义

域12{|}x x x x x ∈≠∧≠R .当1

2

2

2

11220,lim 0,lim x x x x Ax Bx C Ax Bx C →→++≠=∞++≠=∞或.

此时函数无界.当221122=0=0Ax Bx C Ax Bx C ++++且,函数有界且为常值函数(很少遇到

的情况,比如2211

x y x -=- ).所以通常当2

40E DF -≥ ,二次分式函数是无界的.

12,x x x x == 是函数的渐近线.

当2

40E DF -<,函数定义域为R .函数有界.

2. 单调性,极值,值域 当

240

E D

F -<,

20

Dx Ex F ++≠,可以将函数化为

()22=.y Dx Ex F Ax B x x C ++++的方程 .()()2B 0x Dy A x Ey Fy C -+-+-=即.对

于值域中的每一个y,方程都有实数解,0,=00,,Dy A Dy A -≠-?≥当验当证是否有解 .这样就可以求出值域.值域的两个端点(方程的两个解)为函数极大值和极小值.但为了计算在何处取得极值,需将极值代入()()2

B 0x

Dy A x Ey Fy C -+-+-=函数解出x ,计算可能

有点慢.下文会给出一个简便的计算方法.

lim ()x A f x D →∞

=

,根据极值与A D

的大小即可判断单调区间.2

40E DF -<这种情况最多有三个单调区间.

当2

40E DF -≥,用判别式法可能会产生增根.此时通常会解出y ∈R .出现这种情况,求解

20Dx Ex F ++=和20Ax Bx C ++= .分式可化为一次分式,根据定义去求出这个一次分

式值域.比如()()()()

2

2

21121311221222x x x x y x x x x x x x x

-+-+-+====-≠≠--++-++++且 {}1,0,0.|1x y y y y ==≠≠取所以函数值域且

分离变量和换元再用基本不等式求解也是解决二次分式的常规方法,再.下面给出一个具体例

子.

223325x x x y x +--++=

.首先定义域

2{|50}

x x x -++≠ 解

(

(111){|(1}22x x x ∧≠≠

.分离分子中的二次项得261335

x y x x +=-+-++ . 13

613,6

t t x x -=+=令 .代入得

()()22

2

135613

1

31151313636

1

36732361

367836369

y x x x t t t

t t t t t =-+

-+++=-+

+

-+--+=-+

-+-=--

+-

(

)0133678363696713,,363660133678

36369

6713,,36366

t y t t t t t x t t y t t t t x t >=--

≥-=

+--====<=-+

≤-+

=-++

-===-当当当当

函数值域(-()∞∞?

根据2233m

2

l 35i x x x x x →∞+-++=--

, 3<-<

1122

<<<

可判断出单调区间

(

(

(

(

(

(

(

(1111

(-,

13),(13,1),(1,+) 6622

1111

(13,1),(1,13)

6226

∞∞--+---+增区间减区间

共有5个单调区间

顺便再算一下函数零点(

(2

1211

3320=

3,=366

x x x x +---解得= 有了这些信息,我们很容易画出函数大致图像

通过这样一个例子,我们意识到,如果在考试中碰到这样的函数,分离变量换元的方法计算量

非常大并且需要一定的技巧,浪费了我们很多的时间.而判别式法只能求极值和值域,对于何处取极值,还需将极值代入原函数.对于上面的例子,直接代会函数运算过于复杂对于一些简单二次分式函数,分离变量是可行的,并且非常快.但是对于像上面这种二次分式函数,我们找到需要一种计算量很小的方法

.

二次分式函数极值公式

很多老师不赞成用导数计算二次分式函数极值.但为了找到一个简便公式,我们必须通过导数来研究二次分式函数.

22

()Ax Bx C f x Dx Ex F

++=++ ()()22'

22

2

22

(2)()()(2D )()()2()Ax B Dx Ex F Ax Bx C x E f x Dx Ex F AE BD x

AF CD x CE BF

Dx Ex F +++-+++=

++-+--+=

++

我们只关心导数的符号,导数分母是个正数,我们记分子

()()22AE BD x AF CD N x CE BF -+--+= .函数取极值时'()0,N 0f x ==即 .

我们只需解方程()()2

20AE BD x AF CD x CE BF -+--+=即可得到函数取极值时的x

值.为了防止错误,最好验证的得到的x 值是否在定义域内.

将方程系数与22

Ax Bx C

Dx Ex F

++++比较.发现N 可以写成三阶行列式. 2

12x x N A

B C D

E

F

-= .这样就很容易记住了. 对于上面的例子22332

5

x x x y x +--++=,22

1

23

3201

1

5

17266x x N x x +-+-===-

解得(

(1211

=

13,=1366

x x ---.这种方法比分离变量快多了. 要求单调区间,由于N 的符号和'

()f x 相同,大致画出y N = 的图像,只需画出开口方向,标出零点和渐近线即可确定单调区间.由此可知二次分式函数最多可有5个单调区间.

如果要求极值,把x 代入函数

(

(

(

(

(2211

21313121213)11651313636

(f -+-+--+--=- 计算量很大,对于x 很复杂的情况建议用判别式求值域.

想到取极值时的x 值可用方程0N =表示,我们也找到一个关于y 的方程.

联立()()22220Ax Bx C

y Dx Ex F

AE BD x AF CD x CE BF ?++=?

++??-+--+=?

,消去x 整理得 ()()()2

2244240E

DF y AF CD BE y B AC -++-+-=

2244E DF B AC --二次项系数和常数项正好为分母和分子的判别式 .

我们只需特别记住一次项系数()42AF CD BE +-.比较22Ax Bx C

Dx Ex F

++++发现这一项也挺好

记的:二次项系数与常数项系数积的和的4倍减一次项系数积的两倍 对于上面的例子,将系数代入该方程得233622

0=1y y +

+ 解

(

(1211

31,312121

y y =

--=-+ . 根据已求出的单调区间, 比较A

D 和极值的大小即可区分极大值和极小值.

我们重新回顾判别式求值域的方法. ()()2

B 0x

Dy A x Ey Fy C -+-+-=

()

()()2

4=0Ey B Dy A Fy C ---- 的解即为极值.

重新整理方程可得()()

222

44244=0B AC CD BE AF y E DF y -+-++- 和刚才的到

的方程是一样的.说明导数和判别式这两种方法是等价的.

在考试中,我们碰到的二次分式函数定义域不是根据函数本身的得出的,而是已知条件给定的.在特定的定义域内求解函数值域时,用判别式求解可能会放大值域.但我们能可用判别式求出极值.再用=0N 和渐近线求出单调区间进而求出值域.

下面给出一道有二次分式函数应用的高考例题.

(2013浙江)如图,点P(0,1)- 是椭圆12222

:1(0)b

x y C a b a +>>= 的一个顶点,1C 的长轴是

圆222:4C x y += 的直径.12,l l 是过点P 且互相垂直的两条直线,其中1l 交圆

221,, D.C A B l C 与两点交椭圆与与另一点

(1) 求椭圆1C 的方程; (2) 求ABC 面积取最大值的直线1l 的方程;

第一问2

22:14

x C y += 设121

:1(R) ,:1l y kx k l y x k

=-∈=-

- O 到AB

距离d =

,AB ==. 212

2

4C 1410x x k l ??

++-= ???

代入得 设1122(,),(,)P x y D x y

(2:0l x ky k ++=套用圆锥曲线硬解定理

)

122

12840()||=(=

k

x x k x x DP -+=+?==形式而已套用圆锥曲线硬解定理

2

1||||24S DP AB k ===

+

接下来是关键了,用我们的公式来算

.

2t=k (t S =≥=令2

2120

43464001

8

16

t t N t t -==--+=

5,20,2t t k >==±

1:1l y x =- 现在算最大面积.

2

8416

3y t t t =

+++ 代公式()()()222

44240E DF y AF CD BE y B AC -++-+-=

max 413

0(1264)160y y S ====

+-+

多元函数极值充分条件

定理10.2(函数取得极值的充分条件) 设函数(,)f x y 在点000(,)P x y 的邻域内存在二阶连续 偏导数,且00(,)0x f x y =,00(,)0y f x y =.记00(,)xx f x y A =, 00(,)xy f x y B =,00(,)yy f x y C =,则有 (1) 当20A C B ->时,00(,)x y 是极值点.且当0A >时,000(,)P x y 为极小值点;当0A <时,000(,)P x y 是极大值点. (2) 当20A C B -<时,000(,)P x y 不是极值点. (3) 当20A C B -=时,不能判定000(,)P x y 是否为极值点,需要另外讨论. 证 (1) 利用二元函数的一阶泰勒公式,因 0000(,)(,)f x h y k f x y ++- 20000001(,)(,)(,)2x y f x y h f x y k h k f x h y k x y q q 轾抖犏=+++++犏抖臌, 01q << 由已知条件,00(,)0x f x y =,00(,)0y f x y =,故 20000001(,)(,)(,)2f x h y k f x y h k f x h y k x y q q 轾抖犏++-=+++犏抖臌 220000001(,)2(,)(,)2 xx xy yy f x h y k h f x h y k hk f x h y k k q q q q q q 轾=++++++++犏臌 利用矩阵记号, 记h r k 骣÷?÷?=÷?÷?÷桫,(,)r h k ¢=,0()A B Hf P B C 骣÷?÷?=÷?÷?÷桫 ,000(,)P r x h y k q q q +=++ 0000 0()()()()()xx xy xy yy f P r f P r Hf P r f P r f P r q q q q q 骣++÷?÷?+=÷?÷++÷?桫, 可改写上式为 00()()f P r f P +-000 0()()1(,)()()2xx xy xy yy f P r f P r h h k k f P r f P r q q q q 骣骣++÷÷??÷÷??=÷÷??÷÷++?÷÷?桫桫01()2r Hf P r r q ¢=+ 01q << (1) 进一步,又有 00()()f P r f P +-00011()[()()]22 r Hf P r r Hf P r Hf P r q ⅱ= ++- (2) 当20A C B ->且0A >时,二次型0()r Hf P r ¢正定,因此对于任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷?麋桫桫,0()0r Hf P r ¢>。特别地,在单位圆{22(,)1}Q x y x y +=上,连续函数0()Q Hf P Q ¢ 取得的最小值0m >。 因此,对任何00h r k 骣骣÷÷??÷÷??= ÷÷??÷÷ ?麋桫桫,我们有 22 00()(())r r r Hf P r r Hf P r m r r ⅱⅱ = ¢ 另一方面,由于(,)f x y 二阶偏导数在点000(,)P x y 连续,对任何:02 m e e <<,总可取0d >,使得0r d ¢<<时,有 00()()xx xx f P f P r q e -+<,00()()xy xy f P f P r q e -+<,00()()yy yy f P f P r q e -+< 从而, 220000[()()][()()]2r Hf P r Hf P r r Hf P r Hf P r r r q q e ⅱ+-W+-? 于是,

分式函数

第 1 页 共 4 页 一次分式函数 班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念 2、 掌握一次分式函数的图像画法及性质 【教学过程】 一、知识梳理: 1. 一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b +=≠≠+的函数称为一次分函数。 2. 一次分函数(0,)cx d y a ad bc ax b +=≠≠+的图象和性质 2.1 图象:其图象如图所示. 2.2定义域: ? ?????-≠a b x x ; 2.3 值域:? ?????≠ a c y y ; 2.4 对称中心:??? ? ?- a c a b ,;

2.5 渐近线方程:b x a =- 和c y a =; 2.6 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减;当ad

初中数学一次函数的最值问题

初中数学一次函数的最值问题 一次函数)0k (b kx y ≠+=在自变量x 允许取值范围(即全体实数)内,它是没有最大或最小值的。但是,如果给定了自变量的某一个取值范围(全体实数的一部分),那么y=kx+b 的最大值或最小值就有可能存在。一般地,有下面的结论: (1)如果m x n ≤≤,那么b kx y +=有最大值或最小值(如图1):当0k >时,b km y +=最大,b kn y +=最小;当0k <时,b kn y +=最大,b km y +=最小。 图1 (2)如果n x ≥,那么b kx y +=有最小值或最大值(如图2):当0k >时,b kn y +=最小;当0k <时,b kn y +=最大。 图2 (3)如果m x ≤,那么b kx y +=有最大值或最小值(如图3)当0k >时,b km y +=最大;当0k <,b km y +=最小。 图3 (4)如果m x n <<,那么b kx y +=既没有最大值也没有最小值。 凡是用一次函数式来表达实际问题,求其最值时,都需要用到边界特性,像物质的运输与供应、生产任务的分配和订货、邮件的投递及空袋的调运等。 下面是一道利用一次函数的最小值的决策问题,供同学们参考: 某送奶公司计划在三栋楼之间建一个奶站,三栋楼在同一条直线上,顺次为A 楼,B 楼,C 楼,其中A 楼与B 楼之间的距离为40m ,B 楼与C 楼之间的距离为60m ,已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站

方案: 方案一:让每天所有取奶的人到奶站的距离总和最小; 方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站距离之和。 (1)若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置? (3)在方案二的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由。 解:(1)设取奶站建在距A 楼xm 处,所有取奶的人到奶站的距离总和为ym.。 ①当40x 0≤≤时, 8800 x 110)x 100(60)x 40(70x 20y +?-=-+-+= ∴当x=40时,y 的最小值为4400。 ②当100x 40≤<时, )x 100(60)40x (70x 20y -+-+= 3200x 30+=, 此时y 的值大于4400。 因此按方案一建奶站,取奶站应建在B 楼处。 (2)设取奶站建在距A 楼xm 处。 ①当40x 0≤≤时, )x 40(70)x 100(60x 20-=-+, 解得03 320x <- =(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x 20-=-+ 解得x=80, 因此按方案二建奶站,取奶站应建在距A 楼80m 处。 (3)设A 楼取奶人数增加a (22a 0≤≤)人, ①当40x 0≤≤时, )x 40(70)x 100(60x )a 20(-=-++, 解得30 a 3200x +-=(舍去)。 ②当100x 40≤<时, )40x (70)x 100(60x )a 20(-=-++, 解得a 1108800x -=,当a 增大时,x 增大。 ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。

附录2(分式函数求值域方法总结)

分式型函数求值域的方法总结 一、形如()ax b f x cx d += + (,0a o b ≠≠)(一次式比一次式)在定义域内求值域。 例1:求21()32 x f x x +=+(2)3x ≠-的值域。 解:242()133()2323()3x f x x x +-=-++=123332 x -+∵1122330,323323x x -≠∴-≠++ ∴其值域为}2/3y y ?≠?? 一般性结论,()ax b f x cx d += + (,0a o b ≠≠)如果定义域为{x /d x c ≠-},则值域}/a y y c ?≠?? 注:本题所用方法即为分离常数法,分离常数之后,分子便不含有x 项,使计算变得简便。 例2:求21()32x f x x += +,()1,2x ∈的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:21()32x f x x +=+=123332x -+,是由1 3y x =-向左平移23,向上平移23得出,通过图像观察,其值域为35,58?? ??? 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

x 分析:此类函数中,当0a <,函数为单调函数,较简单,在此我们不做讨论,当0a >时, 对函数求导,'2()1,a f x x =-'()0f x > 时,(x ∈-∞? +∞),'()0f x <时, (x ∈?,根据函数单调性,我们可以做出此类函数的大致图像,其我们常 其图像 例3:求4()2,((1,4)f x x x x =+ ∈上的值域。 解:将函数整理成2()2()f x x x =+,根据双钩函数的性质,我们可以判断此函数在单调递减,在)+∞1,4出的函数值,我们可以知道在1处取的最大值,所以其值域为) ?? 三、用双钩函数解决形如2()mx n f x ax bx c +=++(0,0m a ≠≠),2()ax bx c f x mx n ++=+(0,0m a ≠≠)在定义内求值域的问题。 例3:已知0t >,则则函数241t t y t -+=的最小值为_______. 解:24114t t y t t t -+==+-,t o >∴由基本不等式地2y ≥-

一次分式函数最值问题

一次分式函数最值问题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

有理函数之积分(部分分式法)

☆3一3 有理函數之積分(部分分式法) ●部分分式法 部分分式法:就是將一個分式化成數個分式的和。其步驟與原則如下 (1)檢查原分式,看分子的次數有沒有比分母低,如果沒有,依照公式 =+被除式餘式 商式除式除式 將原分式化成帶分式的形態 (2)將分母作因式分解,按照多項式的性質得知,得到的因式只可能出現 下面四種可能 ①ax b + ②2 ax bx c ++ ③()n ax b + ④2 ()n ax bx c ++ (3)按照下面的形態將原分式化成數個分式的和 ①所有的因式都是一次不重複的 12 11221122 () ()() () n n n n n A A A P x a x b a x b a x b a x b a x b a x b = ++ + ++++++ ②重複的一次因式 122 ()()() () n n n A A A P x ax b ax b ax b ax b =+++ ++++ ③所有的因式都是二次不重複的 222 111222() ()() () n n n P x a x b x c a x b x c a x b x c ++++++ 1122 22 2 111222n n n n n A x B A x B A x B a x b x c a x b x c a x b x c +++=+++++++++

④重複的二次因式 2()()n P x ax bx c ++112 2222 2() () n n n A x B A x B A x B ax bx c ax bx c ax bx c +++=+++ ++++++ 例題1. 求21 4 x dx x +-? Sol : 24(2)(2 )x x x -=+- 令 2 1422 x A B x x x +=+-+- 【等號兩邊同乘2 4(2)(2)x x x -+-或】 ?1(2)(2) x A x B x +=-++ 令2x =-代入? 41A -=-1 4 A ∴= 令2x =代入?43B =34 B ∴= ∴原式143413 ()ln 2ln 22244 dx x x C x x =+=++-++-? 提示: 公式 11 ln dx ax b C ax b a =+++? 例題2. 求32232 x x dx x x -++?

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

有理分式函数的图象及性质

有理分式函数的图象及性质 【知识要点】 1.函数(0,)ax b y c ad bc cx d += ≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠ 单调区间为(,),(,+)d d c c -∞-- ∞(4)直线,d a x y c c =- = ,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥≤或(3)奇偶性:奇函数(4)单调性:在区间+),(∞上是增函数;在区间0)上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b =+ ><的图象和性质:

【例题精讲】 1.函数1 1+- =x y 的图象是 ( ) A B C D 2.函数23 (1)1 x y x x += <-的反函数是 ( ) 3333.(2) . (2) . (1) .(1)2 2 2 2 x x x x A y x B y x C y x D y x x x x x ++++= <= ≠=<= ≠---- 3.若函数2()x f x x a +=+的图象关于直线y x =对称,则a 的值是 ( ) . 1 . 1 . 2 .2A B C D -- 4.若函数21 ()x f x x a -=+存在反函数,则实数a 的取值范围为 ( ) 11. 1 . 1 . .2 2 A a B a C a D a ≠-≠≠ ≠- 5.不等式14x x > 的解集为 ( ) 1111111. (,0)( ,) . (-,)( ,) . (,0)(0,,+) .(,0)(0, ) 22 2 2 2 2 2A B C D - +∞∞- +∞-∞- 6.已知函数2 ()ax b f x x c += +的图象如图所示,则,,a b c 的大小关系为 ( ) . . . .A a b c B a c b C b a c D b c a >>>>>>>> 7.若正数a 、b 满足,3++=b a ab 则ab 的取值范围是_____ 。 8.函数2 34 x y x = +的值域是 。 9.若函数1 a x y x a -= --的反函数的图象关于点(1,4)-成中心对称,则实数 a = 。 10.函数11 x x e y e -= +的反函数的定义域是 。 11.不等式 2113 x x ->+的解集是 。 12.函数2 2 1 x x y x x -= -+的值域是 。

反比例、分式函数

反比例函数、一次分式函数 班级__________姓名____________ ______年____月____日 1、 理解分式函数的概念 2、 掌握一次分式函数的图像画法及性质 3、 掌握反比例函数的性质 【教学过程】 一、 知识梳理: 2、 一次分函数的定义 我们把形如(0,)cx d y a ad bc ax b +=≠≠+的函数称为一次分函数。 4、 一次分函数(0,)cx d y a ad bc ax b +=≠≠+的图象和性质 图象:其图象如图所示.

第 2 页 共 4 页 定义域:_________________;值域:____________________; 对称中心:___________________;渐近线方程:______________________; 单调性:当ad>bc 时,函数在区间(,)b a -∞-和(,)b a -+∞分别单调递减;当ad

求分式函数值域的几种方法-精品

求分式函数值域的几种方法-精品 2020-12-12 【关键字】情况、方法、条件、领域、问题、难点、良好、沟通、发现、掌握、研究、特点、关键、理想、思想、需要、途径、重点、反映、检验、化解、分析、树立、解决、方向 摘要:在高中数学教学、乃至高中毕业会考题和高考中,经常遇到求分式函数值域的问 题.关于分式函数的值域的求法,是高中数学教学中的一个难点.通过对分式函数的研究总结了求其值域的常见几种方法:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等. 关键词:分式函数 值域 方法. 1 引言 求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决函数最值问题的一个重要工具.关于求函数值域与最值的方法也是多种多样的,归纳起来,常用的方法有:配方法,反函数法,判别式法,单调性法,换元法(根式代换、三角代换等),不等式法,方程法,斜率法等.本文就中学阶段出现的各种类型的分式函数值域问题运用以上初等方法进行分析. 2 求分式函数值域的常见方法 2.1 用配方法求分式函数的值域 如果分式函数变形后可以转化为2 122 a y b a x b x c =+++的形式则我们可以将它的分母配方,用直接法求得函数的值域. 例1 求2 1 231 y x x =-+的值域. 解:2 131248y x = ? ?-- ?? ?, 因为2 31248x ? ?-- ?? ?≥18-, 所以函数的值域为:(],8-∞-∪()0,+∞.

例2 求函数221 x x y x x -=-+的值域. 解:2 1 11 y x x -= +-+, 因为2 2112x x x ? ?-+=- ?? ?34+≥34, 所以34- ≤21 01 x x -<-+, 故函数的值域为1,13?? -???? . 先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“=”的条件. 2.2 利用判别式法求分式函数的值域 我们知道若()200,,ax bx c a a b R ++=≠∈有实根,则24b ac ?=-≥0常常利用这一结论来求分式函数的值域. 例1 求2234 34 x x y x x -+=++的值域. 解:将函数变形为()()()2133440y x y x y -+++-=①, 当1y ≠时①式是一个关于x 的一元二次方程. 因为x 可以是任意实数, 所以?≥0, 即()()()334144y y y +---7507y y =-+-≥0, 解得, 17 ≤ y ≤1或1y <≤7, 又当1y =时,0x =, 故函数的值域为1,77?? ???? . 例2 函数22 21 x bx c y x ++=+的值域为[]1,3,求b ,c 的值. 解:化为()20y x bx y c --+-=, ⑴当2y ≠时()()42x R b y y c ∈??=---≥0, ?()224428y c y c b -++-≥0,

多元函数极值的判定

. .. . 目录 摘要 (1) 关键词 (1) Abstract............................................................................................................. .. (1) Keywords.......................................................................................................... .. (1) 引言 (1) 1定理中用到的定义 (2) 2函数极值的判定定理.............................................................. .. (5) 3多元函数极值判定定理的应用 (7) 参考文献 (8)

多元函数极值的判定 摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值. 关键词:极值;条件极值;偏导数;判定 The judgement of the extremum of the function of many variables Abstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the

function of many variables and the conditional extremum of the function of many variables . Keywords : extremum; conditional ;partial derivative 引言 在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二 元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去. 1 定理中用到的定义 定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点 0(,)()P x y U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点. 定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在 0x 的某一领域有定义,则当极限 0000000(,)(,)(,) lim x xf x y f x x y f x y x x →+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作 00(,) x y f x ??. 定义1.3[]3 设n D R ?为开集,12(,, ,)n P x x x D ∈,00 0012 2(,,,)P x x x D ∈ :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有 000 ()()() lim P P f P f P A P P P P →----, 则称n 元函数12(,, ,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为

分式函数的图像与性质

分式函数的图像与性质 1、分式函数的概念 形如22(,,,,,)ax bx c y a b c d e f R dx ex f ++=∈++的函数称为分式函数。如221x y x x +=+,212x y x +=-,413 x y x +=+等。 2、分式复合函数 形如22[()]()(,,,,,)[()]()a f x bf x c y a b c d e f R d f x ef x f ++=∈++的函数称为分式复合函数。如22112x x y +=-, sin 23sin 3x y x +=-,y =等。 ※ 学习探究 探究任务一:函数(0)b y ax ab x =+≠的图像与性质 问题1:(,,,)ax b y a b c d R cx d += ∈+的图像是怎样的? 例1、画出函数211 x y x -=-的图像,依据函数图像,指出函数的单调区间、值域、对称中心。 【分析】212(1)112111x x y x x x --+===+---,即函数211 x y x -=-的图像可以经由函数1y x =的图像向右平移1个单位,再向上平移2个单位得到。如下表所示:

由此可以画出函数211 x y x -=-的图像,如下: 单调减区间:(,1),(1,)-∞+∞; 值域:(,2)(2,)-∞+∞; 对称中心:(1,2)。 【反思】(,,,)ax b y a b c d R cx d += ∈+的图像绘制需要考虑哪些要素?该函数的单调性由哪些条件决定? 【小结】(,,,)ax b y a b c d R cx d +=∈+的图像的绘制,可以经由反比例函数的图像平移得到,需要借助“分离常数”的处理方法。 分式函数(,,,)ax b y a b c d R cx d += ∈+的图像与性质 (1)定义域:{|}d x x c ≠- ; (2)值域:{|}a y y c ≠; (3)单调性:单调区间为(,),(,+)d d c c -∞--∞; (4)渐近线及对称中心:渐近线为直线,d a x y c c =-=,对称中心为点(,)d a c c -; (5)奇偶性:当0a d ==时为奇函数;

分式函数求值域

分式型函数求值域的方法探讨 在教学中,笔者常常遇到一类函数求值域问题,此类函数是以分式函数形式出现,有一次式比一次式,二次式比一次式,一次式比二次式,二次式比二次,现在对这类问题进行探讨。 一、形如d cx b ax x f ++= )((0,≠≠b o a )(一次式比一次式)在定义域内求值域。 例1:求2 312)(++=x x x f ()32-≠x 的值域。 解:23134)32(3)32(2)(+--++=x x x x f =233132+-x 32233132,02331≠+-∴≠+-x x ∴其值域为}? ??≠32/y y 一般性结论,d cx b ax x f ++=)((0,≠≠b o a )如果定义域为{/x c d x -≠},则值域 }? ??≠c a y y / 例2:求2 312)(++=x x x f ,()2,1∈x 的值域。 分析:由于此类函数图像可以经过反比列函数图像平移得出,所以解决在给定区间内的值域问题,我们可以画出函数图像,求出其值域。 解:2312)(++=x x x f =233132+-x ,是由x y 31 -=向左平移32,向上平移32得出,通过图像观察,其值域为?? ? ??85,53 小结:函数关系式是一次式比一次式的时候,我们发现在此类函数的实质是反比例函数通过平时得出的,因此我们可以作出其图像,去求函数的值域。

二、形如求x a x x f + =)(()0≠a 的值域。 分析:此类函数中,当0a 时, 对函数求导,,1)(2'x a x f -=0)('>x f 时,),(a x -∞∈?+∞,a ),0)(',则则函数241t t y t -+=的最小值为_______. 解:41142-+=+-=t t t t t y ,∴>o t 由基本不等式地2-≥y

高等数学中有理分式定积分解法总结

由十个例题掌握有理分式定积解法 【摘要】 当被积函数为两多项式的商 () () P x Q x 的有理函数时,解法各种各样、不易掌握,在此由易到难将其解法进行整理、总结 【关键词】 有理分式 真分式 假分式 多项式除法 拆项法 凑微分法 定积分 两个多项式的商 () () P x Q x 称为有理函数,又称为有理分式,我们总假定分子多项式()P x 与分母多项式()Q x 之间无公因式,当分子多项式()P x 的次数小与分母多项式()Q x ,称有理式为真分式,否则称为假分式. 1.对于假分式的积分:利用多项式除法,总可将其化为一个多项式与一个真分式之和的形式. 例1.2 422 23 1 x x dx x +++? ()222 2 2131 x x x dx x ++-=+? 解 原式 2 2 2212311 x x dx dx dx x x =+-++??? ()42 2222 2 22 222223321.11 311 31 13111 31 arctan x x dx x x x x dx x x x dx dx x x dx dx x x dx dx dx x x x x C +++-=+=-+? ?=-- ?+?? =-++=--+?????????例 解 原式

3 24arctan 3 x x x C = +-+ 总结:解被积函数为假分式的有理函数时,用多项式出发将其化简为多项式和真分式之和的形式,然后进行积分.对于一些常见函数积分进行记忆,有助于提高解题速度,例如: 2221111x dx dx x x ? ?=- ?++?? ?? 对于真分式 () () P x Q x ,若分母可分解为两个多项式乘积()Q x =()()12Q x Q x ,且()1Q x ,()2Q x 无公因式,则可拆分成两个真分式之和: ()()P x Q x ()()()() 1 212P x P x Q x Q x =+,上述过程称为 把真分式化为两个部分分式之和.若()1Q x 或()2Q x 再分解为两个没有公因式的多项式乘积,则最后有理函数分解式中出现多项式、() () 1k P x x a -、 () () 22 l P x x px q ++等三类函数,则多项 式的积分容易求的 2.先举例,有类型一、类型二、类型三,以此为基础求解较复杂的真分式积分 2.1 类型一 ()m k ax b dx cx +? 例2.1.1 () 3 2 1x dx x -? 322 331 =x x x dx x -+-?解 原式 211 =33xdx dx dx dx x x -+-???? 211 =332x x In x C x -+++ 总结:当被积函数多项式与单项式相乘的形式,将其进行化简,使被积函数为简单幂函数, 然后利用常见积分公式进行运算 2.2 类型二 () k m cx dx ax b +?

多元函数的极值及其求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有 极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 2 43y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2 2 43y x z +=的顶点,曲面在点 )0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

分式函数求最值 班 班

分式函数的图象及性质和值域(4,13班) 耿 在近几年的高考和模拟考试题目中,经常会出现求解模型函数为分式函数值域的题目,而分式函数的值域求法有共同的规律,本节课给大家介绍解法并总结出通法! 【知识要点】 1.函数(0,)ax b y c ad bc cx d +=≠≠+ (1)定义域:{|}d x x c ≠-(2)值域:{|y y ≠单调区间为(,),(,+)d d c c -∞--∞(4)直线,d a x y c c =-=,对称中心为点(,)d a c c - (5)奇偶性:当0a d ==时为奇函数。(62.函数(0,0)b y ax a b x =+ >>的图象和性质: (1)定义域:{|0}x x ≠(2)值域:{|y y y ≥或(3)奇偶性:奇函数(4 )单调性:在区间+),(∞上是增函数;在区间上是减函数(5以y 轴和直线y ax =为渐近线(6)图象:如图所示。 3.函数(0,0)b y ax a b x = + ><的图象和性质: (1)定义域:{|0}x x ≠(2)值域:R (3调性:在区间(0,+)∞和(,0)-∞上是增函数。(5直线y ax =为渐近线(6)图象:如图所示。 (0)b y ax a x =+ <的图象(如图所示)和性质(略):

类型一:( ,, ,) ax b y a b c d R cx d + =∈ + (“一次比一次”型) 备注:本质上一定是反比例函数上下或左右平移而来,所以一定是中学对称函数,可以从图像观察出其值域范围。 例1。函数 1 1 + - = x y的图象是() A B C D 例2、画出函数 21 1 x y x - = - 的图像,依据函数图像,指出函数的单调区间、值域、对称中心。【分析】 212(1)11 2 111 x x y x x x --+ ===+ --- ,即函数 21 1 x y x - = - 的图像可以经由函数 1 y x = 的图像向右平移1个单位,再向上平移2个单位得到。如下表所示: 12 111 2 11 y y y x x x =??→=??→=+ -- 右上 由此可以画出函数 21 1 x y x - = - 的图像,如下: 单调减区间:(,1),(1,) -∞+∞; 值域:(,2)(2,) -∞+∞ U; 对称中心:(1,2)。 x O y x O y 1 2 x O y 1

一次分式函数最值问题

一次分式函数最值问题Last revision on 21 December 2020

拆分函数解析式结构,巧解问题 --------------函数()ax b f x cx d +=+值域(最值)问题的解法 在高中,初学函数之时,我们接触的具体函数并不多。前面我们已经给出了一元二次函数值域(最值)的求法步骤。除此,还有一类()(0)ax b f x c cx d +=≠+函数也很常见,它也是今后解决其他复杂函数值域(最值)问题的基础。此类函数看似生疏,而实际这类函数的图像,就是我们初中学过的反比例函数图像。 此类问题有三种类型,一种是函数式子决定定义域,不额外附加函数定义域;另一种是附加定义域。还有一种是可转化为()(0)ax b f x c cx d += ≠+型的函数,此类随着学习的深入,再行和大家见面。 下面我们以具体实例,说明如何依据函数解析式的结构特征,选择适当的方法步骤解决问题。 【例题1】:求函数21()3 x f x x +=-的值域; 【思路切入】:从函数结构可以得出,函数定义域由分式决定,为 {|3}x x R x ∈≠且,此时,将函数解析式的结构进行拆分变换,不难得出反比例函数结构,如此,得到解法程序: 1、将函数分解为反比例的结构; 2、根据反比例结构特性,或者利用图像,或者利用数式属性得到函数值域。 【解析】:原函数可化为212677()2333 x x f x x x x +-+===+---, 7303 x x ≠≠-且 ,2y ∴≠,函数()f x 值域为{|2}y y R y ∈≠且; 【例题2】:求函数21(),(2,4]1x f x x x -=∈-的值域;

相关文档
相关文档 最新文档