文档库 最新最全的文档下载
当前位置:文档库 › 等离子燃烧技术

等离子燃烧技术

等离子燃烧技术
等离子燃烧技术

等离子燃烧技术在泰州电厂2*1000MW超超临界燃煤机组中的应用

泰州电厂蒋德勇摘要:本文介绍了等离子燃烧技术的原理,结合泰州电厂选用的设备,从运行的角度介绍了等离子燃烧技术在煤粉锅炉中的应用情况。

关键词:等离子燃煤机组超临界

等离子燃烧技术是采用空气等离子体作为点火源,在电弧的作用下,将一定压力的空气电离为高温等离子体,从而点燃煤粉的一种新型燃烧技术。它的出现改变了大型煤粉锅炉点火和稳燃依靠重油、轻油或天然气等燃料来实现的历史。近年来能源紧张,燃油价格不断上涨,为等离子燃烧技术的应用提供了契机。泰州电厂作为国内首批1000MW机组,成功的将等离子燃烧技术应用到实践,实现了锅炉的无油或少油启动,既节约了电厂的成本,又改善了电厂的生态环境。

等离子燃烧器利用直流电流在介质气压0.01~0.03MPa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K 的梯度极大的局部高温区。煤粉颗粒通过该等离子“火核”受到高温作用,并在 10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反应是在气相中进行,使混合物组分的粒级发生了变化。因而使煤粉的燃烧速度加快,也有助于煤粉的燃烧。为保护等离子装置本身,需用水冷却阴、阳极和线圈。所需冷却水采用闭式循环水,水压在0.6MPa 左右,经等离子冷却水泵加压后进入等离子装置。

等离子点火装置的结构和组成及原理如图1~2所示:

图 1 等离子装置的结构和组成

图2 等离子点火原理图

泰州电厂选用的是哈锅在日本三菱公司技术支持下设计制造的超超临界变压运行直流锅炉。本锅炉采用三菱重工(MHI)开发的低NOx的改进型PM主燃烧器和MACT燃烧技术。燃烧器采用无分隔墙的八角双火焰中心切圆燃烧大风箱结构。全摆动式燃烧器,共设六层三菱低NOx PM一次风喷口,三层油风室,一层燃烬风室、十层辅助风室和四层附加风室(Addition Air)。等离子燃烧器布置在A层燃烧器中,在锅炉点火及稳燃期间,可以替代油枪起到点火和稳燃的作用。在锅炉正常运行中,具有主燃烧器的功能,其出力及燃烧工况与其他层燃烧器一致。由于安装等离子燃烧器,在燃烧器摆角改变时,A层燃烧器不参与摆动,但这并不影响燃烧器摆角对过热器及再热器及过热器的调节。

燃烧器的结构布置如图3所示:

图3 燃烧器的结构布置图

泰州电厂采用沈阳重型机械集团有限责任公司生产的MPS280型中速磨煤机,带有出口分离器,可以在运行中调节煤粉细度。磨的启动采用带载启动,即在启动前先往磨煤机内铺入3~5T的煤,以防止磨煤机在启动过程中产生振动。直接用等离子助燃就牵涉到冷炉时,制粉系统如何启动的问题。为等离子燃烧器提供满足细度、浓度和湿度要求的煤粉是锅炉实现冷态等离子点火启动的必要条件。对于中速磨制粉系统,必须解决锅炉冷态启动时煤粉的来源,可以利用A层一次风煤粉主燃烧器对应的磨煤机制备等离子点火所需的煤粉。我厂

燃用烟煤,启动磨煤机的热风温度不高,当燃用校核煤种和设计煤种时,磨煤机入口热风温度为153~220℃即可满足磨煤机启动条件,采用蒸汽加热器加热冷风方式来实现冷炉制粉。加热蒸汽采用辅助蒸汽,压力为:0.7MPa,温度300℃。蒸汽加热器的汽侧和风侧的系统如图4所示:

图4 蒸汽加热器的汽侧和风侧的系统图

下面结合我厂调试及商业运行一段时间以来的情况,谈谈等离子点火技术在电站锅炉中的应用:新建锅炉为了除去过热器及再热器内部的杂物,往往采用吹管的方法,吹管期间,锅炉处于低负荷运行阶段,因此就需要助燃及稳燃。若采用油助燃,将使得吹管成本大幅提高,泰州电厂#1炉吹管及调试期间,由于A磨煤机出现一些问题导致等离子不能投运,采用的是油枪助燃,#2炉则是直接用等离子助燃,没有使用油枪,实现吹管及调试的零用油。从调试及后来的起、停机过程中等离子的应用情况来看,直接用等离子点火,煤粉能较好着

火,足以证明等离子能够起到点火源的作用,稳燃的效果也毋庸置疑。等离子装置的拉弧应在通一次风的情况下进行,虽然厂家建议可以在不通风的情况下拉弧10分钟,但从泰州电厂的运行结果来看,不提倡这种做法。等离子运行期间,虽然也出现过一些问题,但解决问题的同时,我们也积累了宝贵的运行经验。

既然采用等离子作为点火源,就必然考虑到等离子点火的安全性,防止锅炉的灭火放炮。对A磨而言,存在两种运行模式,等离子模式及正常模式。正常模式就是采用油枪作为点火源的情况,灭火保护采用的是传统的逻辑。对于等离子模式而言,等离子有自身的火检,此时判断等离子的拉弧情况,作为点火允许,需要八个角同时拉弧成功才允许点火。在等离子模式下运行时,考虑到等离子阴、阳极的寿命等原因引起的灭弧现象,当出现一个角断弧时,为了保证锅炉的安全性,需要对应角的油枪自动投入,若30s内对应角油枪未能投入,则跳闸A磨,锅炉MFT,若出现两个角同时断弧,则直接MFT。从运行的情况来看,出现第一种情况时,锅炉着火还是比较稳定的,没有出现燃烧不稳的情况,可以认为这样的设计是成功的。调试阶段曾经出现过在500MW以上出现一个角断弧,油枪联投的情况,考虑到此时已经不需要稳燃,故后来在等离子的逻辑中与上了负荷条件,即负荷在350MW以上时,等离子断弧不影响A磨的运行。这样的逻辑不仅要求等离子装置具有很高的可靠性,对油枪的性能也提出了要求。在采用等离子点火时,油枪的良好备用是安全稳定的保证。从安全角度出发,等离子模式与正常模式之间的切换时机最好选择在两台磨运行以后,为防止断弧时,油枪不能及时投运而造成灭火采用的在A磨启动后几分中进行切换存在一定的风险。

等离子装置的可靠性是等离子成功运用的关键,但在如何使等离子的效果发挥的更加出色,也需要我们在运行中不断的摸索。从目前的运行情况来看,我们采用的是控制煤种、煤量、煤粉细度、一次风量,出口温度等方式。在加仓时,尽量给A仓加热量高,挥发份高的煤种,以利于释放出更多的挥发份;A磨等离子拉弧时,提高分离器转速以达到提高煤粉细度的目的,以利于煤粉的燃烧;出口粉温应在一次风温允许的条件下尽可能的高,以利于煤粉的着火。煤量应严格控制在燃烧器在等离子状态下的出力范围,防止燃烧器因为过负荷而造成结焦。风煤比控制到1:0.45左右,可以参考出口风速,一般在19m/s左右,风速不宜太高。在冷炉阶段,由启动锅炉供辅汽的情况下,由于启动锅炉主汽压力与温度的限制,使得磨煤机一次风速与出口温度总是存在矛盾。在这两者之间,个人认为应该把风速放在第一位。为防止制粉系统启动后,磨出口粉温的快速下降,需要进行充分暖磨,控制好暖磨风量及暖磨时间。

泰州电厂的磨煤机需要带载启动,虽然在冷炉启动时不会出现爆燃的现象,但若在热炉

状态下,这一点就需要格外关注。由于磨煤机在存煤很比较少的情况下运行时,会产生振动,因此磨煤机停运后,是走不空的,在热炉条件下,若铺煤过多,或者在没有对磨充分吹扫的情况下开始等离子拉弧的工作,就可能引起爆燃。一直以来,我们很少遇到热炉启动,因此,对这一点也没有引起重视。即使在锅炉温度比较高的时候,由于锅炉容量比较大,而点火时风量又较大,故在局部爆燃的情况下,对炉膛负压的影响也比较小。直到在后来的一次起机过程中,由于点火风量较小(900多吨),在等离子拉弧后,虽然等离子运行情况良好,但是锅炉MFT,首触为风量低。从DCS历史记录中可以清楚的看出,在拉弧的瞬间,炉膛出现正压,虽然不大,但由于当时送风压力也就只有2KPa, 因此出现了上面的一目。这次事故虽然没有酿成严重的后果,但给我们的教训是深刻的。从之后的起机经验来看,控制点火风量在1400T/H左右是安全的,对A磨的吹扫也不容忽视。在热炉点火的情况下,烟气温度足够加热一次风达到等离子拉弧的条件,因此可以不用辅汽加热一次风。在冷炉情况下,当空预器出口一次风温达到暖风器出口风温差不多水平时,可以将热一次风倒到正常的方式,将暖风器停运。此时,暖风器没有冷却介质通过,若没有及时隔离,就存在爆炸的可能性。(某电厂就出现过此类事故。)

鉴于等离子装置固定安装在A层燃烧器中,因此在正常运行时,由于炉膛温度及风温较高,仍应加强对等离子装置壁温的监视,防止烧损及结焦。当A磨运行时,等离子装置有煤粉通过,可以得到充分的冷却,不会造成超温,从运行的情况来看,前后壁温最高值在270°C左右。若发现壁温升高,则需要注意等离子套筒的监视,很有可能是结焦的结果。当A磨停运时,没有煤粉及一次风通过,将使等离子壁温迅速升高,若A磨没有检修工作,可以采取磨煤机通风的措施来降低等离子壁温;若A磨有检修工作,不能通一次风,此时可以通过开大A层燃烧器二次风的措施来减缓壁温的升高。尽管如此等离子壁温的最高值还是达到480°C左右(800MW),随着负荷的上升,壁温将上升。目前壁温的控制值在560°C。因此在等离子装置完好的情况下,可以运行。

考虑到等离子装置配套系统的检修工作,在等离子不拉弧的情况下,等离子载体风机,等离子冷却水泵均可以停运,但等离子火检风机不能停运,否则会烧毁等离子火检。在冬季,还应注意冷却水系统的防冻工作。

以上是本人一些浅显的认识,由于1000MW机组在国内刚刚起步,没有成熟的运行经验,对等离子点火也缺乏深刻的认识,在以后的运行中肯定还会遇到其他问题。我相信只要在生产过程中不断摸索,必然会使等离子燃烧技术更好的运用在电站锅炉中。

等离子体实验

一、等离子体-物质第四态 如果给物质施加显著的高温或通过加速电子、加速离子等给物质加上能量,中性的物质就会被离解成电子、离子和自由基。不断地从外部施加能量,物质被离解成阴、阳荷电粒子的状态称为等离子体。将物质的状态按从低能到高能的顺序排列依次为固体、液体、气体,等离子体。 等离子体是宇宙中物质存在的一种状态,称为物质第四态.其中含有电子、离子、激发态粒子、亚稳态粒子、光子等,既有导电性又可用磁场控制,而且能为化学反应提供丰富的活性粒子,总体上是电中性的导电气体。自然界中,等离子体普遍存在,地球大气外层的电离层、太阳日冕、恒星内部、稀薄的星云和星际气体都存在等离子体,地球上自然存在的等离子体虽不多见,但在宇宙中却是物质存在的主要形式,估计宇宙中有99%以上的物质以等离子体的形式存在。 二、等离子体的产生 获得等离子体的方法和途径是多种多样的。通常把在电场作用下气体被击穿而导电的物理现象称之为气体放电,如此产生的电离气体叫做气体放电等离子体。人们对气体放电的研究己有相当长的一段历史,目前世界各国有很多研究者正从各个方面研究和发展气体放电。现代气体放电的研究大致可分为两个发展时期:第一个时期是1930年左右,人们从理论上集中对各种气体放电的性质进行了分析和研究,Langmuir首次提出等离子体(plasma)的概念[1] Tonks L, Langmuir I. Oscillations in ionized gases. Phys.Rev., 1929, 33

(2):195-210,即由电子、离子和中性原子组成的宏观上保持电中性的电离物质;第二个时期是1950年左右,人们对受控热核反应的研究。近年来,随着微电子、激光、材料的合成与改性等高新技术的发展,气体放电得到了越来越广泛的研究与应用。运用气体放电获得等离子体是一种直接、有效的方法。迄今为止,人们在实验室和生产实践中产生了各式各样的气体放电形式。按工作气压的不同,气体放电可分为低气压放电和高气压放电;按激励电场频率的不同,可分为直流放电、低频放电、高频放电和微波放电;按放电形式及形成机制可分为汤森放电、辉光放电、弧光放电、电晕放电和介质阻挡放电等。 在等离子体发展的不同阶段和从不同的研究角度,它的分类方法也不同,下面介绍按温度分类的等离子体[2](见下表)

双等离子体装置及其放电状态_马锦秀

双等离子体装置及其放电状态* 马锦秀,李阳芳,李经菊,俞昌旋,曹径祥,汪海,闻一之 中国科学技术大学近代物理系,合肥 230027 摘要 本文描述双等离子体装置的结构特点、真空运行状态、放电特性、以及等离子体状态的初步实验结果,并讨论在物理实验上的应用。 一、引言 双等离子体装置在实验室等离子体物理中有很多应用,由于两个真空室既可以单独工作,又可以对接工作,并且两真空室之间可以电绝缘使两边保持不同电位,因此具有很大的灵活性,在这样的装置上可以进行很多等离子体物理实验,如等离子体集体波动,带电尘埃与等离子体相互作用等等,鉴于这些原因,我们建立了双等离子体装置。 二、双等离子体装置整体结构 此装置由左右两个对称的真空室组成,其实物照片由图1所示,图2为结构示意图。装置由左右双筒、左右法栏盖、内部滚筒、动密封、抽气系统、真空检 图1、双等离子体装置实物照片 ______________________________________________________________________ * 本工作得到国家自然科学基金(批准号10175064,40244006)、教育部优秀青年教师资助计划和高等学校博士学科点专项科研基金的资助。

图2、双等离子体装置结构示意图 测系统、以及冷却系统组成。 左右双筒为对称结构,是Φ500×500的不锈钢筒,筒的两端是Φ610×δ21.5的法栏,在筒的上侧(或下侧)开有Φ150的刀口法栏,用于接抽气系统和通过动密封接电机。在筒的前后两侧对称开有Φ100的观察窗口,用10mm厚的石英玻璃做法栏盖,用来观察真空室内部情况。在筒的上下侧有Φ16接口各两个,用于插入规管,在其中一侧的中间有进气口,接WTK30-1型针阀。在Φ100观察窗的两侧各有一个Φ10的接口,用来插探针或其他元件接入口。在整个筒的外侧均匀布满Φ20×20的钕铁硼永久磁铁,磁铁的表面磁场约为5400 Gauss,其排列为环绕筒的方向是NS交替分布,一周排36个,沿筒的轴向排列是相同极性,每排13个,磁铁固定在磁铁盒内。磁场能透入真空室,在筒的内表面许多磁偶极结构,用来表面约束等离子体。此外在筒的外侧两排磁铁中间布有若干道Φ8的冷却水管(铜管),用来冷却筒的表面,使磁铁不因温度升高而磁性降低。在左右筒之间用聚四氟乙烯或不锈钢法栏相连,其上可安装栅网,此法栏用绝缘螺栓固定,可以保证左右两筒电绝缘。除刀口法栏外,其余法栏和开口处均用氟橡胶密封。  左法栏盖为Φ610×δ21.5的不锈钢,在其中心和两边125mm处开有三个Φ50的法栏,既可用作小观察窗,亦可用作其他部件(如探针)的接入口,法栏盖上安装9个电极,每3个一组,均匀分布在3个不同的圆周上,用来做阴极灯丝和阳极铜网的支撑和接口。在电极周围开有矩形和环形水槽,用来冷却电极和法栏盖。此外在垂直方向的直径上下两处对称开Φ10的探针口,用来按放探针。右法栏盖与左法栏盖的结构一样,只是少了电极和冷却水槽。 内部滚筒是Φ472×414的不锈钢卷筒,固定在右真空室内,其结构分内外卷

旋流式燃烧器的工作原理

燃烧器的作用 燃烧器是煤粉炉燃烧设备的主要组成部分,它的作用是把煤粉和燃烧所需的空气送入炉膛,合理地组织煤粉气流,并良好地混合,促使燃料迅速而稳定地着火和燃烧。 一个良好的燃烧器应具备的确良基本条件是: (1)一二次风出口截面应保证适当的一二次风风速比; (2)出口气流有足够的扰动性,使气流能很好地混合; (3)煤粉气流的扩散角,能在一定范围内任意调节,以适应煤种变化的需要;(4)沿出口截面煤粉的分布应均匀; (5)结构应简单、紧凑,通风阻力应小。 旋流式燃烧器 1、旋流式燃烧器的工作原理 旋流式燃烧器由圆形喷口组成,燃烧器中装有各种型式的旋流发生器(简称旋流器)。煤粉气流或热空气通过旋流器时,发生旋转,从喷口射出后即形成旋转射流。利用旋转射流,能形成有利于着火的高温烟气回流区,并使气流强烈混合。 射出喷口后在气流中心形成回流区,这个回流区叫内回流区。内回流区卷吸炉内的高温烟气来加热煤粉气流,当煤粉气流拥有了一定热量并达到着火温度后就开始着火,火焰从内回流区的内边缘向外传播。与此同时,在旋转气流的外围也形成回流区,这个回流区叫外回流区。外回流区也卷吸高温烟气来加热空气和

煤粉气流。由于二次风也形成旋转气流,二次风与一次风的混合比较强烈,使燃烧过程连续进行,不断发展,直至燃尽。 2、旋流式燃烧器的类型 按照旋流器的结构,旋流式燃烧器可分为蜗壳式、轴向叶片式、切向叶片式三大类,常用的有以下几种: 单蜗壳式 蜗壳式 双蜗壳式 三蜗壳式 旋流式燃烧器轴向叶轮式 单调风 双调风 3、双调风旋流式燃烧器 双调风旋流式燃烧器是在单调风燃烧器的基础上发展出来的。双调风式燃烧器是把燃烧器的二次风通道分为两部分,一部分二次风进入燃烧器的内环形通 图4-20 双调风旋流燃烧器

等离子点火装置说明书

等离子点火装置说明书 目录

1.概述 大型工业煤粉锅炉的点火和稳燃传统上都是采用燃烧重油或天然气等稀有燃料来实现的,近年来,随着世界性的能源紧张,原油价格不断上涨,火力发电燃油愈来愈受到限制。因此锅炉点火和稳燃用油被作为一项重要的指标来考核,为了减少重油(天然气)的耗量,传统的做法是提高煤粉的磨细度,提高风粉混合物和二次风的预热温度,采用预燃室燃烧器,选用小油枪点火等等。但是,这些都是传统意义上的节油技术,节油效果是有限的,还不能达到最终不用油的目的,若要进一步减少燃油到最终不用油,必须采用与传统上完全不同的全新工艺,这种工艺应既可保证提高燃烧过程的经济性,又可以改善火电厂的生态条件——DLZ-200型等离子煤粉点火装置,采用直流空气等离子体作为点火源,可点燃挥发分较低的贫煤,实现锅炉的冷态启动而不用一滴油,是未来火力发电厂点火和稳燃的首选设备。采用等离子点火装置,点火和稳燃与传统的燃油相比有以下几大优点: ●经济:采用等离子点火运行和技术维护费仅是使用重油点火时费用的,15%~20%,对于新建电厂,可以节约上千万的初投资和试运行费用; ●环保:由于点火时不燃用油品,电除尘装置可以在点火初期投入,因此,减少了点火初期排放大量烟尘对环境的污染;另外,电厂采用单一燃料后,减少了油品的运输和储存环节,亦改善了电厂的环境; ●高效:等离子体内含有大量化学活性的粒子,如原子(C、H、0)、原子团(OH、H2、O2)、离子(O-2、H-2、OH-、O-、H-)和电子等,可加速热化学转换,促进燃料完全燃烧; ●简单:电厂可以单一燃料运行,简化了系统,简化了运行方式; ●安全:取消炉前燃油系统,也自然避免了经常由于燃油系统造成的各种事故。 结论: 既然采用等离子技术点燃煤粉锅炉经济、高效、简单、安全、环保,有百利而无一害,当然是燃煤锅炉的首选设备,是目前燃油系统改造的最佳替代产品。

等离子体点火安全注意事项通用版

管理制度编号:YTO-FS-PD820 等离子体点火安全注意事项通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

等离子体点火安全注意事项通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1.总则 1.1 为了保证等离子体点火工程设备现场安全、高效地施工、调试、运行和维护,避免人身伤害及设备损坏,编制该安全注意事项; 1.2 该注意事项适合于等离子体点火工程的组织人员、安装人员、现场调试人员和电厂的运行及维护人员; 1.3 烟台龙源电力技术股份有限公司(以下简称烟台龙源公司)对于等离子体点火工程必须指定现场负责人,负责与甲方、调试单位等有关方面联系及协调工作,建议甲方指定专人负责相关工作的协调; 1.4 现场工作必须遵守有关的安全规程及两票三制等保证安全的制度和要求; 1.5 烟台龙源公司必须提出等离子体点火工程调试大纲,呈请甲方审查并纳入整个机组的调试大纲; 1.6 在锅炉启动过程中,必须在确保安全的条件下实现等离子体点火,特别是防止发生炉膛爆破、二次燃烧等设备损坏和人员伤害事故。

等离子体特性实验

实验简介 等离子体是由大量的带电粒子组成的非束缚态体系,是继固体、液体、气体之后物质的第四种聚集状态。等离子体有别于其他物态的主要特点是其中长程的电磁相互作用起支配作用,等离子体中粒子与电磁场耦合会产生丰富的集体现象。气体放电是产生等离子体的一种常见形式,在低温等离子体材料表面改性、刻蚀、化学气相沉积、等离子体发光等方面有广泛的应用,同时也是实验室等离子体物态特性研究的重要对象。气体放电实现的方式可以千差万别,但产生放电的基本过程是利用外(电)场加速电子使之碰撞中性原子(分子)来电离气体。 本实验的目的是领会气体放电的基本原理和过程;掌握常规的静电探针诊断方法;了解等离子体中离子声波的激发、传播、阻尼等基本特性。 实验原理 ?气体放电原理与实验装置 ●利用电子对中性气体的轰击使气体电离是产生等离子体的一种 常见的方法。在直流放电情况下,当灯丝(钨、鉭)达到足够高 的温度时,许多电子会克服表面脱出功而被发射出来。这些初始 电子在外加的直流电场中加速,获得足够的能量与中性气体碰撞 并使之电离。室温下大多数常用气体的第一电离能在20eV左右, 故而施加于阴极(灯丝)与阳极(本实验中为真空室壁)之间的 电位差必须高于20V。遭轰击而被剥离的电子称为次级电子,与 初始电子相比,次级电子的能量较低。等离子体中大多数电子是 次级电子。电子碰撞电离截面在能量为几十电子伏左右达到最大, 通常在阴极与阳极之间施加30~100V电压就可以形成稳定的直流 放电。 ●有几种因素限制了电极间产生的放电电流的大小。首先是阴极的 电子发射能力的限制,阴极表面的发射电流密度由理查森 (Richardson)定律给出:

等离子点火煤粉燃烧器技术原理及其应用研究

文章编号:10072290X(2005)0120019204 等离子点火煤粉燃烧器技术原理及其应用研究 孙超凡1,王公林2,刘庆鑫1,于文波2,叶向前1,陈东2,郭斌1 (1.广东省电力试验研究所,广东广州510600; 2.烟台龙源电力技术有限公司,山东烟台264006) 摘 要:介绍了广东省电力系统第1台等离子点火稳燃装置的基本原理和设计特点,探讨了该系统的燃烧机理和控制逻辑的修改,介绍了该装置的调试应用情况。调试结果表明:等离子点火装置具有节省启动调试阶段燃油的能力,运行和维护费用低廉,结构简单,操作控制方便,有较大的推广应用价值。 关键词:锅炉;燃烧器;等离子点火 中图分类号:T K223123文献标识码:B T echnical principle and application research of plasma ignition burner SUN Chao2fan1,W AN G Gong2lin2,L IU Qing2xin1,YU Wen2bo2,YE Xiang2qian1,C HEN Dong2,GUO Bin1 (11Gua ngdong Power Test&Research Institute,Gua ngzhou510600,China;21Ya ntai L ongyua n Power Technology Co., L t d.,Ya ntai,Sha ndong264006,China) Abstract:This p ap er int roduces t he basic p rinciple and design characteristics of t he plasma ignition bur ner which is t he first one built in Gua ngdong Province.Its combustion mecha nism and logical cont rol syste m are discussed wit h t he commissioning test of t he plasma ignition system described.The commissioning results show t hat t he plasma ignition bur ner is wort h sp reading due t o its characteristics of oil saving,low operation a nd mainte nance costs,simple st ructure a nd easy manip ulation. K ey w ords:boiler;bur ner;plasma ignition 广州恒运热电厂C厂6号锅炉系东方锅炉厂生产的D G980/1317220型自然循环汽包炉。该炉采用四角切圆布置,有A,B,C,D,E共5层燃烧器,2层油枪。配中速辊式直吹磨煤机。设计煤种为山西大同烟煤,其实际燃煤特性(收到基):固定碳4413%,灰分1915%,全水分9%,挥发分2512%,低位发热量21635kJ/kg。为节省启动调试阶段的燃油及运行、调峰阶段的助燃用油,根据6号锅炉的实际情况,该厂采用了烟台龙源电力技术有限公司生产的DL Z2200型等离子点火煤粉燃烧器,将A层(对应C磨煤机)4只主燃烧器改造为等离子点火煤粉燃烧器,与一次风管成60°夹角。该装置在广东地区推广应用尚属首次,本文主要对其工作原理和调试应用进行研究。1 工作原理 111 点火机理 DL Z2200型等离子点火煤粉燃烧器利用直流电流(大于200A)在介质气压大于011M Pa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体。该等离子体在燃烧器的一次燃烧筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在10ms内迅速释放出挥发物,使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反应是在气向中进行,使混合物组分的粒级发生了变化,因而使煤粉的燃烧速度加快,也有助于煤粉的燃烧,这样就大大地减少煤粉燃烧所需要的引燃能量。 等离子体内含有大量化学活性粒子,如原子(C,H和O)、原子团(O H,H2和O2)、离子(O2-,H2-,O H-,O-和H+)和电子等,可加  第18卷第1期广东电力V ol118No11 2005年1月GUANG DONG E LECTRIC POWER J a n12005  收稿日期:2004205231

等离子体火炬生活垃圾焚烧处理方案教学文案

等离子体火炬生活垃圾焚烧处理方案 概述: 随着我国经济的快速发展,城市规模日益扩大,人口大量增加,生活垃圾产生量逐年增长。 生活垃圾处理不当将污染土壤、地下水,传播疾病,对环境造成巨大危害。 采用现代化技术,提高管理水平,以投资省、运行费用低、运行稳定、安全可靠为设计宗旨。 妥善处理生活垃圾焚烧处理过程中产生的烟气、废渣,避免二次污染。 焚烧装置概况: 近年来永研环保科技陆续推出等离子火炬工业固废焚烧、等离子火炬医疗废弃物焚烧、等离子火炬生活垃圾焚烧装置等一系列产品。 等离子火炬生活垃圾焚烧装置由等离子火炬、等离子火炬电源、进出料装置、焚烧炉、搅拌输送、烟气处理系统组合而成。 焚烧装置工作机理: 生活垃圾、固态、半固态、液态废弃物由料仓进入等离子火炬焚烧炉,等离子焚烧炉内置等离子火炬、搅拌、输送装置。 生活垃圾在搅拌输送装置作用下,翻滚前移,离子体火炬上千度穿透力极强的等离子焰,在短时间内将生活垃圾焚烧殆尽。 汞、锌、铅、锡、铜等重金属氧化并随烟气排出,经活性炭喷射装置,喷射活性炭富集后再行处理。 等离子火炬焚烧炉内烟气与生活垃圾逆向运动,助燃空气由等离子火炬焚烧炉布气机构输入炉体。 生活垃圾由干燥区进入焚烧区时含水率已经显著降低,高温烟气自焚烧区经干燥区与生活垃圾相向运动。 焚烧炉工作于微负压状态,设有泄爆装置保证设备安全。 烟气净化:SNCR+半干法+干法+活性炭喷射+袋式除尘。 焚烧装置技术参数: 等离子体火炬: 工作温度:800--1000℃用户设定,自动控制。 输出功率:100--400kW 自动调节输出功率,精确控制焚烧炉温度。 使用寿命:连续工作5000小时 焚烧炉: 等离子火炬焚烧炉(微负压)日处理50吨--200吨 送料装置:以处理量决定进料频度。 温度传感器:实时采集温度数据。 泄压装置保证设备安全 控制器:DCS控制

尘埃粒子及物理特性

尘埃粒子及物理特性
尘埃粒子及物理特性 (一) 、尘埃等离子体简介 等离子体和尘埃是已知宇宙空间中最为常见的两种成分,而二者的共存以及相可 作用则开辟了一个近年来非常新兴的研究领域一一尘埃等离子体。它不仅出现在等离 子体物理领域,而且也常出现在空间物理、电波传播,半导体科学、材料科学等领加 工、磁约束核聚变、空间探测等领域的应用有着重要的参考价值,同时它能够揭示等 离子体物理学以及其它相关领域中新的物理现象。b5E2RGbCAP 1.什么是尘埃等离子体 尘埃等离子体是指在等离子体巾包含了大量带电的固态弥散微粒子。尘埃粒子厂 泛存在于自然界,尤其是在宇宙空间中,例如星际空间、太阳系、地球电离层以及暂 星尾和行星环中都存在着各种尺度和密度的尘埃粒子。另外,尘埃粒子也存在于
p1EanqFDPw
实验室等离子体和工业加工等离子体中。 2.尘埃粒子的来源 在太阳系中,人们已探测到各种形态和来源的尘埃粒子,如空间物质的碎片、陨 石微粒、月球的抛射物、人类对空间的”污染”物等。在星际云中,尘埃粒子可以是 电介质,如冰、硅粒等,也可能是类金属的物质,如石墨、磁铁矿等物质。尘埃颗粒 也普遍存在与实验室装置中,在电子学实验室中,尘埃粒子来源于电极、电介质的器 壁,或来源于充入的气体等。一般尘埃粒了的可能质量范围大约为 10-2~10-15g ,
1/5

尺寸可能范围从几十纳米到几十微米不等。在等离子体中,这些尘埃粒子凶与电子、 离子碰撞而携带电荷,携带 等离子体问题的研究比较复杂。DXDiTa9E3d 3.尘埃等离子体的特性 (1) .尘埃粒子具有大的荷电特性 由于球形尘埃粒子的半径 a 远小于等离子体的德拜长度 b ,因此尘埃小球具有的 电势将使其上的电子的温度与等离子体中的电子温度同量级,即 e ~kTe ,(k 为玻 尔兹曼常数) 。对应于这个电势,尘埃粒子上的电荷通常有很大的数值,一般尘埃粒 子带有 102—106 电子电荷。“浸”在等离子体中的尘埃粒子会受到屏蔽作用,即由等 离子体中的带电粒子形成尘埃粒子的屏蔽云.RTCrpUDGiT (2).尘埃离子荷电量的可变性 当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度时,可不考虑尘埃粒子间 的相互作用,即孤立地研究单个尘埃粒子。尘埃颗粒所带的电荷是可变的,它由 尘埃粒子本身的特性(前一时刻的带电情况) 和它周围等离子体的性质(如电子离子充 电电流、二次电子发射、光电发射、尘埃粒子的速度等) 有关,同时等离子体中电荷 密度扰动、温度扰动,以及一些外界环境条件的改变都可以改变尘埃粒子的带电情 况。例如有以下几种方式:a 、等离子体中电子、离子的熟运动将形成对尘埃粒子的 充电电流。一个带负电的尘埃粒子,它将排斥电子,吸引离子,引起电子电流减小, 使离子电流增大。b 、当碰撞尘埃粒子的初次电子具有足够大的能量时,可能引起尘 埃粒子的二次电子发射,从而导致尘埃粒子电势升高。C 、在尘埃粒子处于强的紫外 辐射的环境时(如太阳系中的一些情况) ,尘埃粒子可辐射光电子,相当于存在一个正 的充电电流。d 、尘埃粒子表面的化学反应,激光或射频电磁场的作用等都可能影响 尘埃粒子的荷电状况。当尘埃粒子间的平均距离 d 远大于等离子体的德拜长度这个条
2/5

等离子燃烧器工作原理

等离子无油点火 一、技术原理 等离子无油点火装置,是完全取代油系统,实现 电站燃煤锅炉真正的无油启动和稳燃的高科技点火 装置。该装置解决了阴极和阳极的寿命短、小功率电 弧直接点燃煤粉、煤粉点火燃烧器结焦及烧损、等离 子体电弧不稳、大功率特种电源长时间运行可靠性差 等多项技术关键。 其基本原理是以大功率电弧直接点燃煤粉。该点 火装置利用直流电流(大于200 A)在介质气压大于 0.01 MPa的条件下通过阴极和阳极接触引弧,并在 强磁场下获得稳定功率的直流空气等离子体。其连续 可调功率范围为50~150 kW,中心温度可达6 000 ℃。 一次风粉送入等离子点火煤粉燃烧器经浓淡分离后, 使浓相煤粉进入等离子火炬中心区,在约0.1 s内迅 速着火,并为淡相煤粉提供高温热源,使淡相煤粉也 迅速着火,最终形成稳定的燃烧火炬。燃烧器壁面采 用气膜冷却技术,可冷却燃烧器壁面,防烧损、防结 渣. 等离子点火装置 二、技术优势结构图

1、经济实用:运行费和技术维护费仅是使用油点火 时费用的20%左右。电源的效率较通常使用的可控硅 或硅整流高10%,达到了省电的目地,降低了运行成 本。 2、适用广泛:在燃烧器的设计上采用了分级燃烧、 气膜冷却及浓淡分离等技术,使其适应煤种范围宽, 对煤粉细度无特殊要求,且出力大、不结焦、耐磨损、 使用寿命长; 3、结构紧凑:不需要外设隔离变压器、电抗器、限 流电阻等大功率设备和器件,设备投入少,占地面积 小。另外,由于等离子发生器采用了最新型的结构, 不仅电极的寿命大幅延长,体积和重量也比较小,便 于现场的安装与维护。 4、调节范围大:等离子发生器的输出功率调节范围 是30~150KW,可以适用于不同的煤种和调峰的需 要。 5、安全环保:由于点火时不燃用油品,电除尘装置 可以在点火初期投入,因此,减少了点火初期排放大 量烟尘对环境的污染;另外,采用单一燃料后,减少 了油品的运输和储存环节,亦改善了厂区环境。 等离子燃烧器工作原理 2.1点火机理. 本装置利用直流电流280-350A在介质气压0.01-0.03MPA的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子火核受到高温作用,并在0.001秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧. 2.2工作原理 本发生器为磁稳空气载体等离子发生器,它由线圈,阴极,阳极组成.阴阳极由高导电率,高导热率,抗氧化的金属材料制成;并采用水冷方式以承受电弧高温冲击.其拉弧原理:首先设定输出电流,当阴极前进与阳极接触后,整个系统具有抗短路的能力且电流恒定不变,当阴极缓缓离开阳极时,电弧在线圈磁力的作用下,被电离为高温等离子体,其能量密度高达105W/CM.为点燃不同的煤粉创造了良好的条件 2.3燃烧机理 根据高温等离子体有限能量不可能同无限的煤粉量及风速相匹配的原设计了多级

等离子体点火安全注意事项标准范本

管理制度编号:LX-FS-A54025 等离子体点火安全注意事项标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

等离子体点火安全注意事项标准范 本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1.总则 1.1 为了保证等离子体点火工程设备现场安全、高效地施工、调试、运行和维护,避免人身伤害及设备损坏,编制该安全注意事项; 1.2 该注意事项适合于等离子体点火工程的组织人员、安装人员、现场调试人员和电厂的运行及维护人员; 1.3 烟台龙源电力技术股份有限公司(以下简称烟台龙源公司)对于等离子体点火工程必须指定现场负责人,负责与甲方、调试单位等有关方面联系及协

调工作,建议甲方指定专人负责相关工作的协调; 1.4 现场工作必须遵守有关的安全规程及两票三制等保证安全的制度和要求; 1.5 烟台龙源公司必须提出等离子体点火工程调试大纲,呈请甲方审查并纳入整个机组的调试大纲; 1.6 在锅炉启动过程中,必须在确保安全的条件下实现等离子体点火,特别是防止发生炉膛爆破、二次燃烧等设备损坏和人员伤害事故。 2.人身安全 2.1 维护等离子体发生器(更换阴极、阳极等)时应首先停止等离子体发生器,切断整流柜控制电源,并切换至就地控制位置,拔出交流侧保险,并挂"有人工作,禁止操作"警示牌,确认等离子体发生器无电后方可开始工作; 2.2 在就地观察炉膛燃烧情况时身体应站在观火

第二章 等离子点火煤粉燃烧器工作原理

第二章等离子点火煤粉燃烧器工作原理 2.1 点火机理 本装置利用直流电流(280---350A)在介质气压0.01-0.03Mpa的条件下接触引弧,并在强磁场下获得稳定功率的直流空气等离子体,该等离子体在燃烧器的一次燃烧筒中形成T>5000K的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受到高温作用,并在10-3秒内迅速释放出挥发物,并使煤粉颗粒破裂粉碎,从而迅速燃烧。由于反应是在气相中进行,使混合物组分的粒级发生了变化。因而使煤粉的燃烧速度加快,也有助于加速煤粉的燃烧,这样就大大地减少促使煤粉燃烧所需要的引燃能量E(E等=1/6E油)等离子体内含有大量化学活性的粒子,如原子(C、H、O)、原子团(OH、H2、O2)、离子(O2-、H2-、OH-、O-、H+)和电子等,可加速热化学转换,促进燃料完全燃烧,除此之外,等离子体对于煤粉的作用,可比通常情况下提高20% ~80%的挥发份,即等离子体有再造挥发份的效应,这对于点燃低挥发份煤粉强化燃烧有特别的意义。 变,当阴极缓缓离开阳极时,电弧在线圈磁力的作用下拉出喷管外部。一定压力的空气在电

图2.2 燃烧机理图

采用提前补氧强化燃烧措施,提前补氧的原因在于提高该区的热焓进而提高喷管的初速达到加大火焰长度提高燃尽度的目的,所采用的气膜冷却技术亦达到了避免结焦的目的(1998年获专利)。 第四区为燃尽区,疏松碳的燃尽率,决定于火焰的长度。随烟气的温升燃尽率逐渐加大。 第三章 等离子点火燃烧系统组成 3.1 等离子点火燃烧系统 3.1.1 燃烧系统 等离子燃烧器是借助等离子发生器的电弧来点燃煤粉的煤粉燃烧器,与以往的煤粉燃烧器相比,等离子燃烧器在煤粉进入燃烧器的初始阶段就用等离子弧将煤粉点燃,并将火焰在燃烧器内逐级放大,属内燃型燃烧器,可在炉膛内无火焰状态下直接点燃煤粉,从而实现锅炉的无油启动和无油低负荷稳燃。 如图3.1所示,等离子发生器产生稳定功率的直流空气等离子体,该等离子体在燃烧器的中心筒中形成T >5000K 的梯度极大的局部高温区,煤粉颗粒通过该等离子“火核”受 II III 等 离 子 发 生 器 一次风 I 气膜风 等离子弧 图3.1 等离子燃烧器示意图 风箱 中心筒 撞击式浓淡块

等离子体刻蚀..

等离子体刻蚀 ●集成电路的发展 1958年:第一个锗集成电路 1961年:集成8个元件 目前:集成20亿个元件 对比: 第一台计算机(EN IAC,1946),18000 只电子管, 重达30 吨, 占 地180 平方米, 耗电150 千瓦。奔II芯片:7.5百万个晶体管 ●集成电路发展的基本规律 穆尔法则:硅集成电路单位面积上的晶体管数,每18个月翻一番,特征尺寸下降一半。 集成度随时间的增长: 特征长度随时间的下降:

集成电路制造与等离子体刻蚀 集成电路本质:微小晶体管,MOS场效应管的集成 微小晶体管,MOS场的制作:硅片上微结构制作----槽、孔早期工艺:化学液体腐蚀----湿法工艺 5微米以上 缺点: (a)腐蚀性残液----->降低器件稳定性、寿命 (b)各向同性 (c)耗水量大(why) (d)环境污染

随着特征尺寸的下降,湿法工艺不能满足要求,寻求新的工艺----> 等离子体干法刻蚀,在1969引入半导体加工,在70年代开始广泛应用。

等离子体刻蚀过程、原理: 4

刻蚀三个阶段 (1) 刻蚀物质的吸附、反应 (2) 挥发性产物的形成; (3) 产物的脱附, 氯等离子体刻蚀硅反应过程 Cl2→Cl+Cl Si(表面)+2Cl→SiCl2 SiCl2+ 2Cl→SiC l4(why) CF4等离子体刻蚀SiO2反应过程 离子轰击作用 三种主要作用 (1)化学增强物理溅射(Chemical en2hanced physical sputtering) 例如,含氟的等离子体在硅表面形成的SiF x 基与元素 Si 相比,其键合能比较低,因而在离子轰击时具有较高 的溅射几率, (2)晶格损伤诱导化学反应(damage - induced chemical reaction) 离子轰击产生的晶格损伤使基片表面与气体物质的反 应速率增大 (3)化学溅射(chemical sputtering) 活性离子轰击引起一种化学反应,使其先形成弱束缚的 分子,然后从表面脱附。 其他作用 ?加速反应物的脱附 ---> 提高刻蚀反应速度 ?控制附加沉积物---> 提高刻蚀的各向异性

表面等离子体

LSPs和PSPs的区别 局域表面等离子体(Localized Surface plasmons, LSPs)和传播型表面等离子体(Propagating surface plasmons. PSPs)同属于表面等离子体(SPs)1。 表面等离子体(SP)是存在于金属与电介质截面的自由电子的集体振荡2。SPR是由于入射激光在特殊波长处局域电磁场增强,物理机制是表面增强拉曼散射(Surface-enhanced Raman scattering, SERS)和尖端增强拉曼散射(Tip-enhanced Raman scattering, TERS)。 入射光的电场分量诱导球形金属粒子的表面等离子体共振的原理分析(即图1的解读)3。 当入射光照射到贵金属(如:金、银,见脚注1、3)时,在纳米颗粒表面形成一种振荡电场,纳米颗粒中的自由传导电子在振荡电场的激发下集体振荡,入射光子频率与金属纳米颗粒的自由电子云的集体振动频率相等(入射光波长一定)时,发生局域表面等离子体共振(LSPR)。亦可解释为入射光在球形颗粒表面产生电场分量,电子的共谐振荡与激发其的振荡电场频率相同时发生共振,诱导产生LSPR 3。 对于LSPs而言,颗粒内外近场区域的场强会被极大增强,原因是:纳米粒子的尺寸远小于入射光波长,使得电子被束缚在纳米粒子周围局域振荡,导致场强增大。 对于PSPs(部分文章中称为:SPPs4,金属与介质界面上的电子集体激发振荡的传播型表面电磁波),其表面等离子激元(即TM模式)如上图所示。在SPPs 的情况下,沿金属介质界面,等离子体在X和Y方向上传播,在Z方向上衰减, 1等离激元学[M]. 东南大学出版社, 2014. 2 Zhang Z, Xu P, Yang X, et al. Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2016, 27:100-112. 3邵先坤, 郝勇敢, 刘同宣,等. 基于表面等离子体共振效应的Ag(Au)/半导体纳米复合光催化剂的研究进展[J]. 化工进展, 2016, 35(1):131-137. 4王五松, 张利伟, 张冶文. 表面等离子波导及应用[J]. 中国光学, 2015(3):329-339.

等离子体点火安全注意事项

等离子体点火安全注意事项 1.总则 1.1为了保证等离子体点火工程设备现场安全、高效地施工、调试、运行和维护,避免人身伤害及设备损坏,编制该安全注意事项; 1.2该注意事项适合于等离子体点火工程的组织人员、安装人员、现场调试人员和电厂的运行及维护人员; 1.3烟台龙源电力技术股份有限公司(以下简称烟台龙源公司)对于等离子体点火工程必须指定现场负责人,负责与甲方、调试单位等有关方面联系及协调工作,建议甲方指定专人负责相关工作的协调; 1.4现场工作必须遵守有关的安全规程及两票三制等保证安全的制度和要求; 1.5烟台龙源公司必须提出等离子体点火工程调试大纲,呈请甲方审查并纳入整个机组的调试大纲; 1.6在锅炉启动过程中,必须在确保安全的条件下实现等离子体点火,特别是防止发生炉膛爆破、二次燃烧等设备损坏和人员伤害事故。 2.人身安全 2.1维护等离子体发生器(更换阴极、阳极等)时应首先停止等离子体发生器,切断整流柜控制电源,并切换至就地控制位置,拔出交流侧保险,并挂有人工作,禁止操作警示牌,确认等离子体发生器无电后方可开始工作; 2.2在就地观察炉膛燃烧情况时身体应站在观火孔侧面,防止炉膛负压波动时火焰喷出伤人;炉膛燃烧不稳时严禁在观火孔、人孔等部位停留; 2.3等离子体发生器运行的时候,严禁取下发生器罩壳,防止触电。 3.设备安全 3.1冷炉点火,点火初期尽可能提高等离子体点火初期的燃烧效率; 3.1.1输煤、制粉、除灰、除尘、吹灰系统设备完好,满足锅炉燃煤运行的要求; 3.1.2等离子体点火用煤应满足设计煤种。调试过程中,当发现实际使用煤种与等离子体点火系统设计煤种不符时,应及时更换合格煤种,以保证锅炉启动的安全; 3.1.3等离子体点火系统投入前必须进行一次风管风速的调平,其误差应符合制粉系统技术协议的要求(各一次风管风速差≤5%); 3.1.4调节磨煤机出口分离器挡板开度或旋转分离器转速,适当控制煤粉细度,入炉煤收到基挥发分Var≤20%,Aar≥35%的煤种,煤粉细度宜R90≤15%;入炉煤收到基挥发分Var≤20%,Aar≥40%的煤种,煤

锅炉等离子点火燃烧器的应用

锅炉等离子点火燃烧器的应用 吴必科 (广州恒运集团有限公司, 广东广州510730) 摘要:简单介绍了等离子点火燃烧器的工作原理和系统组成,结合该燃烧器在恒运电厂6号锅炉的成功应用情况,分别从运行方式、运行控制参数、运行控制策略、运行工况等方面分析 了该燃烧器的运行特性,对今后推广该技术的应用有借鉴作用。 恒运电厂6号锅炉(DG-680/13.7-20)为超高压、自然循环、单汽包、正压直吹式制粉系统、四角切圆燃烧、平衡通风、固态排渣、燃烟煤锅炉。 2003年10月,该锅炉投入运行。锅炉首次整组起动前,将第一层四支主燃烧器改造为等离子点火煤粉燃烧器,并成功地投入运行,这是广东省内火电厂的首次尝试。煤粉锅炉等离子点火技术在国外已有20多年的历史了,近年来在国内也有研究和应用,并取得了较好的效益[1,2]。该技术成功地运用在广州恒运电厂6号锅炉,使整组起动节约用油共计两百多吨,点火期间可尽 早投运电除尘器,经济效益和环保效益明显。 1等离子点火煤粉燃烧器工作原理 等离子点火技术的基本原理是以大功率电弧直接点燃煤粉。该点火装置利用直流电流(大于200 A)在介质气压大于0.01MPa的条件下通过阴极和阳极接触引弧,并在强磁场下获得稳定功率的直流空气等离子体。其连续可调功率范围为50~150 kW,中心温度可达6000 ℃。一次风粉送入等离子点火煤粉燃烧器经浓淡分离后,使浓相煤粉进入等离子火炬中心区,在约0.1s内迅速着火,并为淡相煤粉提供高温热源,使淡相煤粉也迅速着火,最终形成稳定的燃烧火炬。燃烧器壁面采用气膜冷却技术,可冷却燃烧器壁面,防烧损、防结渣,用除盐水对电极及线圈进行冷却。等离子点火器本体部分工作原理见图1。 2系统及设备简介 2.1制粉系统及燃烧器布置 恒运电厂6号炉采用四角切圆布置五层煤燃烧器、二层油燃烧器。煤质工业分析见表1。制粉系统为5台ZGM-80G辊式中速磨煤机,每台磨煤机(额定工况下为4台运行、1台备用)制

等离子体点火安全注意事项示范文本

等离子体点火安全注意事 项示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

等离子体点火安全注意事项示范文本使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1.总则 1.1 为了保证等离子体点火工程设备现场安全、高效地 施工、调试、运行和维护,避免人身伤害及设备损坏,编 制该安全注意事项; 1.2 该注意事项适合于等离子体点火工程的组织人员、 安装人员、现场调试人员和电厂的运行及维护人员; 1.3 烟台龙源电力技术股份有限公司(以下简称烟台龙 源公司)对于等离子体点火工程必须指定现场负责人,负 责与甲方、调试单位等有关方面联系及协调工作,建议甲 方指定专人负责相关工作的协调; 1.4 现场工作必须遵守有关的安全规程及两票三制等保 证安全的制度和要求;

1.5 烟台龙源公司必须提出等离子体点火工程调试大纲,呈请甲方审查并纳入整个机组的调试大纲; 1.6 在锅炉启动过程中,必须在确保安全的条件下实现等离子体点火,特别是防止发生炉膛爆破、二次燃烧等设备损坏和人员伤害事故。 2.人身安全 2.1 维护等离子体发生器(更换阴极、阳极等)时应首先停止等离子体发生器,切断整流柜控制电源,并切换至就地控制位置,拔出交流侧保险,并挂"有人工作,禁止操作"警示牌,确认等离子体发生器无电后方可开始工作; 2.2 在就地观察炉膛燃烧情况时身体应站在观火孔侧面,防止炉膛负压波动时火焰喷出伤人;炉膛燃烧不稳时严禁在观火孔、人孔等部位停留; 2.3 等离子体发生器运行的时候,严禁取下发生器罩壳,防止触电。

什么是等离子体

什么是等离子体?还有什么情况下产生? 等离子(等离子态,电浆,英文:Plasma)是一种电离的气体, 由于存在电离出来的自由电子和带电离子, 等离子体具有很高的电导率,与电磁场存在极强的耦合作用.等离子体由克鲁克斯在1879 年发现,"Plasma"这个词,由朗廖尔在1928 年最早采用等离子体是存在最广泛的一种物态,目前观测到的宇宙物质中,99%都是等离子体. 等离子态在宇宙中广泛存在,常被看作物质的第四态(有人也称之为"超气态") . 人造的等离子体: 荧光灯,霓虹灯灯管中的电离气体; 核聚变实验中的高温电离气体; 电焊时产生的高温电弧. 地球上的等离子体: 火焰(上部的高温部分) 闪电;大气层; 中的电离层;极光. 宇宙空间中的等离子体:恒星;太阳风;行星际物质;恒星际物质;星云. 等离子体可分为两种:高温和低温等离子体.以上提到的是高温等离子体,高温等离子体的温度,可以高达 1 亿摄氏度.现在低温等离子体广泛运用于多种生产领域.例如:等离子电视,婴儿尿布表面防水涂层, 增加啤酒瓶阻隔性. 更重要的是在电脑芯片中的蚀刻运用, 让网络时代成为现实. 等离子态常被称为"超气态", 它和气体有很多相似之处, 比如: 没有确定形状和体积,具有流动性,但等离子也有很多独特的性质. 这种物质的第四基本形态,就是等离子态(体) .那么,什么是等离子态呢? 在等离子体中,电磁力起主要作用,使原本普通的物质内部出现新的运动形态,比如电子,离子的集体振荡. 等离子体虽然看不见摸不着,但它并不是虚无没用的,相反,它具有相当神奇广泛的作用,因此被称为"法力无边的隐形魔术师". 如:令萨达姆闻风丧胆的隐形武器.在海湾战争中,美国投入了一种新研制出来的隐形飞机,深人到伊拉克腹地进行侦察活动,充分掌握了伊军的布防情况,而伊军对之却毫无办法,因为这种侦察飞机采用了等离子体技术,等离子体具有的屏蔽效应,使雷达无法探测到它的踪迹.在科索沃战争中,以美国为首的北约的隐形侦察机,隐形轰炸机更是大肆发挥了它的威力.英,美, 俄等国都在致力于将等离子(体) 技术应用于军事方面.采用了等离子体技术后,飞机,导弹可以减少飞行阻力30%以上,因此大大提高了飞机,导弹的飞行速度和机动性能.等离子体还可以降低飞机,导弹的防热防护标准和飞行的轰鸣声等.俄罗斯正在开发一种新型的等离子武器,能通过将大气层电离产生的高温高能量,形成一个能量巨大的等离子大气环境区域,将在该区域的天空,太空中飞行的飞机,导弹和航天器击毁. "绿色","清洁"的动力来源. 随着社会的不断发展和人们生活的日益丰富繁荣, 对于电力的需求量也将越来越大.传统的发电技术在为人类做出贡献的同时,也"惹"下不少麻烦,污染了环境,对自然生态和人类健康造成了不小的损害.而且它们的发电效率也不高,所采用的发电来源又大多是不可再生的自然资源.所以,科学家一直在努力寻求一种先进.高效又无污染的发电技术. 而等离子体发电技术正好就能圆科学家们的这一梦想. 等离子体的发电原理是:将带电的高温流体,以极高的速度喷射到稳定的强磁场中,电磁场对带电流体(粒子)施加磁力作用而产生电,直接由热能转变为电能.与传统的火力发电方式相比,等离子体发电具有两大突出特点:一是发电效率高.等离子体发电技术利用发电装置所排泄的温度很高的废气余热来产生蒸汽,以驱动汽轮发电机,从而构成等离子体——汽轮发电的组合发电方式,发电有效率可比火电提高百分之五十以上.二是对环境的污染很轻.等离子发电由于温度很高, 流体燃料燃烧得很充分, 同时, 还因为添加了一些材料, 与发电过程中产生的废气——硫,进行反应,生

相关文档