文档库 最新最全的文档下载
当前位置:文档库 › 绿色荧光蛋白

绿色荧光蛋白

绿色荧光蛋白
绿色荧光蛋白

知识介绍

绿色荧光蛋白

马金石

(中国科学院化学研究所 北京 100190)

摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。

由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领

域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。

关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光

Green Fluorescent Protein

Ma Jinshi

(Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190)

Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been

widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression

in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper.

Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence

由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。

化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。

我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。

1 生物发光与水母

先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来

2008 10 25收稿,2008 11 04接受

看,海产多,陆地上见得最多的是萤火虫。

深海中太阳光照射不到,一片黑暗,自身发光是彼此传递信息的唯一来源。深海中缺乏海洋植物,无海藻可吃,要维持生命就靠 大鱼吃小鱼 , 弱肉强食 养活自己。因此自身发光的作用就显得非常重要。

1885~1887年,Dubios首先从磕头虫(Click bettle,Pyrophorus)和蛤(Clam,Pholas dactylus)中发现了对热稳定的荧光素(luciferin)和对热不稳定的荧光素酶(luciferase)。荧光素是一种小分子有机化合物,生物发光过程就是荧光素在荧光酶存在条件下被氧化成处于激发态的氧化荧光素(oxyluciferin),激发态回到基态时就发出光和得到氧化荧光素。

荧光素+O2(或H2O2)荧光酶

[激发态氧化荧光素]*

氧化荧光素+光

不同的发光生物具有不同的荧光素和荧光素酶。生物发光是将化学能转化为光能,可以认为是一种化学发光。陆产和淡水产的发黄绿-橙黄色光,海产的一般发蓝光,由于蓝色光比其他颜色传播得更远,在水中容易被感知,因此是海洋生物发光的首选。

海洋生物中,对腔肠动物(coelenterate)中的软体珊瑚虫海肾或称海三色紫罗兰(Sea Pansy Renilla reniformis)、水母纲的多管水母Aequorea victorin研究得比较多。

水母的整体或分离出的颗粒是发绿光的。科学家首先从多管水

母身上分离出了水母发光蛋白(aequo rin),其分子量为20kDa,它在遇

钙离子以后发射波长460~470nm的蓝光。每只水母平均只含50 g

的这种物质。aequorin是水母荧光素(coelenteragine,结构如右)通过

硫酸酯键或过氧化键紧紧地连到脱辅水母发光蛋白(apoaequorin)上

形成的,它遇到钙离子就发蓝光,因此可以用它作为钙离子的检测试

剂,发光后的产物是脱辅水母发光蛋白,C O2和氧化荧光素(colentera mide),见图式1。与其他发光生物不同的是,aequorin发出的蓝光,通过F rster共振能量转移将能量传给水母体内的GFP,发出波长509nm 的绿光,所以水母在整体发光时发绿光。

图式1 水母发光蛋白的组成和发光过程

Scheme1 Composition and bioluminescence of aequor in

关于发光生物(包括水母)荧光素的发光机理在此不作更详细介绍,有兴趣者可阅笔作者在 生物有机光化学 一书中的介绍和其他文献[1]。

2 绿色荧光蛋白(GFP)

2 1 GFP的结构

下村修等1962年首先从太平洋多管水母(图1)中分离出来了GFP[10]。它是一种天然的纳米粒子(图2),大约8~10nm,呈圆筒形折叠。在晶体中或在离子强度低于100mmol L的溶液中两个原体形成二聚体。二聚对于GFP的激发光谱和能量传递是有作用的。为了有效地传递能量,二聚体和水母发光

蛋白有生理相互作用[11,12]。

图1 维多利亚多管水母

Fig.1 Aequorea victorin

图2 绿色荧光蛋白

Fig.2 G reen fluorescent protein(GFP)图3 GFP 折叠布局[14]Fig.3 The topology of the GFP fold ing pattern [14]

圆筒外边11条链形成结构的外壁。圆筒直径3nm 长4nm 。 螺旋小的片段在圆筒的末端形成筒,一个不规测的 螺旋片段作为一个支架可以提供给发色团,使其坐落在圆筒的中心。 片层状的链彼此牢牢地固定,像支撑桶的棒。结构形成一个密集体,没有开口。这种折叠的模式是 片层状在外, 螺旋在内,是一种新的蛋白类型,命名为 罐(beta can )[11~13]。图3给出了GFP 折叠的布局。从C 末端除去多于7个的氨基酸或者从N 末端除去带蛋氨酸的片段就没荧光了,没荧光的变异就不会表现出整个发色团的吸收光谱特征。最后的7个残基无序,在圆筒的外边弯回来,不构成筒的外壁,它们的存在不是必需的,另外再加一些残基也没关系。至于N 末端,在圆筒内的第一条蛋白链开始于残基10,筒的形成不需要N 末端部分。N 末端片断是在蛋白的一头的帽子的主要成分,是折叠的,可以保护发色团。在N 末端延伸不会破坏蛋白的结构。非常紧密牢固的筒状结构和发色团所处的中心位置,都可以说明发色团被严格保护,性质稳定。荧光不会由于和氧的相互碰撞而被猝灭,使得量子产率降低。由于结构的关系通过系间窜越形成单重态氧而遭光化学损伤的几率也降低了。

GFP 由238个氨基酸组成,分子量约28kDa,组成发色团蛋白的3个残基Ser dehydroTyr Gly(丝 脱氢酪 甘)位于65~67位,经共价键连接而成对羟苯甲基咪唑烷酮,它可以被光激发产生荧光(图式2)。野生水母GFP 的最大吸收 激发波长在395nm,一个小峰在475nm,摩尔消光系数分别为30000和7000mol -1c m -1,发射峰在509nm(图4)[15~20],GFP 晶体的荧光光谱和GFP 水溶液的荧光光谱基本相同。虽然氨基酸序列Ser dehydro Tyr Gly 在不少蛋白中也存在,但不是环化的,酪氨酸也不是被氧化的,更不会发光。说明能形成发色团不是这三肽的固有特性。在GFP 中,发色团的形成经系列自催化过程,既无辅助因子也没有酶介入。首先是Ser65和Gly67快速环化形成咪唑啉 5 酮中间体,然后O 2慢慢氧化Tyr66的

图式2 G FP 发色团的分子结构

S cheme 2 T he molecular structure of GFP chromophore

图4 GFP 的吸收 激发和发射光谱[19]

Fig.4 Abs orption excitation and emission spectra of GFP [19]

侧链,这个过程要几个小时(图式3)。形成发色团需要Gly67,没有任何一个氨基酸可以取代Gly 。反应对热敏感,温度高于30 时产率下降。一旦形成GFP,它就是热稳定的。

图式3 形成发色团的生物合成过程

Scheme 3 Biosynthetic scheme for the chromophore

GFP 的发色团很稳定,用酸、碱、盐酸胍使蛋白变性,一旦恢复中性或除去变性剂,又可以恢复发光性能。

2 2 GFP 发光机制

水母发光蛋白发出的蓝光通过能量转移激发GFP 发出绿光,见图5。水母发光蛋白

Ca 2+脱辅水母发光蛋白+氧化荧光素+蓝光绿色荧光蛋白蓝光绿光

图5 水母发光蛋白由于钙离子的激活,发射蓝光(470nm),被GFP 吸收发射绿光(509nm)[21]

Fig.5 Aequorin is activated by Ca 2+,emitting b lue light(470nm).In vivo an energy trans fer from the excited state of

the coelenteram ide to G FP,emitting the green fluorescence(509nm)

[21]

图6 能量传递过程的F rster 循环Fig.6 F rster cycle within the core of a protein 水母发光蛋白上连接着荧光素,遇钙离子

后发蓝光,经共振能量传递诱发GFP 发光,整

个过程形成F rster 循环,GFP 是第一个知道的

在蛋白核心的F rster 循环的例子[11,12]。GFP 激

发态的动力学用稳态和时间分辨荧光光谱进行

过研究,结果认为,质子转移包含在两个基态和

两个激发态的相互转换中。围绕发色团的极性

相互作用可以适应质子的重排。在循环中根据

Tyr66是处于羟基形式(上左)或它的酚盐形式

(下左),荧光色团分别吸收395nm 或470nm 的

光。酚在激发态比在基态具有更强的酸性,可以认为,荧光色团质子化的激发形式(上右)转换成激发的酚盐(下右),它是仅有的发光物种,可以发射509nm 的光。在这个循环中荧光色团吸收一个光子,失去一个质子,发射一个光子,得到一个质子,回到原来的状态(图6)。关于详细机制的描述,见综述文献[5,9]。

2 3 变异的GFP

1992年,根据GFP 的氨基酸序列,合成了相应的寡核苷酸片段,利用转基因技术,从A .Victoria 的反转录DNA(cDNA)文库中筛选出几个GFP 的阳性克隆,再和质粒结合,利用转基因动物的启动子病原启动子作为表达启动子,和所要研究的蛋白的基因结合,该基因在如大肠杆菌、线虫、酵母、果蝇、昆虫细胞等异源细胞内表达也能发出绿色荧光。沙尔菲等首先拿到GFP 的基因,对实现GFP 的基因表达做出了突出的贡献[19,22]。其后GFP 作为活细胞分子探针,在基因表达调控、转基因动物研究、蛋白在细胞中的功能定位、迁移变化、病原菌侵入活细胞的分子过程等研究方面表现出极大的用途。

如果改变GFP 的基因,就可以得到变异的GFP,发光颜色和强度都会变化,有些基因变异的GFP 的荧光还很强。钱永健等在这一领域做出了突出贡献[23]。图7中表示的是几个变异GFP[蓝FP(BlueFP)、青FP(CyanFP)、绿FP(GreenFP)和黄FP(YellowFP)]的归一激发和发射谱。

发色团周围的环境可以解释GFP 现有变种的荧光和行为。在口袋里的大部分极性的残基在Tyr66边上形成一个氢键的网,在Thr203,Glu222和Ile167的侧链上的原子通过范德华力和Tyr66连接。这些残基的变化对发色团会产生直接的立体效应,如果电荷也有变化,变种就会改变静电环境。在接近发色团的位置的残基发生变异就会直接影响吸收和发射光谱。变异使得波长位移,荧光强度发生变化,当变异体使得激发波长可以移至490nm 附近时,就可以与荧光激活细胞分选器仪(FAC S)和激光扫描共聚焦显微镜的氩离子激光器的激发波长488nm 相匹配,使激发效率大大高于野生GFP 。如Phe64被Leu 取代,Ser65被Thr 取代的EGFP 荧光强度就增加了35倍。下面列举一些变异体的例子[7,13,23~25]:(1)发色团的Tyr66变为Phe,激发谱带会位移,强度大大减弱;(2)Ser65变成The,增加荧光强度,增加的原因可能是降低了由于相互碰撞引起的猝灭。另外甲基使得蛋白内部堆积的更好了;(3)Tyr66变成His,激发

最大值移至紫外区383nm,发射蓝光在448nm;(4)Tyr66到Trp的变异,荧光发生蓝移,和野生的GFP相比,强度减弱;(5)改变Ser65为Thr、Ala、Cys或Leu,可以失去395nm激发峰,而使蓝色激发增强;(6)结合Ser65的变异,同时变异接近发色团的位点,如将Val68变成Leu和变Ser72为Ala,会增加在488nm处激发而产生绿色荧光;(7)变Ser202成Phe和变Thr203成Ile都可以失去在475nm处的激发,而保留395nm 的激发;(8)变Ile167为The,可以使395对475nm强度比反转;(9)Glu222变成Gly,就没有了395nm的激发;(10)变Val163为Arg,可以增加Ser65变为Thr的变异的变化,还可减少温度对功能化GFP表达的影响;(11)His148的变异影响激发在395nm和475nm对pH的依赖性。His的N原子到发色团Tyr66的羟基的距离是0 33nm;(12)变Phe100成Ser,Met154成Thr和变Val164成Ala的变异从结构上讲很难解释。154和164的位置在蛋白的表面。这些变异引起的变化可能是由于改变溶解性和降低聚集。Phe Ser的变异可能使蛋白的核心不稳定,尚不清楚如何使整个系统改进。

图7 变异GFP(BlueFP,CyanFP,GreenFP和YellowFP)的归一激发和发射谱[24]

Fig.7 The corrected excitation and emission spectra of GFP and some of its variants(termed as BlueFP,CyanFP,

G reenFP and YellowFP variants)[24]

2008年的一项最新研究成果是美 俄科学家将GFP变异形成一个红色发色团,虽然应用于细胞标记的源于其他生物体的红色发光蛋白已经有了,但在任何生物体内很容易进行表达且能形成一个红色GFP的意义重大。他们发现经过多次GFP表达细菌的任意变异的循环和大量的筛选,才得到红色的GFP变异。这个很亮的红色荧光变异体的结构如图8所示,读者可以看到,在结构上它多了一个双键,使它发红光和绿光[20]。

图8 红色荧光变异体的三维结构模型(左)和分子结构(右)[20]

Fig.8 Three dimens ional structure of GFP mutant(left)and molecular s tructure(right)[20]

分子生物学和细胞生物学的标记物、基因的表达、蛋白的定位和变化需要用荧光标记。传统的方法

之一,是将纯化的蛋白和荧光染料通过有机合成共价结合,但化学计量和染料的结合部位难以控制,纯化也很麻烦,另外还要想法让结合了染料的蛋白通过细胞膜进入活细胞;方法之二,是用分子生物学的方法产生荧光蛋白,如可以用萤火虫和细菌的荧光素酶基因产生荧光蛋白,但活体内没有荧光素和其他所需要的底物,因此难以在活体内使用。GFP本身和这些变异为GFP在生命科学的各个领域的应用打下了很好的基础,可很方便地实现不同颜色的双标记、多标记。在荧光标记技术上可以说有了飞跃式地发展和革命性的变化[1~7]。

2 4 GFP的特点

利用GFP的优点很多[3,4]:(1)它不仅本身稳定,不需要任何反应底物和辅助因子,且无种属限制,可在多种生物细胞中表达发出稳定荧光,不容易被猝灭。在450~490nm蓝光激发下,发光能保持10min 以上。甲醛固定后发光性质也没有改变;(2)分子量小,对细胞没有毒性。对一系列与GFP的N段或C 段融合的蛋白的研究表明,融合蛋白具有与GFP一样的荧光性质。由于GFP的分子量小,对目的基因的功能无任何影响,因此可以连续传代培养;(3)使用方便,可对活细胞进行观察。用基因枪转化的受体细胞组织的瞬间表达或整株植物都可以用手提紫外灯观察。利用激光扫描共聚焦显微镜,甚至普通显微镜都可以观察到活细胞内蛋白的变化、活动。得到的数据经过处理可以进行三维显示;(4)变异细胞可显著改变荧光特性。通过生物化学的方法将基因做小小的改变,就可以改变GFP中的氨基酸,得到变异GFP。如将65位的Ser变成The的GFP(S65T),吸收光谱发生红移,用蓝光激发后发光强度比原来的增加6倍。另一个突变型GFP(Y66H Y145F),发光蓝移,在紫外光激发下发蓝光。这样就可以利用发光不同的GFP对同一个细胞内的不同蛋白进行标记。变异蛋白的吸收光谱可以从395nm移至480~ 501nm,发射光谱基本不变,而发光强度增加100倍。

2 5 GFP的应用

通常天然的GFP在细胞内几个小时就可以形成发色团,在大肠杆菌中需要1~2小时才发光,而有的突变蛋白8min就能观察到发光,使用起来很方便。通过转基因技术可以把它连接到一种病毒上,然后,随着病毒在宿主体内不断扩散,就可以通过跟踪发出的绿光来观察病毒的扩散途径,或者把它接合到一种蛋白质上并通过显微镜观察它在细胞内部的移动。因此在生命科学的各个领域得到广泛的应用[2]:(1)研究基因表达的调控元件和蛋白定位;(2)研究基因表达的时序控制与空间定位;(3)发育分子机理研究,GFP可以作为活体标记,在原位观察细胞的生长和运动。特别对于身体透明的动物观察起来更方便;(4)筛选药物,由于可以用不同颜色的GFP衍生物标记相关的蛋白来观察单细胞内相互作用的靶蛋白,再分离出目的细胞,从而可用于大规模药物筛选;(5)临床检验,生产出GFP标记的抗原或抗体,就可以免疫诊断;(6)转基因动物和植物的筛选标记,微生物在体内的感染途径,病毒和宿主的相互作用等,如将其插入动物、细菌或细胞的遗传信息中,随着细胞复制,可观察不断长大的癌症肿瘤、细菌的生长等等。

GFP的用途已经扩展到艺术和商务领域,艺术家把GFP插入兔子细胞内创造出了一只荧光的绿色兔子。育种工作者利用GFP来创造特殊的荧光植物、花卉和各种鱼类,GFP已经被移植到大鼠、老鼠、青蛙、有翅昆虫、蠕虫以及不计其数的其它生物体内。

斑马鱼是一种常见的观赏鱼,它身上的条纹通常是黑白相间的。新加坡国立大学的科学家创造出的荧光斑马鱼,在紫外线照射下,能够发出绿光或红光。如果给基因加上一个 开关 ,在遇到重金属、毒素、激素时, 打开 发光蛋白的基因,让斑马鱼立即发出特殊的荧光,就可以用于检测污染的水域。

另一种比较著名的转基因荧光动物是荧光猪,东北农业大学克隆出3头口、蹄及舌头呈现出绿色荧光的转基因小猪。在紫外线的照射下,荧光猪的没有被毛发遮盖的部位发出了荧光。

科学家将给实验植物插入各种 信使基因 。这些基因将在恶劣的火星环境下发出一种绿色的荧光。每种 信使基因 只对一种特定的不利环境因素(干旱、疾病、温度等)作出反应。

现在科学家们还在继续寻找新的荧光蛋白基因,基因表达的蛋白不仅可以发绿光、黄光、橙光,还可以发红光,用于多色荧光标记和荧光共振能量传递。众多的荧光蛋白基因的发现,以及基因表达技术的进步,必会在生命科学的各个领域大放异彩。

参考文献

[1] 王乃兴,马金石,刘扬.生物有机光化学.北京:科学出版社,2008.

[2] 岳莉莉,齐义鹏.生物工程进展,1997,17:40~45.

[3] 何琪杨,张鸿卿,薛绍白.国外医学分子生物学分册,1997,19:279~283.

[4] 赵华,梁婉琪,杨永华等.植物生理学通讯,2003,39:171~178.

[5] 刘祖强,胡敏,齐义鹏.武汉大学学报(自然科学版),2000,46(2):211~214.

[6] 王伟,刘祥林,李久蒂.生命的科学,1999,19(6):275~279.

[7] N C Shaner,G H Patterson,M W Divids on.J.Cell Sci.,2007,120:4247~4260.

[8] R Tsien.Annu.Rev.Biochem.,1998,67:510~544.

[9] M Zi mmer.Che m.Rev.,2002,102:759~781.

[10] O Shi momura,F H J ohns on,Y J Saiga.Cell Comp.Physi ol.,1962,59:223~239.

[11] F Yang,L G Moss,G N Phi lli ps J r.Nature Biotech.,1996,14:1246~1251.

[12] K Brejc,T K Si xma,P A Kitts et https://www.wendangku.net/doc/ae2539090.html,A,1997,94:2306~2311.

[13] M Orm,A B Cubitt,K Kalli o e t al.Science,1996,273:1392~1395.

[14] Che m.&Eng.Ne ws,2008 10 13

[15] M Chalfie.Photoc hem.Photobiol.,1995,62:651~656.

[16] W W Ward,C W Cody,R C Hart et al.Photoche m.Photobiol.,1980,31:611~615.

[17] W W Ward,S H Bokman.Bioc hemis try,1982,21:4535~4540.

[18] L Wang,J Xie,A A Deniz e t al.J Org.Chem.,2003,68:174~176.

[19] M Chalfie,Y Tu,G Euski rchen et al.Science,1994,263:802~805.

[20] A S Mishi n,F V Subac h,I V Yampolsky et al.Biochemistry,2008,47:4666~4673.

[21] S Inouye,F I Tsuji.FEBS Lett.,1994,351:211~214.

[22] D C Prasher,V K Eckenrode,W W Ward et al.,Gene,1992,111:229~233

[23] R Hei m,D C Prasher,R Y https://www.wendangku.net/doc/ae2539090.html,A,1994,91:12501~12504.

[24] http: https://www.wendangku.net/doc/ae2539090.html, teacher NSF

[25] T Ehrig,D J O Kane,F G Prendergas t.FEBS Lett.,1995,367:163~166

马金石

1940年生于天津

1965年毕业于北京大学化学系有机合成专业

现系中国科学院化学研究所研究员

近年来从事超分子化学、生物有机光化学和有机合成研究

E mail:js ma@https://www.wendangku.net/doc/ae2539090.html,

实验绿色荧光蛋白

生物技术实验报告 姓名:张龙龙 学号:2011506066 班级:11级生技02班

前言:绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水 母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP 发射绿色荧光。它产生荧光无需底物或辅因子发色团是其蛋白质一级序列固有的。GFP 由3 个外显子组成,长2.6kb;GFP 是由238 个氨基酸所组成的单体蛋白,相对分子质量为27. 0kMr,其蛋白性质十分稳定,能耐受60℃处理。1996 年GFP 的晶体结构被解出,蛋白质中央是一个圆柱形水桶样结构,长420 nm,宽240 nm,由11 个围绕中心α螺旋的反平行β折叠组成,荧光基团的形成就是从这个螺旋开始的,桶的顶部由 3 个短的垂直片段覆盖,底部由一个短的垂直片段覆盖,对荧光活性很重要的生色团则位于大空腔内。发色团是由其蛋白质内部第65-67位的Ser-Tyr-Gly自身环化和氧化形成. 一.实验目的 1、了解表达用基因克隆引物设计的原理和方法。 2、了解利用原核表达系统表达外源基因的原理、流程及方法。 3、掌握PCR、DNA片段的酶切与连接、细菌转化、阳性克隆筛选、质粒提取、DNA样品的纯化、核酸电泳等分子生物学基本技术。 二.实验原理 基因工程一般包括四个步骤:一是取得符合人们要求的DNA片段,这种DNA片段被称为“目的基因”;二是将目的基因与质粒或病毒DNA连接成重组DNA;三是把重组DNA引入某种细胞;四是把目的基因能表达的受体细胞挑选出来。 本实验根据绿色荧光蛋白(GFP)的基因序列设计一对引物,用该引物将GFP基因从含GFP基因的质粒中扩增出来。再利用双酶切切开表达载体pET23b 和目的基因的两端接头,通过T4连接酶GFP基因与表达载体重组。将含GFP 基因的重组表达载体导入宿主菌BL21(DE3),在IPTG的诱导下,使GFP基因表达 三.实验材料及仪器 1、实验材料:含有GFP的质粒;DNA Marker;DH5α;BL21; 2、仪器:恒温培养箱、超净工作台、恒温摇床、制冰机、台式离心机、涡旋振荡器、冰箱、电泳仪、透射仪、PCR仪、PCR管、刀片、玻璃涂棒、酒精灯、无菌牙签、吸水纸、微型离心管、台式冷冻离心机、塑料手套、1.5ml离心管。 四.实验内容 4.1 质粒的提取、酶切及电泳鉴定: 1)实验试剂:LB培养基;溶液Ⅰ;Tris-HCl(pH=8);溶液Ⅱ;溶液Ⅲ; 酚/氯仿抽提液;无水乙醇;电泳缓冲液;加样缓冲液;GoldView核酸 DNA 染色剂;1%的琼脂糖凝胶;XhoⅠ(10U/μl);NdeⅠ(10U/μl);T 4 lisase。 2)实验步骤: 质粒的提取与鉴定

绿色荧光蛋白的应用及发展前景汇总

学士学位论文文献综述题目绿色荧光蛋白的应用及发展前景 姓名周紫嫣学 号014010110349 专业生物工程 指导教师周小萍职 称教师 中国·武汉二○一二年四月

目录 摘要······················································································ II 关键词 ···················································································· II Abstract ··················································································· II Key words ················································································ II 1 GPF的发现 (1) 2 GFP的结构及发光原理 (1) 2.1 GFP的结构 (1) 2.2 GFP的发光原理 (2) 3 GFP在生物技术中的应用 (2) 3.1 GFP作为报告基因 (2) 3.2 GFP用于研究病毒与宿主的关系 (3) 3.3 GFP用于药物筛选 (3) 3.4 GFP作为生物传感器 (3) 3.5 GFP用于融合抗体 (4) 3.6 GFP用于计算细胞生长速度 (4) 3.7 GFP用于基因表达调控 (4) 4 GFP存在问题及发展前景 (4) 参考文献 (5) 致谢 (5)

绿色荧光蛋白GFP

绿色荧光蛋白GFP综述 生命科学学院 2010级李积锋 1241410007 【摘要】绿色荧光蛋白(GFP) 是一种最先来源于水母的蛋白质,现已成为在生物化学和细胞生物学中研究和开发应用得最广泛的蛋白质之一。其内源荧光基团在受到紫外光或蓝光激发时小峰可高效发射清晰可见的绿光。它已成为一个监测在完整细胞和组织内基因表达和蛋白质定位的理想标记。在生理指示剂、生物传感器、光化学领域以及生产发光纤维等方面展示了广阔前景。 【关键词】水母绿色荧光蛋白生色团变种 1绿色荧光蛋白简介 绿色荧光蛋白是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白,当受到紫外或蓝光激发时,发射绿色荧光。其独特之处在于:它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的来源于水母的氨基酸残基组成。 水母的绿色荧光蛋白很稳定,无种属限制,已在多种动植物细胞中表达成功并产生荧光。GFP的荧光受外界的影响较小,另外GFP的检测十分方便,而对细胞的伤害极小。由于这些优点,GFP已经成为检测体内基因表达及细胞内蛋白质原位定位的极为重要的报告分子。 2绿色荧光蛋白的表达和成熟 GFP的表达水平受多种因素的影响。在植物细胞中表达GFP时,改变一些原GFP 基因的密码子为该植物使用的偏爱密码子,并消除潜在的剪接位点。目前适用于哺乳动物的表达系统不受影响。GFP还可以顺利的在无细胞的体外翻译系统中表达并自发折叠。 用一些小体积的氨基酸残基取代大体积残基可以提高GFP在高温下正确折叠的速度。这些突变位点分布于成熟蛋白质三维结构的各个部位,几乎不能提供如

何帮助GFP折叠和成熟的线索。另外,分子伴侣的存在也有助于GFP的折叠,反过来,这个发现也使GFP成为检测分子伴侣功能的一个好底物,因为GFP可以提供一个连续的、无破坏性的检测蛋白折叠成功的分析方法。 3绿色荧光蛋白的应用 3.1报告基因和细胞标记 GFP作为报告分子和细胞标记最明显的优势是无需底物或辅因子参与;无论在活细胞还是在完整的转基因胚胎和动物中,都能有效地监测基因转移的效率。但在这方面的应用中,最大的缺点就是没有放大作用,它不能象酶一样能通过加工无数的底物分子而将信号放大所以一般都需强启动子以驱动GFP基因在细胞内足量的表达也可用亚细胞分辨率的显微成像系统检测基因产物,靶入的基因被限制于一个细胞器内,GFP的浓度则相对提高了许多倍。 3.2融合标记 应用得最多和最成功的是GFP同宿主蛋白构成融合子来监测宿主蛋白的定位 和最后归宿既有荧光又有宿主蛋白原有的正常功能和定位的融合蛋白效果最佳GFP可融合于宿主蛋白的C端或N端,也可插入其内部迄今为止,GFP已成功地靶入了大部分细胞器中,如质膜、细胞核、内质网、高尔基体、分泌小体、线粒体、液泡和吞噬体等。 3.3 其它 GFP分子生色团的坚固外层保护荧光不被熄灭,但同时也降低了GFP分子的荧光对环境的敏感性通过随机重组和基因定向突变得到了多种对环境敏感的GFP,它们可用作环境指示剂如:对PH敏感GFP的可以测定细胞器内的PH值;通过基因工程,可GFP在中插入磷酸化位点以便用磷酸化控制GFP的荧光。另外,最近报道的利用靶入了水母GFP基因的丝蛋白昆虫病毒,感染蚕的幼虫,用改造的基因取代了蚕的正常基因,当蚕吐丝时这种丝是一种能在黑暗中发绿色荧光的纤维。 4应用特点 GFP这一新型报告基因,在短短几年时间内就得到了众多研究者的青睐,其原因就在于它具有以下优点:

绿色荧光蛋白(GFP)基因的克隆、表达和粗提取之欧阳歌谷创作

绿色荧光蛋白(GFP)基因的克隆、表 达和粗提取 欧阳歌谷(2021.02.01) 南方医科大学 2011预防医学(卫生检验检疫) 摘要 目的:研究绿色荧光蛋白(green fluorescent protein,GFP)基因在大肠杆菌中的基因克隆与重组表达,以及对其进行粗提取。方法:从 E.coli DH5ɑ中用碱提取质粒的方法提取质粒pEGFP-N3和质粒pET-28a。然后用质粒DNA的琼脂糖凝胶电泳对已经提取的产物进行电泳,确定从大肠杆菌中成功提取了质粒。再用限制性内切酶BamHI和NotI对成功提取的质粒进行酶切,并对酶切后的质粒进行琼脂糖凝胶电泳,用以确定已经提取了GFP基因。将含有GFP基因的质粒转化到感受态细胞 E.coli BL-21中,用LB培养基对转化后的E.coli进行扩大培养。用IPTG诱导GFP基因表达可以看到浅绿色菌落。最后对绿色荧光蛋白进行粗提取。结论:本实验有助于学生掌握最基本的分子生物学实验技术,为进一步的实验奠定基础。 关键词:绿色荧光蛋白基因克隆重组表达转化粗提取

目录 1 前言3 2 实验目的4 3 实验设备4 4 材料及试剂5 5 实验操作步骤5 5.1操作流程5 5.2质粒DNA的分离与纯化6 5.2.1 质粒的培养6 5.2.2 质粒的DNA的碱提取法6 5.2.3 质粒DNA的鉴定与纯化7 5.3酶切及连接8 5.3.1 双酶切8 5.3.2 回收酶切产物(采用DNA回收试剂盒进行回收)8 5.3.3 连接9 5.4大肠杆菌感受态细胞的制备及转化9 5.4.1 LB(Luria-Bertain)液体和固体培养基的配制(参考附 录)9

绿色荧光蛋白

绿色荧光蛋白(GFP)原核表达情况分析 姓名:韩吉梅学号:2013107001 专业:作物栽培学与耕作学 摘要:将含有绿色荧光基因的重组载体导入大肠杆菌中,经IPTG诱导产生大量融合蛋白,用SDS-PAGE来确定目的蛋白的可溶性及其分子量。考马斯亮蓝染色4小时再过夜脱色,观察目的蛋白的分子量大约为31.9kD,与预期值相符。 关键字:绿色荧光蛋白SDS-PAGE 原核表达 1 前言 绿色荧光蛋白(green fluorescent protein GFP) 是源于多管水母属等海洋无脊椎动物的发光蛋白,其在蓝光或紫外光下可发出明亮的绿色荧光,可以作为报告基因检测蛋白的特异性表达或进行细胞定位研究。绿色荧光蛋白还在监测目的基因表达、研究细胞内物质代谢及追踪细胞系的分化等方面有着广泛应用。由于GFP检测具有高灵敏度,操作简单,无需使用同位素等优点,近年来广泛用于基因的表达与调控、蛋白质的定位、转移以及相互作用、信号传递、转染与转化,以及细胞的分离与纯化等研究领域[1-2]。采用GFP作为标记基因,可直接收集转化细胞供实验,缩短了筛选时间、减少对细胞活性的影响并可作为活体标记,为研究发育的基因调控和分子机制提供了一种简洁有

效的手段[3-4]。同时也正因为其荧光反应不是酶反应,所以当细胞本身还存在一些可以受蓝光激发和产生绿色荧光的物质,或者GFP表达频率不高的情况下,GFP的检测可能会产生一些假相,不易对荧光进行定量的测定。我们利用基因工程手段在大肠杆菌中高效的表达了GFP,制备出GFP抗体,利用抗原与抗体之间的特异性,在体外对GFP进行检测,可在一定程度上弥补上述GFP检测中可能出现的问题,可以作为一种重要的辅助手段用以提高GFP检测的灵敏度和准确度[5]。 原核表达是将克隆基因插入合适载体后导入大肠杆菌,用于表达大量蛋白质的方法。选用原核表达系统的原因是易于生长和控制、用于细菌培养的材料不及哺乳动物细胞培养的材料昂贵、有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。包涵体是在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,形成被膜包裹的结构,具有水不溶性的特点。本实验主要是通过SDS-PAGE来检测绿色荧光的原核表达情况。 2 材料与方法 2.1 材料 30%分离胶贮液分离胶缓冲液(Tris-HC l缓冲液pH8.9)浓缩胶贮液浓缩胶缓冲液10%SDS 20%过硫酸铵(AP)染色液脱色液1×SDS上样缓冲液1×Tris-甘氨酸电泳缓冲液四甲基乙二

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

绿色荧光蛋白的研究现状与应用

绿色荧光蛋白的研究现状与应用 【摘要】绿色荧光蛋白(GFP)最早发现于水母体中,是一种十分重要的蛋白质。由于其众多的优点,现已在分子生物和细胞生物的研究中应用十分广泛。随着技术的进步和研究的进一步深入,GFP基因也在许多其他方面将发挥着越来越重要的作用。 【关键词】绿色荧光蛋白;生色团;报告基因 2008年10月8日,瑞典皇家科学院诺贝尔奖委员会授予三位科学家:日裔美国科学家下村修(Osamu Shimomura)、美国科学家马丁?查尔非(Martin Chalfie)和美国华裔科学家钱永健(Roger Y.Tsien)诺贝尔化学奖,以表彰他们在绿色荧光蛋白(GFP)研究方面做出的突出贡献。 1 绿色荧光蛋白的理论研究 1.1绿色荧光蛋白的发现 绿色荧光蛋白最早于1962年在维多利亚多管发光水母体内被发现,同时它也存在于水螅和珊瑚等腔肠动物体内。它的内源基团可以在蓝光或紫外光激发下发射绿光,属于生物发光蛋白。绿色荧光蛋白在水母体内之所以能发光,主要依靠水母素的辅助。水母素和GFP之间能发生了能量转移,在钙的刺激下,其能量可转移到GFP,刺激GFP发光。 1.2绿色荧光蛋白的结构和发光原理 1992年Prasher等克隆了GFP基因的cDNA并分析了其一级结构。野生型GFP基因组全长2600bp,由3个外显子和2个内含子组成,编码238个氨基酸,分子量约28kDa。GFP的三维立体结构是由11个β折叠围在四周形成一个中空的圆柱体,1条α折叠贯穿在圆柱体的中间,其中有一段位于65-67位的3个氨基酸残基(Ser-Tyr-Gly)形成的杂环咪唑啉结构组成生色团,位于圆筒中央并附着在α螺旋上。绿色荧光蛋白的发光原理是位于氨基酸第65位的Ser的羧基和67位的Gly的酰基经过亲核反应生成咪唑基,66位的Tyr通过脱氢使芳香团与咪唑基结合,形成对羟基苯甲酸咪唑环酮生色团发出荧光。GFP的最大和次大的激发波长分别是395nm和475nm。溶液中,395nm激发的荧光发射峰在508nm,375nm激发的荧光发射峰在503nm。 1.3绿色荧光蛋白的优点 绿色荧光蛋白的独特之处即它的优点很多,主要有:荧光反应不需要底物和任何其他辅助因子,只需要在蓝光和紫外光下照射,利用荧光显微镜甚至是直接用肉眼就可以观察,易于检测且灵敏度高;荧光性质稳定,对光漂白有较强的耐受性;无毒害,转化后细胞仍可连续传代;通用性好,无种属特异性;分子量小,易于构建载体;不受假阳性干扰,结果真实可靠;可进行活细胞定时定位观察;易于得到突变体。 2 绿色荧光蛋白的应用 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP 应用研究的先河。也正是由于绿色荧光蛋白的许多优点,使得其应用十分广泛。 2.1作为报告基因 GFP通常用作报告基因,可用来检测转基因效率,把GFP基因连接到目的基因的启动子之后,通过测定GFP的荧光强度就可以对该基因的表达水平进行检测。GFP最显著的优势是荧光反应不需要底物和其他辅助因子。有利必有弊,

绿色荧光蛋白

绿色荧光蛋白(GFP)的转化表达及免疫印迹检测 王媛0811142 南开大学生命科学学院生物技术08级 一、摘要: 本实验利用酶切方法检测载体中所含GFP片段后,通过转化的方法把绿色荧光蛋白(GFP)外源基因转入大肠杆菌进行表达,通过免疫印记杂交方法(western blotting)分析GFP在大肠杆菌中的表达,在分离检测的全过程中(转化平板,细胞裂解,电泳,电转移),均可通过紫外灯清晰地检测到颜色亮丽的绿色荧光蛋白。 关键词:绿色荧光蛋白免疫印记杂交 二、引言: 绿色荧光蛋白是一种源于水母(Aequorea Victoria)等海洋无脊椎动物的蛋白,分子量为26.9KD。GFP的开放阅读框架长度约为740bp,编码238个氨基酸残基。GFP表达后折叠环化,在氧存在下,由65~67位的氨基酸残基环化,形成发色基团,无需添加任何酶和底物,在长紫外或蓝光激发下就能发荧光,荧光性质稳定,可保持10分钟。GFP能在不同的细胞内稳定表达,无种属、组织和位置特异性,对细胞无毒性且检测方法简单,将其作为报告基因已广泛应用于细胞生物学和分子生物学领域。 免疫印记又称蛋白质印记,是在凝胶电泳技术和固相免疫测定技术基础上发展起来的一种免疫检测技术。其原理是将膜与胶放在中间,上下加滤纸数层,做成“Sandwich”样的转移单位,并且保证带负电的蛋白质向阳极转移,即膜侧连接阳极或面向阳极,从而将电泳分离的蛋白从凝胶转移至固相载体上。 三、实验材料、仪器及方法: 3.1 实验材料 3.1.1 菌种 E.coli DH5α(pETH)菌株 E.coli DH5α(pETH-GFP)菌株 E.coli BL21菌株 E.coli BL21 (pETH)菌株E.coli BL21 (pETH-GFP))菌株 3.1.2 试剂与材料 LB培养基(自己配置灭菌)Amp(100mg/ml)IPTG(10mg/ml) CaCl2(1M) 50*TAE Acry/Bis 贮存液分离胶缓冲液浓缩胶缓冲液泳动缓冲液(5*)上扬缓冲液(5*)转移缓冲液PBS 1.5% A.P.S 质粒小量提取试剂盒Eco RI限制性内切酶DNA Maker Protein Maker pH试纸 3.1.3 仪器 紫外检测仪、超声波细胞粉碎机、垂直板式电泳系统、半干式蛋白质印迹电转移系统等。3.2 实验方法 1、配置LB培养基,包括液体、固体培养基后灭菌;分别接种pETH-GFP/DH 5α(LA 4ml)一支,pETH/DH 5α(LA 4ml)一支,BL21(LB 4ml)四支 2、按照protocal,利用tiangen质粒提取试剂盒分别提取pETH-GFP/DH 5α、pETH/DH 5α质粒后,按照酶切体系混匀后,至于37℃温箱酶切2h。 3、制备0.8%琼脂糖凝胶,20ml每块,加入适量EB,按照点样顺序点样后,60V恒压电泳,约0.5~1h.后,凝胶自显影拍照(胶图见后面实验结果) 4、取40μlBL21菌液接种于4mlLB,37℃,200rpm,约2.5h,此时OD600=0.3~0.5,利用氯化钙法制备感受态细胞,制备完成至于冰上备用。 5、铺制平板,1块LB,4块LA,冷却凝固后于37℃倒置烘干备用。其中两块LA平板上面涂布IPTG(100μl+100μl水),正置备用。 6、按照阴性对照、空白对照、GFP基因转化表达、GFP基因的转化四组分别进行转化,涂板,37℃倒置过夜培养,紫外灯下观察,呈绿色荧光的单菌落即为转化子。记录各板菌落数

绿色荧光蛋白GFP的研究进展及应用_吴沛桥

■通信作者 E mail :baxiaoge1957@yahoo .com .cn 绿色荧光蛋白GFP 的研究进展及应用 吴沛桥1 ,巴晓革 2■ ,胡海1,赵静 1 (1.南京农业大学生命科学学院,南京210095;2.山东药品食品职业学院,威海264210) 摘要:源于多管水母属等海洋无脊椎动物的绿色荧光蛋白(GFP ),是一种极具应用潜力的标记物,有着 极其广泛的应用前景。我们就GFP 的理化性质、荧光特性、改进和应用研究进行了综述。 关键词:绿色荧光蛋白(GFP );标记物;荧光特性;进展;改进;应用 中图分类号:Q51,503;R318 文献标识码:A 文章编号:1672-6278(2009)01-0083-04 Research Progress and Application of Green Fluorescent Protein WU Peiqiao 1 ,BA Xiaoge 2 ,HU Hai 1 ,ZHAO Jing 1 (1.Nanjing Agricultu ral University ,College of Life Science ,Nanj ing 210095,China ; 2.Shandong Drug and Food V ocatio nal College ,W eihai 264210,China ) A bstract :The green fluorescent protein (GFP )from the jellyfish Aequorea vietoria is a great potential for application of the marker ,has a wide range of applications .The article on the physical and chemical properties ,the fluorescence characteristics ,improvement and application of GFP are reviewed . Key words :Green fluorescent protein ;Marker ;Fluorescence characteristics ;Progress ;Improvement ;Application 1 引 言 发光是海洋无脊椎动物中普遍存在的现象,一些腔肠动物包括水母、水螅和珊瑚等受到机械性干扰时都可发射绿色荧光,而栉水母类发射蓝色荧光。绿色荧光蛋白(Green fluorescent pr otein ,GFP )是一类存在于这些腔肠动物体内的生物发光蛋白。1962年Shimomura 等 [1] 首先从多管水母(Ae quoria victoria ) 中分离出一种分子量为20kD 的称为A equorin 的蛋白。由于水母整体荧光及提取的蛋白质颗粒荧光都呈绿色,因此,人们将这种蛋白命名为绿色荧光蛋白。随后,人们从不同动物体内提取出了各种不同的GFP ,其中研究较为深入的是来自多管水母科(Aequorleidae )和海紫罗兰科(Renillidae )的GFP ,即 Ae quoria GFP 和Renilla GFP 。 2 GFP 的理化性质,荧光特性及其改进 2.1 GFP 的理化性质 从水母体内分离到的GFP 基因,长达2.6kD ,由 3个外显子组成,分别编码69、98和71个氨基酸。GFP 本身是一种酸性,球状,可溶性天然荧光蛋白。A equoria GFP 分子量约27×103 ,一级结构为一个由238个氨基酸残基组成的单链多肽;而Renilla GFP 是分子量为54kD 的同型二聚体。两种GFP 有不同的激发光谱,A equoria GFP 在395nm 具有最高光吸收峰,肩峰为473nm ;Renilla GFP 在498nm 具有强烈的光吸收,肩峰为470nm 。两种GFP 含有相同的 生色团,发射光谱基本相同(λmax =508~509nm )。 GFP 性质极其稳定,易耐受高温处理,甲醛固定和石蜡包埋不影响其荧光性质。其变性需在90℃或pH <4.0或pH >12.0的条件下用6mol L 盐酸胍处理,一旦恢复中性环境,或去除变性剂,虽然变性的蛋白质并不能完全复性,但是复性蛋白质同天然蛋白质对温度、pH 变化的耐受性、抗胰蛋白酶消解的能力是相同的。更重要的是,它们在很大的pH 范围内(pH7~12.2)的吸收、发射光谱也是相同的。Renilla GFP 的稳定性就更为显著。它在上述一系列的变性条件下都很稳定,不易变性。根据Sheen 生物医学工程研究 J ournal of Biomedical Engineering Res earch 2009,28(1):83~86

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

绿色荧光蛋白的研究

绿色荧光蛋白的分子生物学 及其应用 吴琦 四川农业大学 二○○九年十二月

2008年诺贝尔化学奖获得者及其贡献下村修,日本人,名古屋大学理学博士毕业后赴美,先后在美国普林斯顿大学、波士顿大学和伍兹霍尔海洋生物实验所工作。1962 年从一种水母中发现了荧光蛋白,被誉为生物发光研究第一人。钱永健,美籍华裔,现为美国加州大学圣迭戈分校生物化学及化学系教授、美国国家科学院院士、国家医学院院士,2004年沃尔夫医学奖得主。其主要贡献在于利用水母发出绿光的化学物来追查实验室内进行的生物反应,他被认为是这方面公认的先驱。马丁·沙尔菲,美国哥伦比亚大学生物学教授,他获奖的主要贡献在于向人们展示了绿色荧光蛋白作为发光的遗传标签的作用,这一技术被广泛运用于生理学和医学等领域 。

1962年Shimomure 等首先从维多利亚水母(Aequorea Victoria )中分离出了GFP (Green-Fluorescent Protein) 。绿色荧光蛋白的研究史 维多利亚水母 (Aequorea Victoria)

A test tube containing a sample of a cyan (greenish-blue) fluorescent protein from a sea anemone illuminated by ultra-violet light from below.

绿色荧光蛋白的研究史 1992年Prasher等克隆了GFP基因的cDNA,并分析了GFP 的一级结构。

绿色荧光蛋白的研究史 1994年Chalfie等首次在大肠杆菌细胞和线虫中表达了GFP,开创了GFP应用研究的先河。

绿色荧光蛋白

知识介绍 绿色荧光蛋白 马金石 (中国科学院化学研究所 北京 100190) 摘 要 绿色荧光蛋白是46多年前从多管水母体内发现的,它可以在蓝光或紫外光激发下发射绿光。 由于它稳定的结构和光物理性质,又易于在细胞内表达,近些年作为标记物已经被广泛地应用于生命科学领 域。本文简要介绍了水母发光蛋白与绿色荧光蛋白的关系、绿色荧光蛋白的结构、发色团的形成、发光机制、变异体以及它的特点和应用。 关键词 绿色荧光蛋白 基因表达 结构 发色团 生物发光 Green Fluorescent Protein Ma Jinshi (Insti tute of Chemistry,Chinese Academy of Sciences,Beijing100190) Abstract Green fluorescent protein(GFP)was discovered46years ago from A equorea V ictoria,it can emit green light under exci tation of blue or UV irradiation.GFP as a marker for gene expression and localization of gene products has been widely used in life sciences for the past years because of its stable structure and photophysical property and easy expression in cells.A brief introduction on the relationship of aequorin and GFP,GFP structure,chromophore formation,and the mechanism of bioluminescence,also the variants,characteri stic and application are presented in this paper. Keywords Green fluorescent protein,Gene expression,Structure,Chromophore,Bioluminescence 由于对绿色荧光蛋白(Green Fluorescent Protein,GFP)的发现、机理研究以及利用做出的特殊贡献,瑞典皇家科学院诺贝尔奖委员会将2008年度诺贝尔化学奖授予美国科学家下村修(Osamu Shimomura)、马丁 沙尔菲(Martin Chalfie)和美籍华裔化学家钱永健(Roger Y Tsien)。 化学奖评选委员会主席贡纳尔 冯 海伊内和评委莫恩斯 艾伦贝里对绿色荧光蛋白的评价指出,这是当代生物学的重要工具,借助这一 指路标 ,科学家们已经研究出监控脑神经细胞生长过程的方法,这在以前是不可能实现的。他们说,下村修1962年在北美西海岸的水母中首次发现了一种在紫外线下发出绿色荧光的蛋白质,即GFP。随后,马丁 沙尔菲在利用GFP做生物示踪分子方面做出了贡献;钱永健让科学界更全面地理解GFP的发光机理,对GFP作了改造,通过改变其氨基酸排序合成出了能吸收、发射不同颜色(蓝色、蓝绿色和黄色)光的荧光蛋白,为同时追踪多种生物细胞变化的研究奠定了基础。 我国在生命科学领域已经广泛应用GFP,对它的介绍和应用的文章也有很多[1~6]。国外的综述可阅读钱永健和Zimmer的文章,最新的是Shaner等的文章[7~9]。化学界对它的了解可能较少,在此做个简单介绍。 1 生物发光与水母 先从生物发光说起,生物体的发光现象称为生物发光。植物界有细菌植物门的发光细菌和真菌植物门的发光蘑菇,动物界从原生动物到脊椎动物都有,脊椎动物中主要是鱼类。从发光生物的分布来 2008 10 25收稿,2008 11 04接受

试验设计——绿色荧光蛋白的表达

分子生物学实验设计报告 绿色荧光蛋白的克隆表达 ——闵霞(2013141241165)李彩云(2013141241095) 一、引言 基因标记技术是近年来发展起来的分子生物学技术。荧光蛋白基因在标记基因方面由于具有独特的优点而广受科学家们的关注。荧光蛋白是海洋生物体内的一类发光蛋白,分为绿色荧光蛋白、蓝色荧光蛋白、黄色荧光蛋白和红色荧光蛋白。 绿色荧光蛋白(green fluorescent protein,GFP)是一类存在于包括水母、水螅和珊瑚等腔肠动物体内的生物发光蛋白。当受到紫外或蓝光激发时,GFP发射绿色荧光。它产生荧光无需底物或辅因子,发色团是其蛋白质一级序列固有的。 基因克隆技术包括把来自不同物的基因同有自主复制能力的载体DNA在体外人工连接,构建成新的重组DNA,然后送入受体生物中去表达,从而产生遗传物质和状态的转移和重新组合。采用重组DNA技术,将不同来源的DNA分子在体外进行特异性切割,重新连接,组装成一个新的杂合DNA 分子。在此基础上,这个杂合分子能够在一定的宿主细胞中进行扩增,形成大量的子代分子。 本次实验中,分子克隆质粒载体所携带的外源基因是EGFP绿色荧光蛋白,实验的最终目的是将EGFP基因插入表达载体pET-28a中,组成重组子,并导入到大肠杆菌细胞中并诱导其表达,培养出绿色的大肠杆菌菌落。为此,我们要利用碱变性法将大肠杆菌中的质粒DNA提取出来,并通过Bam HI和NotⅠ两种酶的双酶切作用,从而获得目的外源基因片段EGFP和表达载体pET-28a质粒的DNA,然后通过连接酶连接后形成重组子,并通过氯化钙法导入大肠杆菌感受态细胞中,让其在含有Amp和IPTG的LB琼脂平板上生长繁殖,最后通过观察大肠杆菌能否在含有Amp和IPTG的LB平板上长出绿色的菌落,来判断EGFP基因工程菌的构建效果 二、主要路线: 1、质粒DNA的提取 2、琼脂糖凝胶电泳检测质粒DNA 3、酶切连接重组质粒 4、重组质粒的扩增 5、菌落PCR法鉴定阳性克隆 6、目的荧光蛋白基因的表达 1、质粒DNA的提取 实验原理: 1)质粒是一种染色体外的遗传因子,大小在1kb~200kb之间,是具有双链闭合环状结构的DNA分子,主要发现于细菌、放线菌和真菌细胞中。质粒具有自主复制能力,,能使子代保持他们恒定的复制数,可表达它携带的遗传信息。它可以独立游离于细胞质内,也可以整合到细菌染色体中,它离开宿主细胞就不能复制,而它控制的许多生物学功能也是对宿主细胞

绿色荧光蛋白研究进展

动物医学进展,2008,29(1):56259 Progress in Veterinary Medicine 绿色荧光蛋白研究进展 王晓丽1,邵卫星2,单 虎13 (1.青岛农业大学动物科技学院,山东青岛266109;2.中国动物卫生与流行病学中心,山东青岛266071) 摘 要:来源于海洋多管水母属的绿色荧光蛋白(GFP)基因是目前惟一在细胞内稳定表达,在蓝光或长紫外光的激发下,不需要任何反应底物及其他辅助因子就能发出绿色荧光的新型报告基因,无种属、组织和位置特异性,且能监测基因表达、信号转导、共转染、蛋白运输与定位,以及细胞系谱分类等。GFP对细胞无毒性,且检测方法简单,结果真实可靠,目前在多种原核和真核生物研究中得到广泛的应用。文章就GFP 的生化特性、GFP的改进及其在分子生物学研究中的应用潜力进行简要阐述。 关键词:绿色荧光蛋白;选择标记基因;应用 中图分类号:Q516文献标识码:A文章编号:100725038(2008)0120056204 随着生命科学和医学研究的不断深入,研究者们迫切需要一种能够在活体中表达且易于检测的报告基因,目前常用的报告基因主要有分泌型胎盘磷酸酯酶(secreted embryo alkaline p ho sp hatase, SEA P)基因、β2半乳糖苷酶(galactosidase)基因、β2葡糖苷酸酶(glucosidase,GU S)基因、萤火虫荧光素酶(luciferase,L UC)基因等[1],但这些基因的检测方法并不理想,它们都需要底物和辅助因子,因而在活体中的应用受到限制。一种全新的非酶性报告基因———绿色荧光蛋白(green fluorescent p rotein, GFP)引起了人们的关注[2],该蛋白能够自身催化形成发色结构并在蓝光激发下发出绿色荧光。作为报告基因,GFP是能在活细胞中表达的发光蛋白;作为荧光标记分子,GFP既具有敏感的标记检测率, 收稿日期:2007210218 作者简介:王晓丽(1981-),女,山东威海人,硕士研究生,主要从事预防兽医学研究。3通讯作者 [19] Mammina C,Pontello M,Dal Vecchio A,et al.Identigica2 tion of Shigella sonnei biotype g isolates carrying class2inte2 grons in Italy(200122003)[J].J Clin Mirobiol,2005,43: 246722470.[20] Mammina C,Aloe A,Romani C,et al.Shigella sonnei bio2 type G carrying class2integrons in sout hern Italy:a retro2 spective typing study by pulsed gield gel electrophoresis[J]. BMC Infect Dis,2006,(6):117. Advance in G ene C assett2Integron System of B acteria WEI Shu2yong1,WU Deng2hong1,L IU Shi2dong2 (1.V eterinary Depart ment,S out hwestern Uni versit y Rongchang Cam pus,Chongqing,402460,China; 2.Forest Enterp rise of L inyi,L inyi,S handong,276000,Chi na) Abstract:Gene cassette is a minor2movable deoxyribonucleic acid(DNA)molecule,and usually is t ran2 scribed wit h a integro n.Integron is a conservative and movable transposon2like DNA element,which can make a horizontal transmission of drug resistance gene and has a great cont ribution on t he diff usion of drug resistance gene among bacteria and t he production of multidrug resistance.Since t he concept of gene cas2 sette and integro was p roduced,new types of integron was detected continuously.At p resent,t hree types of integron were generally accepted and named typeⅠ,typeⅡand typeⅢ.TypeⅠintegron has a more de2 tection and deep research.This article summarizesd t he origin,st ruct ure,categorization,expression,bio2 logical detection and t he relationship between bacterial drug resistance and t he recent advance in gene cas2 sett2integron system of bacteria. K ey w ords:gene cassette;integro;drug resistance

相关文档