文档库 最新最全的文档下载
当前位置:文档库 › 驻波法

驻波法

驻波法
驻波法

大学物理实验教案实验名称:空气中声速的测定1、实验目的(1)学会用驻波法和相位法测量声波在空气中传播速度。(2)进一步掌握示波器、低频信号发生器的使用方法。(3)学会用逐差法处理数据。2、实验仪器超声声速测定仪、低频信号发生器DF1027B、示波器ST16B。3、实验原理3.1 实验原理声速V、频率f 和波长λ之间的关系式为V f 。如果能用实验方法测量声波的频率f和波长λ,即可求得声速V。常用的测量声速的方法有以下两种。3.2 实验方法3.2.1 驻波共振法(简称驻波法)S1 发出的超声波和S 2 反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中,S1 、S 2 即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为:Ln n 123 2 (1)即当S1 和S 2 之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。移动S 2 ,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即S 2 所移过的距离为:L L n 1 Ln n 1 n 2 2 2 (2)可见,示波器上信号幅度每一次周期性变化,相当于L 改变了 2 。此距离 2 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据V f ,就可求出声速。3.2.2 两个相互垂直谐振动的合成法(简称相位法)在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为:2 2 X Y Cos 2 1 Sin 2 2 1 2 XY A1 A2 A1 A2 (5)2 1 0 在一般情况下,此李沙如图形为椭圆。当相位差时,由(5)式,得y A2 x A1 ,即轨迹为一条处在于第一和第三象限的直线参见图16—2a。2 2 x y 2 1 2 2 1 当2 时,得A1 A2 ,轨迹为以坐标轴为主轴的椭圆A y 2 x 2 1 A1 ,轨迹为处于第二和第四象限的一条直线。当时,得改变S1 和S 2 之间的距离L ,相当于改变了发射波和接受波之间的相位差2 1(,)荧光屏上的图形也随之变化。显然,L 每变化半个波长(即L Ln 1 Ln 2 ,位相差就变化。随着振动相位差从0→的变化,李沙如图形就按图16——2a →(b)→c变化。因此,每移动半个波长,就会重复出现斜率符号相反的直线。测得波长和频率f,根据V f ,就可计算出声速。4、教学内容(1)熟悉声速测定仪该仪器由支架、游标卡尺和两只超声压电换能器组成。两只超声压电换能器的位置分别与游标卡尺的主尺和游标相对定位,所以两只换能器相对位置距离的变化量可由游标卡尺直接读出。两只超声压电换能器,一只为发射声波用(电声转换),一只为接收声波(声电转换),其结构完全相同。发射器的平面端面用以产生平面声波;接收器的平面端面则为声波的接收面和反射面。压电换能器产生的波具有平面性、单色性好以及方向性强的特点。同时可以控制频率在超声波范围内,使一般的音频对它没有干扰。(2)驻波法测量声速1)按图接好线路,把换能器S1 引线插在低频信号发生器的“功率输出孔”,把换能器S2 接到示波器的“Y input”。2)打开电源开关,把频率倍乘按钮×10K 压入,调节幅度电位器,使数码显示屏读数。5--8V 电压电压衰减按钮为20dB;波形选择为正弦波(弹出状态)3)压入示波器电源开关,把示波器Y 衰减开关VOLTS/DIV 置0.5v 档,Y 输入方式置AC位。扫描档TIME/DIV 为20us,触发源(触发TRIG)选择“内同步INT”;触发方式为“自动”。4)移动S2 位置,目测S1 与S2 的距离为3cm 左右,调整低频信号发生器的“频率调节”波段开关,调节频率微调电位器,使数码显示屏的频率读数为34.000—36.000KHz 范围。观察示波器,当屏幕的波形幅度最大时,说明换能器S1 处于共振状态。记下频率f 值(实验。过程中,频率f 不许改变,否则影响实验数据)5)示波器荧幕的波形若不在中央,可调节垂直或水平位移电位器;波形太小(可能不稳定)或太大,可调节Y 增益电位器VARIABLE,使波形幅度适中。6)注意:实验过程中不要用手触摸两个换能器,以免影响测量精确性。7)向右稍移S2,并调整游标卡尺的微调螺丝,同时观察示波器上波形,使波形幅度最大,幅度如果超过屏幕,可调整Y 增益

VARIABLE,使波形满屏。记下S2 的初始位置L0。8 由近至远慢慢移动接收器S2,逐个记下九个幅度最大的位置(即Li 值)。(3)相位法测声速1)把示波器触发方式选择“外接”。2)把示波器的“Y input”接超声波测速仪的接收器S2示波器“X 输入”联接到低频信号发生器的电压输出(不能接同步输出)。3)把S2 调回距S1 大约3cm,移动接收换能器S2,调节游标卡尺微调螺丝,同时观察示波器的图形变化,使图形为“/”,记下S2 初始位置LO。4)由近至远,慢慢移动S2并注意观察图形变化,逐下记下每发生一次半周期变化(即图形由“/”直线变到“”直线)接收换能器S2 的位置读数Li 值,共测十个数据。5)实验完毕,关掉电源,整理好仪器。5、实验教学组织及教学要求(1)教学组织1)检查学生的预习实验报告,同时给学生5-10 分钟时间熟悉仪器,对本实验有一定的感性认识。2)讲解实验要点及注意事项,同时以提问的方式检查学生的预习情况,加深学生对实验原理的理解。3)随时注意学生的实验操作过程,及时指导解决学生实验中出现的突发情况。4)检查每个学生的实验数据,记录实验情况。(2)教学要求1)能够利用以前学过的示波器使用方法设计本实验有关示波器的调节步骤;2)能够理解驻波法和相位法测量声波在空气中传播速度的原理;3)要求能够理解影响声波传播速度的几个因素;准备报道实验结果。6、实验教学重点及难点1)重点:掌握用驻波法和相位法测量声波在空气中传播速度。进一步熟练掌握示波器、低频信号发生器的使用方法。2)难点:独立设计本实验有关示波器的调节步骤;准确判断是否形成驻波。7、实验中容易出现的问题1)换能器未达到共振状态就记录声波频率;2)待测声波在两个换能器之间并未形成驻波,就开始进行测量;3)记录实验数据时漏掉室温。8、实验参考数据1)驻波法测量声速共振频率 f 34.583KHz 表1 驻波法测量波长的测量数据次序Li 10 3 mm 次序Li 10 3 mm Li 5 Li 10 3 mm v LI 5 Li 10 3 mm 1 93.72 6 119.54 25.82 0.012 2 98.84 7 124.70 25.86 0.028 3 104.02 8 129.90 25.88 0.048 4 109.22 9 135.02 25.80 0.032 5 114.38 10 140.18 25.80 0.032逐差法处理表1 数据1 5 2 SL I 5 Li vL L n 1 i 1 i 5 i 0.036 mm标准偏差C n S Li 5 Li 1.65 0.036 0.06 v LI 5 Li m 0.02uB 0.012mm 3 3合成不确定度为u LI 5 LI u A u B S Li 5 Li u B 0.036 2 0.012 2 0.038mm 2 2 2 2 mf 0.346 uf 0.2 H Z 频率f 不确定度3 3声速V 的相对不确定度uf u LI 5 Li 0 .2 2 0.038 2EV 2 2 0.006 0.6 f Li 5 Li 34.583 25.832声速的计算2 2 V f Li 5 Li 34.583 25.832 357.34m / s 5 5声速V 不确定度为uV VEV 357.34 0.006 3m / s 室温时声速结果表达式:V V uV 357.34 0.006m / s p 0.683 EV 0.62)相位法测量声速参考驻波法。9、实验结果检查方法1)声波的频率值是否与实验中所用换能器的共振频率值相符;2)形成相邻两个驻波时的接收换能器位置合理;3)相位法中,图形由“/”直线变到“”直线,或由“”直线变到“/”直线,接收换能器S2 的位置读数合理。10、课堂实验预习检查相关题目1)如何调节示波器使其能用来观察某电信号的波形?2)如何判断换能器是否共振?3)如何正确读取换能器的位置?4)如何利用示波器观察两个相互垂直的电信号的合成图形?11 思考题1)为什么需要在驻波系统共振状态下进行声速的测量?2)是否可以用上述方法测量声波在液体或固体中的传播速度?如何进行?3)用驻波法测量声速时,改变S1 和S2 之间的距离时,示波器上的波形振幅有时极大有时极小。说明极大或极小时,接收器S2 是处于波腹还是波节位置?

声速的测量

物理实验报告 一、【实验名称】 超声波声速的测量 二、【实验目的】 1、了解声速的测量原理 2、学习示波器的原理与使用 3、学习用逐差法处理数据 三、【仪器用具】 1、SV-DH-3型声速测定仪段 2、双踪示波器 3、SVX-3型声速测定信号源 四、【仪器用具】 1.超声波与压电陶瓷换能器 频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20~60kHz之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。 图1 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器

及弯曲振动换能器。声速教学实验中所用的大多数采用纵向换能器。图1为纵向换能器的结构简图。 2.共振干涉法(驻波法)测量声速 假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。 在上述假设条件下,发射波ξ1=Acos (ωt+2πx /λ)。在S2处产生反射,反射波ξ 2 =A 1cos (ωt+2πx /λ),信号相位与ξ1相反,幅度A 1<A 。ξ1与ξ2在反射平面相交叠加, 合成波束ξ 3 ξ3=ξ1+ξ2=(A 1+A 2)cos (ωt-2πx /λ)+A 1cos (ωt+2πx /λ) =A 1cos(2πx /λ)cos ωt+A 2cos (ωt - 2πx /λ) 由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。 图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。 图2 换能器间距与合成幅度 实验装置按图7所示,图中S1和S2为压电陶瓷换能器。S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2 在某此位置时振幅有最小值。根据波的干涉理论可以知道:任何 发射换能器与接收换能器之间的距离

声速测量实验报告

大学物理实验课教案 俸永格(136********) 教学题目:声速的测量 教学对象:10级电子信息班、10动医学班、10级农机班、10级植保班。授课地点:海南大学基础实验楼2610室。 教学重点:让学生了解测量超声波在媒介中传播速度的实验设计思想和实验方法。 教学难点:让学生熟练掌握双踪示波器、SV5/7测试仪、SV8信号源的协调使用并完成两正交信号相位差的多次测量。 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: GW-680双踪示波器一台,SV8信号发生器一台,SV7测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×104Hz的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)

间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ×f λ=2X v = 2X×f 原理图示1(驻波法原理图) (二)相位法测量声速基本原理 请同学们自行完成!要求体现以下两个方面的内容! (1)简谐振动正交合成的基本原理, (2)利用李萨如图形的相位差特点间接测量声速的基本原理。 四实验内容与步骤 (一)驻波法测声速 实验连线图示1(驻波法) (1)了解测试仪的基本结构,调节两个换能器的间距5cm左右。 (2)初始化示波器面板获得扫描线。 (3)按图示1正确连线,将示波器的扫描灵敏度与通道1垂直灵敏度旋钮分别调至适当档位,缓慢顺时针方向转动换能器平移鼓轮至驻波波腹位置

驻波管法测定吸声材料的吸声系数1

驻波管法测定吸声材料的吸声系数 【实验目的】 (1)了解人耳听觉得频率范围,获得对一些频率纯音得感性认识。 (2)加深对垂直入射吸声系数得理解,熟悉驻波管法是测定材料的吸声系数的方法。 【实验原理】 测量装置 1测试车2导轨3声源箱4驻波管(分低、高频两种) 测量原理 驻波管为一金属(塑料)直管,它的一端可以用夹具安装试件,另一端接好扬声器,声频讯号由声频发生器产生,经放大器进行放大,由扬声器发出单频声波,声波在驻波管内传播,由于管径较小,与音频声波的波长相比,可近似将声波面看作为平面入射波,沿管内直线传播;当入射到试件后,进行反射,由于反射波与入射波传递的方向和相位相反,声压产生叠加,干涉而形成驻波,并在管内某个位置上形成声压极大值Pmax(2 N),t和声压极较小值Pmin,其间距 /m 为l/4波长。

11E E r -=-=γα 式中:α —————吸声系数 γ—————反射系数 Eo —————入射声能(W) Er —————反射声能(W) 令n P P =min max / 称为驻波比..................(1) 故有:24/(1)n n α=+ (2) 一般频谱分析仪或声级计,测试的标称值是声压级,而不是声压P 值,根据声压和声压级的关系,吸声系数可如下计算。 n P P L L L lg 20m in/lg 20m ax /lg 20m in m ax 00=Φ-Φ=-=? 20 2 204*10(110 ) P P L L a = + (3) 【测量方法】 (1) 电路接线正确后,信号发生器等电子仪器电源接通。 (2) 将试件按照要求装在试件筒内,并用凡士林将试件与筒壁接触处的缝隙填 塞,使之严密,然后再用夹具将试件筒固定在驻波管上。 (3) 调节声频发生器的频率,依次发出200、250、315、400、500、630、 800、1000、1250、1600、2000Hz 不同的声频。在设置仪器输出信号的频率时,测量到的声压级波峰值不超过136分贝,声压级波谷值不低于50分贝。 (4) 将滑块移到最远处,,移动仪器屏幕上的光标,到所测量的频率的第一个峰 值位置(1/4波长)缓慢移动滑块,同时读取光标位置显示的声压级,并记录滑块所在位置的刻度,按F7自动计算吸声系数。

声速测定讲稿

3 声速测定 声速测量的常用方法有两类:第一类是测量声波传播距离l 和时间间隔t ,然后根据公式 t l v /=计算声速v (时差法) ;第二类是测出频率f 和波长λ,再计算声速v 。本实验采用第二类测量方法。 【实验原理】 由于超声波具有波长短、易于定向发射和不可闻等优点,所以在超声波段测量声速是比较方便的。超声波的发射和接收一般是通过电磁振动和机械振动的相互转换来实现的,主要是利用压电效应和磁致伸缩效应。本实验采用压电陶瓷换能器来实现声压和电压之间的转换。 当换能器的压电晶体的固有频率与外界信号频率一致时就会产生谐振,此时压电陶瓷换能器能够较好地进行声能与电能的相互转换,可以获得最大的声波压强。所以实验时应调节信号发生器的输出频率(34.0~36.0kHz ),使其与换能器谐振(示波器上信号幅度最大),此时的频率即为压电陶瓷的谐振频率。 1. 驻波法(共振干涉法) 实验原理如图所示。S 1、S 2为压电陶瓷换能器。S 1装在固定端,接受器S 2可以移动。带有功率输出的信号发生器产生的超声频率段的正弦交变电压信号接在S 1上,使S 1产生受迫振动,向周围空间定向发出一近似的平面波。S 2为接收换能器,它接收到声波后产生与声源同频率的电振动。当S 1和S 2的表面互相平行时,声波就在两个平面间往返,形成驻波。当两个换能器之间的距离l 为半波长的整数倍时,出现稳定的驻波共振现象,声压波幅最大。在接收器的反射面处是振幅的“波节”位置,同时是声压的“波腹”位置,即该处位移为零,声压最大。连续改变l 值,声压波幅将在最大与最小之间周期性的变化。接收器S 2上的电压与该处声压成正比,测量接收器电压随两个换能器距离的变化情况,相邻两次电压最大对应的距离变化就是半波长,由此可以得到波长λ。再根据公式λf v =可直接算出v ,其中声波的频率f 即驱动电压的频率,可从信号发生器面板上直接读出。 2. 行波法(相位比较法) S 1与S 2处的声波有一定的相位差,当两者距离为l 时,相位差为2l ?πλ=,因此可以通过测量?来求得声速2v lf π?=。连续改变距离l 的值,测出相位差的π2变化,对应的距离变化就是一个波长。 【实验内容与步骤】 1. 驻波法 1)调节信号发生器输出信号的频率,达到与换能器谐振。 2)移动S 2,测出各振幅极大值点S 2对应的位置坐标l ,记录在自制的数据表格中。要求至少记录12组数据,同时记录所对应的信号频率f ,以便采用逐差法处理数据。 3)测试过程中应注意保持S 2与S 1表面的平行。 2. 相位比较法

声速的测定实验报告

声速的测定实验报告 1、实验目的 (1)学会用驻波法和相位法测量声波在空气中传播速度。 (2)进一步掌握示波器、低频信号发生器的使用方法。 (3)学会用逐差法处理数据。 2、实验仪器 超声声速测定仪、低频信号发生器DF1027B 、示波器ST16B 。 3、实验原理 3.1 实验原理 声速V 、频率f 和波长λ之间的关系式为λf V =。如果能用实验方法测量声波的频率f 和波长λ,即可求得声速V 。常用的测量声速的方法有以下两种。 3.2 实验方法 3.2.1 驻波共振法(简称驻波法) S 1发出的超声波和S 2反射的超声波在它们之间的区域内相干涉而形成驻波。当波源的 频率和驻波系统的固有频率相等时,此驻波的振幅才达到最大值,此时的频率为共振频率。 驻波系统的固有频率不仅与系统的固有性质有关,还取决于边界条件,在声速实验中, S 1、S 2即为两边界,且必定是波节,其间可以有任意个波节,所以驻波的共振条件为: Λ Λ3,2,1,2 ==n n L λ (1) 即当S 1和S 2之间的距离L 等于声波半波长的整数倍时,驻波系统处于共振状态,驻波振幅最大。在示波器上得到的信号幅度最大。当L 不满足(1)式时,驻波系统偏离共振状态,驻波振幅随之减小。 移动S 2,可以连续地改变L 的大小。由式(1)可知,任意两个相邻共振状态之间,即 S 2所移过的距离为: () 22 2 11λ λ λ = ? -+=-=?+n n L L L n n (2) 可见,示波器上信号幅度每一次周期性变化,相当于L 改变了2λ。此距离2λ 可由超声声速测定仪上的游标卡尺测得,频率可由低频信号发生器上的频率计读得,根据f V ?=λ,就 可求出声速。 3.2.2 两个相互垂直谐振动的合成法(简称相位法) 在示波器荧光屏上就出现两个相互垂直的同频率的谐振动的合成图形——称为李沙如图形。其轨迹方程为: ()()φφφφ122122122 12 2-=-- ???? ??+???? ??Sin Cos A A XY A Y A X (5) 在一般情况下,此李沙如图形为椭圆。当相位差 12=-=?φφφ时,由(5)式,得 x A A y 12=,即轨迹为一条处在于第一和第三象限的直线[参见图16—2(a)]。

用驻波法测声速教学资料

用驻波法测声速

用驻波法测声速实验目的 1?学会用驻波法测空气中的声速 2.学会用逐差法处理实验数据 实验仪器

实验原理 频率介于20Hz ?20kHz 的机械波振动在弹性介质中的传播就形成声波,介于 20kHz ?500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超 声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一 般都在20KHz- 60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波 的发射器、接收器、效果最佳。 使S1发出一平面波。S2作为超声波接收头,把接收到的声压转换成交变的 正弦电压信号后输入示波器观察,示波器置扫描方式。 S2在接收超声波的同时 还反射一部分超声波。这样,由 S1发出的超声波和由S2反射的超声波在S1和 S2之间产生定域干涉。 当S1和S2之间的距离L 恰好等于半波长的整数倍时,即 L k —, k = 0,1,2,3 ....... ; 2 形成驻波共振。任意两个相邻的共振态之间, S2的位移为, 所以当S1和S2之间的距离L 连续改变时,示波器上的信号幅度每一次周期性 L L k 1 L k (k 1) 2 k 2 2

变化,相当于S1和S2之间的距离改变了一。此距离一可由读数标尺测得,频 2 2 率f由信号发生器读得,由f即可求得声速。 实验步骤 只有当换能器S1和S2发射面与接收面保持平行时才有较好的接收效果;为 了得到较清晰的接收波形,应将外加的驱动信号频率调节到发射换能器S1谐振频率点处,才能较好地进行声能与电能的相互转换,提高测量精度,以得到较好的实验效果。 超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节声速测试仪信号源输出电压(100mV- 500m\之间),调节信号频率(在25?45kHz),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5?37.5kHz之间)电压幅度最大,同时声速测试仪信号源的信号指示灯亮,此频率即是压电换能器S1、S2相匹配的频率点,记录频率v,改变S1和S2之间的距离,适当选择位置(即:至示波器屏上呈现出最大电压波形幅度时的位置),再微调信号频率,如此重复调整,再次测定工作频率,共测5次,取平均值—°。 将测试方法设置到连续波方式,把声速测试仪信号源调到共振工作频率(根据 共振特点观察波幅变化进行调节)。 在共振频率下,将S2移近S1处,依次记下各振幅最大时的读数标尺位置 L i、L2…共10个值; 记下室温t ;

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共装置图。 波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。

3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1,驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其

图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管 中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再 读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管 中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适 用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)] (1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。 设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角 ?=kx=2π x (1.3) λ

声速测量实验报告

声速测量实验报告 【实验目的】 1.学会测量超声波在空气中的传播速度的方法。 2.理解驻波和振动合成理论。 3.学会用逐差法进行数据处理。 4.了解压电换能器的功能和培养综合使用仪器的能力。 【实验仪器】 信号发生器、双踪示波器、声速测定仪。 【实验原理】 声波的传播速度v与声波频率f和波长的关系为: 可见,只要测出声波的频率f和波长 ,即可求出声速。f可由声源的振动频率得到,因此,实验的关键就是如何测定声波波长。 根据超声波的特点,实验中可以采用驻波法和相位法测出超声波的波长。 1. 驻波法(共振干涉法) 如右图所示,实验时将信号发生器输出的 正弦电压信号接到发射超声换能器上,超声发 射换能器通过电声转换,将电压信号变为超声 波,以超声波形式发射出去。接收换能器通过 声电转换,将声波信号变为电压信号后,送入示波器观察。 由声波传播理论可知,从发射换能器发出一定频率的平面声波,经过空气传播,到达接收换能器。如果接收面和发射面严格平行,即入射波在接收面上垂直反射,入射波与反射波相互干涉形成驻波。此时,两换能器之间的距离恰好等于其声波半波长的整数倍。在声驻波中,波腹处声压(空气中由于声扰动而引起的超出静态大气压强的那部分压强)最小,而波节处声压最大。当接收换能器的反射界面处为波节时,声压效应最大,经接收器转换成电信号后从示波器上观察到的电压信号幅值也是极大值,所以可从接收换能器端面声压的变化来判断超声波驻波是否形成。 移动卡尺游标,改变两只换能器端面的距离,在一系列特定的距离上,媒质中将出现稳定的驻波共振现象,此时,两换能器间的距离等于半波长的整数倍,只要我们监测接收换能器输出电压幅度的变化,记录下相邻两次出现最大电压数值时(即接收器位于

驻波管法吸声系数测量

驻波管法吸声系数测量 1.1引言 任何一项试验都需要做细致的前期准备工作,这样才能保证试验有序合理的进行,同时可以保证试验的延续性、重复性、可比性。前期的工作主要包括对试验对象、试验条件、试验仪器、系统的搭建进行详细的定义和说明。 1.2试验对象和条件 1.2.1待测材料的规定 1、被测材料应为多孔吸声材料; 2、被测材料应制作成直径为30mm和100mm圆形,尺寸误差在2%以内,能过正好装入; 3、材料表面应平整,材料与阻抗管之间的缝隙应用油脂密封; 4、同种材料至少准备两个被测样件。 1.2.2试验环境和设备的规定 试验过程中应保证环境的安静,同时应测量环境的温度。 试验设备应满足GB/T 18696. 1- 2004的规定。 主要实验设备:采集器、功率放大器、驻波管、传声器、线缆、声级校准器、电脑和软件。 1.2.3说明 本节关于被测材料、实验设备、环境等要求未描述者,请参考GB/T 18696. 1- 2004。 1.3试验步骤 1.3.1根据设备使用说明,依次连接好采集器、传感器、功率放大器、线

缆、电脑等设备。 1.3.2检查设备连接无误后,接通电源,将功放输出增益调制最小后,依 次打开功放、采集器、电脑和软件,并在软件里根据选择对应的采集器型号,并设置采样频率,一般设置为50kHz。 1.3.3打开传感器校准功能选项,校准传感器,通常每次测试前均需对对 各通道的传感器进行校准。 1.3.4打开材料吸声系数测量模块,进行材料吸声系数测量: 1) Setting(设置) ?Mode Choose 选择Absorption(吸声系数测试) ?TUBE 选择测试所使用的管,程序会自动给出管的参数,包括:样 品到最近传声器的距离、两个传声器的间距,测试管的内径,以及 测试的有效频率范围。 ?ENVIRONMENT 填写测试环境的大气压、温度,用来计算空气密度、 声速和特性阻抗。缺省设置为101325Pa 及20℃。 2) 按显示内容,布置传声器通道:声源-1通道- 2通道-样品 3) 点击进行测量,等待测量曲线开始稳定,比较平滑后点击 。 4) 点击,变成,按显示内容布置传声器通道:声 源-2通道- 1通道-样品交换传声器位置。 5) 重复2)过程 6) 退出

驻波比与回波损耗的换算关系

驻波比 欧阳学文 驻波比全称为电压驻波比,又名VSWR和SWR,为英文Voltage Standing Wave Ratio的简写。在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的声压幅值Vmax与波节处的声压Vmin幅值之比。在驻波管法中,测得驻波比,就可以求出吸声材料的声反射系数和吸声系数。在无线电通信中,天线与馈线的阻抗不匹配或天线与发信机的阻抗不匹配,高频能量就会产生反射折回,并与前进的部分干扰汇合发生驻波。为了表征和测量天线系统中的驻波特性,也就是天线中正向波与反射波的情况,人们建立了“驻波比”这一概念,SWR=R/r=(1+K)/(1K) 反射系数K=(Rr)/(R+r) (K为负值时表明相位相反) 式中R和r分别是输出阻抗和输入阻抗。当两个阻抗数值一样时,即达到完全匹配,反射

系数K等于0,驻波比为1。这是一种理想的状况,实际上总存在反射,所以驻波比总是大于1的。射频系统阻抗匹配。特别要注意使电压驻波比达到一定要求,因为在宽带运用时频率范围很广,驻波比会随着频率而变,应使阻抗在宽范围内尽量匹配。 驻波比与回波损耗的换算关系 驻波比(VSWR): Voltage Standing Wave Ratio 回波损耗(RL) :Return Loss 换算公式:RL=20*log10[(VSWR+1)/(VSWR1)] 换算表格: 驻波比回波损耗(dB)驻波比回波损耗(dB) 1.0146.064 1.2618.783 1.0240.086 1.2718.493 1.0336.607 1.2818.216 1.0434.151 1.2917.949 1.053 2.256 1.3017.692 1.0630.714 1.3117.445 1.0729.417 1.3217.207 1.0828.299 1.3316.977 1.0927.318 1.3416.755 1.1026.444 1.3516.540

声速测定以及声速数据处理

【实验目的】 1.了解压电换能器的功能,加深对驻波及振动合成等理论知识的理解。 2.学习用共振干涉法、相位比较法和时差法测定超声波的传播速度。 3.通过用时差法对多种介质的测量,了解声纳技术的原理及其重要的实用意义。 【实验原理】 在波动过程中波速V 、波长λ和频率f 之间存在着下列关系:λ?=f V ,实验中可通过测定声波的波长λ和频率f 来求得声速V 。常用的方法有共振干涉法与相位比较法。 声波传播的距离L 与传播的时间t 存在下列关系:t V L ?= ,只要测出L 和t 就可测出声波传播的速度V ,这就是时差法测量声速的原理。 1.共振干涉法(驻波法)测量声速的原理: 当二束幅度相同,方向相反的声波相交时,产生干涉现象,出现驻波。对于波束1:)/X 2t cos(A F 1λ?π-ω?=、波束2:()λ?π+ω?=/X 2t cos A F 2,当它们相交会时,叠加后的波形成波束3:()t cos /X 2cos A 2F 3ω?λ?π?=,这里ω为声波的角频率,t 为经过的时间,X 为经过的距离。由此可见,叠加后的声波幅度,随距离按()λ?π/X 2cos 变化。如图28.1所示。 压电陶瓷换能器1S 作为声波发射器,它由信号源供给频率为数千周的交流电信号,由逆压电效应发出一平面超声波;而换能器2S 则作为声波的接收器,正压电效应将接收到的声压转换成电信号,该信号输入示波器,我们在示波器上可看到一组由声压信号产生的正弦波形。声源1S 发出的声波,经介质传播到2S ,在接收声波信号的同时反射部分声波信号,如果接收面(2S )与发射面(1S )严格平行,入射波即在接收面上垂直反射,入射波与发射波相干涉形成驻波。我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器2S 处的振动情况。移动2S 位置(即改变1S 与2S 之间的距离),你从示波器显示上会发现当2S 在某些位置时振幅有最小值或最大值。根据波的干涉理论可以知道:任何二相邻的振幅最

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 试验日期: 实验者: 班级: 学号: 超声波测声速 一实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分 别是:

叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 二实验仪器 1)声速的测量实验仪器 包括超声声速测定仪、函数信号发生器和示波器 2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。 3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。 4)示波器 示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 三实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。

*注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f 0保持一致。 三 数据记录与处理 1. 基础数据记录 谐振频率=33.5kHz 2. 驻波法测量声速 λ的平均值:==∑=1 6i i λλ 1.0585(cm ) λ的不确定度: ) 1()(6 1 2 --= ∑=i i S i i λλ λ=0.002(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪?= 3 32λu 0.000544(cm ) =+=22λ λλσu S 0.021(mm ) 计算声速: 50.354==λυf (m/s ) 计算不确定度: (m/s) 3)()((kHz) 2.03 %122=+==?= f f f f λσσσσλυ 实验结果表示:υ=(354±3)m/s ,=0.8% 3. 相位比较法测量声速

声速测量实验报告.doc

声速测量实验报告 只有通过实验才能知道结果,那么,下面是我给大家整理收集的声速测量实验报告,供大家阅读参考。 声速测量实验报告1 实验目的:测量声音在空气中的传播速度。 实验器材:温度计、卷尺、秒表。 实验地点:平遥县状元桥东。 实验人员:爱物学理小组 实验分工:张x——测量时间 张x——发声 贾x——测温 实验过程: 1 测量一段开阔地长; 2 测量人在两端准备; 3 计时员挥手致意,发声人准备发声; 4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止) 5 多测几次,记录数据。 实验结果: 时间17∶30 温度21℃

发声时间 0.26″ 发声距离 93m 实验结论:在21℃空气中,声音传播速度为357.69m/s. 实验反思:有一定误差,卡表不够准确。 声速测量实验报告2 一实验目的: (1)加深对驻波及振动合成等理论知识的理解, (2)掌握用驻波法、相位法测定超声波在媒介中的传播速度, (3)了解压电换能器的工作原理,进一步熟悉示波器的使用方法提高运用示波器观测物理参数的综合运用能力。 二实验仪器: 双踪示波器一台,信号发生器一台,测试仪一台,同轴电缆若干。 三实验原理 声波是一种在弹性媒质中传播的纵波。对超声波(频率超过2×10Hz 的声波)传播速度的测量在国防工业、工业生产、军事科学与医疗卫生各领域都具有重大的现实意义。实验室常用驻波法和相位法进行测量。 (一)驻波法测量声速基本原理 如图所示为两列同频率、同振幅、振动方向平行且相向传波的机械波在媒介中形成的驻波波形,其波腹间距与波节间距均为半个波长。通过对波腹(节)间距X的测量便可实现对波长λ的间接测量,结合对驻波谐振频率f的测量便可间接求算声波的传播速度v。 v = λ × f λ=2X v = 2X × f

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料

驻波管法测量吸声材料 实验目的: 通过本实验,掌握用驻波管法测量吸声材料法向吸声系数和法向声阻抗率的原理及操作方法。 实验原理: 1, 驻波管法测量吸声材料法向吸声系数的原理和方法 吸声系数是描述吸声材料的吸收声能大小的物理量。它定义为:吸声材料所吸收的声能和入射声能之比。测量材料的吸声系数,一般采用驻波管法和混响室法,前者测量的是法向吸声系数,后者测量的屎无规入射的吸声系数。 用驻波管法测定吸声材料的法向吸声西系数,设备简单而费用低廉。根据法向吸声系数又可以推算出均匀无规则入射条件下的吸声系数。但驻波管法只适用于测量声学特性与材料尺寸无关的材料样品,多用于测量多孔材料,多孔板或,穿孔薄片结构的吸声特性。 声学测量用的驻波管结构,如图1.1所示,主要部分是一根内壁光滑而坚硬,界面均匀的管子,管子的末端装有被测材料样品。由扬声器向管中辐射的声波以平面波形式传播,理论上可以证明,为了在管中获得平面波,声波的波长要大于管子的内径并且满足要求:对于圆形管,直径d<0.586λ;对于矩形管,长边的边长L<0.5λ,其 刚性后盖 试件 驻波管 传输器小车 探管 拍窄带滤波 传声

|p| r λ/2x 图1.1 驻波管结构 测量装置包括以下几部分:1,驻波管,根据测试频率段不同,可选用不同内劲和不同长度的驻波管;2,可移动的刚性后盖,移动它可以调节吸声材料与刚性壁面间的距离;3,被测吸声材料4,探管式传输器,用来接收驻波管轴线上各点的声压;5,扬声器,向管中辐射声波,探管可以自由穿过其中心孔;6,传输器小车,推动它可使探管在驻波管内纵向移动;7,标尺,用来指示探管在驻波管中的位置。 平面波在材料表面被反射回来,于是在管中建立起驻波声场,从材料表面算起,管中出现声压极大与极小的交替分布。利用可移动的探管传输器接收,在测试仪表上再读出声压极大与极小的声级差,便可以确定垂直入射时的吸声系数αp 虽然音频振荡器输给扬声器的是单频信号,但扬声器辐射处的声波并不一定是纯音,所以在接收端必须进行滤波,这样才能滤去不必要的高次谐波分量。由于要满足在管中传播的声波为平面波和其他测试条件,常有低,中和高频三种尺寸的驻波管,以适用于不同的频率范围。 如前所述,当平面波从试件表面反射回来时,在管中便形成驻波。入射平面波可视为一列沿正向进入参考平面的入射波,记其声压为P i于是P i可以写成 P i=P0exp?[i(ωt+kx)](1.1) 式中k=ω/C0=2π/λ是平面波的波数,C0为空气中的声速,λ为波长,ω为圆频率。设材料的反射系数为R,则反射波声压P r为 P r=RP0exp?[i(ωt?kx)] (1.2) 引入相位角

驻波管法吸声系数与声阻抗率测量规范

更新规范 https://www.wendangku.net/doc/b21649472.html, 中华人民共和国国家标准 驻波管法吸声系数与声阻抗率测量规范 GBJ 88-85 主编单位:同济大学 批准部门:中华人民共和国国家计划委员会 施行日期:1986年6月1日 关于发布《驻波管法吸声系数与声阻抗率测量规范》的通知 计标〔1986〕04号 根据原国家建委(81)建发设字第546号通知的要求,由全国声学标准化技术委员会负责归口组织,具体由同济大学会同有关单位编制《驻波管法吸声系数与声阻抗率测量规范》,已经全国声学标准化技术委员会会审。现批准《驻波管法吸声系数与声阻抗率测量规范》GBJ88—85为国家标准,自一九八六年六月一日起施行。 本规范具体解释等工作由同济大学负责。 国家计划委员会 1985年12月31日 编制说明

本规范是根据原国家基本建设委员会(81)建发设字546号文的要求,由全国声学标准化技术委员会委托同济大学负责编制的。 在本规范的编制过程中,编制单位调查研究了国内有关单位的实践经验和研究成果,收集并分析了国外同类测量标准及有关技术资料,对一些重要内容作了较系统的对比试验以及相应的理论分析,提出了规范征求意见稿。广泛征询了国内各有关单位的意见,并召开了座谈会,经反复修改提出了送审稿。经全国声学标准化技术委员会建筑声学分委员会讨论同意,最后由全国声学标准化技术委员会审查定稿。 本规范共五章及七个附录。内容包括:测量设备、测量方法、测量范围和测量要求。 在本规范施行过程中,希各单位注意积累资料,认真总结经验,如发现有需要修改或补充之处,请将意见和有关资料寄交同济大学声学研究所,以供今后修订时参考。 同济大学 1985年12月更新规范 https://www.wendangku.net/doc/b21649472.html, 第一章 总则 第 1.0.1条 为了统一驻波管测量,便于测量数据的相互比较,特制订本规范。 第1.0.2条 本规范适用于吸收空气声的吸声材料和吸声构件。采用驻波管测量法向入射时的吸声系数和法向声阻抗率。 更新规范 https://www.wendangku.net/doc/b21649472.html, 第二章 测量基本设备 第一节 测量装置 第2.1.1条 驻波管测量的设备,应由驻波管、声源系统、探测器及输出指示装置等部分所组成,如图2.1.1所示。

大学物理实验:超声声速测定

超声声速测定 声波特性的测量,如频率、波长、声速、声压衰减、相位等,是声波检测技术中的重要内容。特别是声速的测量,不仅可以了解媒质的特性而且还可以了解媒质的状态变化,在声波定位、探伤、测距等应用中具有重要的实用意义。例如,声波测井、声波测量气体或液体的浓度和比重、声波测量输油管中不同油品的分界面等等。 “声速的测量”是一个综合性声学实验。实验中采用压电陶瓷超声换能器通过驻波法(共振干涉法)和相位比较法测量超声波在空气中的传播速度,这是一个非电量电测方法的应用。通过这个实验可以重点学习如下内容:(1)实验方法:非电量的电测方法;测量声速的驻波法和相位比较法。(2)测量方法:利用示波器测量电信号的极大值和观察李萨如图形测量相位差的方法。(3)数据处理方法:求声波波长的逐差法。(4)仪器调整使用方法:双踪示波器和函数信号发生器的正确调节和使用方法。 【实验目的】 1.学习用驻波共振法和相位比较法测量超声波在空气中的传播速度。 2.了解压电换能器的功能。 3.学习用逐差法处理数据。 【实验仪器】 SVX-5型声速测试仪信号源、SV-DH系列声速测试仪、双踪示波器等

【实验原理】 频率介于20Hz ~20kHz 的机械波振动在弹性介质中的传播就形成声波,介于20kHz ~500MHz 的称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射和会聚等优点,声速实验所采用的声波频率一般都在20KHz ~60kHz 之间。在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器、效果最佳。 根据声波各参量之间的关系可知f ?=λυ,其中υ为波速, λ为波长,f 为频率。 图4-5-1共振法测量声速实验装置 在实验中,可以通过测定声波的波长λ和频率f 求声速。声波的频率f 可以直接从低频信号发生器(信号源)上读出,而声波的波长λ则常用相位比较法(行波法)和共振干涉法(驻波法)来测量。 图4-5-2 相位比较法测量声速实验装置 1.相位比较法 实验装置接线如图4-5-2所示,置示波器功能于X -Y 方式。当S1发出的平面超声波通过媒质到达接收器S2,合成振动方程为:

声速的测定

实验3 声速测定 【实验目的】 1.了解超声波的产生、发射和接收方法。 2.用驻波法、行波法和时差法测量声速。 【实验仪器】 声速测试仪,示波器,声速测试仪信号源等。 【预习要求】 1. 确定实验步骤。 2. 列出数据记录表格。 【实验依据】 声波的传播速度与其频率和波长的关系为 =λ (1) v? f 由(1)式可知,测得声波的频率和波长,就可得到声速.同样,传播速度亦可用 = (2) v/ t L 表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速. 高于20kHz称为超声波。由于超声波具有波长短,易于定向发射、易被反射等优点.在超声波段进行声速测量可以在短距离较精确地测出声速。声速实验所采用的声波频率一般都在20~60kHz之间,在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。这种压电陶瓷是利用压电效应和磁致伸缩效应实现电磁振动与机械振动的相互转换。压电陶瓷制成的换能器(探头)如图8-1所示。 图 8-1 纵向换能器的结构简图 压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。声速教学实验中所用的大多数采用纵向(振动)换能器。 【实验内容与方法】 1.共振干涉法(驻波法)测声速

实验装置如图8-2 所示。 (a) 驻波法、相位法连线图 图中S 1和S 2为压电晶体换能器,S 1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出一近似的平面声波;S 2 为超声波接收器,声波传至它的接收面上时,再被反射。当S 1 和S 2的表面互相平行时,声波就在两个平面间来回反射,当两个平面间距L 为半波长的整倍数,即 ,2,1,0,2==n n L λ (3) 时,来回声波的波峰与波峰、波谷与波谷正好重叠,形成驻波。 因为接收器S 2 的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹.本实验测量的是声压,所以当形成驻波时,接收器的输出会出现明显增大,从示波器上观察到的电压信号幅值也是极大值(如图8-3)。

超声波测声速实验报告

实验名称:超声波测声速实验报告 一、实验目的 (1)、了解超声波的发射和接收方法。 (2)、加深对振动合成、波动干涉等理论知识的理解。 (3)、掌握用干涉法和相位法测声速。 二、实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长:由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分别是: 叠加后合成波为:

的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 因此只要测得相邻两波腹(或波节)的位置Xn、Xn-1即可得波长。 相位比较法测波长:从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:φ=2∏x/λ,其中λ是波长,x为S1和S2之间距离)。因为x改变一个波长时,相位差就改变2∏。利用李萨如图形就可以测得超声波的波长。 三、实验仪器 超声声速测定仪:主要部件是两个压电陶瓷换能器和一个游标卡尺。函数信号发生器:提供一定频率的信号,使之等于系统的谐振频率。示波器:示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的李萨如图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 四、实验内容

1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。 五、实验数据及处理: f=34kHz; Vp-p=5V; L=3.976cm; 六、实验结论: 波长λ=1.0612cm; 由此声速经测算为v=(354±3)m/s; U=0.8% 七、思考题: 1.固定距离,改变频率,以求声速。是否可行? 答:不行,由“v = f λ”,距离一定后使得波长无法计算。 2.各种气体中的声速是否相同?为什么? 答:不同,因为不同气体的密度不同,声波在不同介质中波长改变,根据公式可得结论。 如有侵权请联系告知删除,感谢你们的配合!

相关文档
相关文档 最新文档