文档库 最新最全的文档下载
当前位置:文档库 › 印记基因研究进展

印记基因研究进展

印记基因研究进展
印记基因研究进展

转基因研究的现状及发展

转基因研究的现状及发展 转基因作物是当今世界各国现代生物技术产业研究的热点,中国的转基因生物技术发展一、我国转基因作物的发展现状迅速,由于科学界对转基因作物对人类及生态环世界上最早的转基因作物诞生于年,是一境利与弊的争论,措政府应制定相应的政策、施对到种含有抗生素药类抗体的烟草。世纪年代,其进行安全管理。本文论述了转基因作物在国际农业生物技术已逐渐成为各国现代生物技术产业研国内的发展现状,分析了转基因作物对人类及生态环境的利与弊以及关于我国转基因作物安全管究的热点。 转基因技术的应用 1.在畜牧兽医中的应用 应用于动物抗病育种转基因技术可以用于动物抗病育种,通过克隆特定基因组中的某些编码片段,对之加以一定形式的修饰以后转入畜禽基因组,如果转基因在宿主基因组能得以表达,那么畜禽对该种病毒的感染应具有一定的抵抗能力,或者应能够减轻该种病毒侵染时对机体带来的危害。(其用于遗传育种,不仅可以加速改良的进程,使选择的效率提高,改良的机会增多,并且不会受到有性繁殖的限制。)例如Clements等将绵羊髓鞘脱落病毒的表壳蛋白基因转入绵羊,获得的转基因动物抗病力明显提高;丘才良把一种寒带比目鱼抗冻基因成功地转移到大西洋鲑中,为提高某些鱼类的抗寒能力做了积极的尝试。 2.在医学领域中的应用 用于生产药用蛋白用转基因动物的乳腺生产重组蛋白(乳腺生物反应器)可能是转基因动物的最大应用,这也是世界范围内转基因研究的热点之一。Swamdom (1992)用β-球蛋白的4个核酸酶I的高敏位点与人的两个基因相连,融合基因产生的转基因猪与鼠的原型相似。目前,把转基因动物当作生物反应器来生产药用蛋白已经受到国际社会的极大关注,不仅各国政府投资,一些私人集团也不惜投入大量资金加以研究和开发。 3.转基因的应用存在的问题及展望 (1)转基因表达水平低,许多转基因的表达强烈地位受着其宿主染色体上整合位点的影响,往往出现异位表达和个体发育不适宜阶段表达,影响转基因表达能力或基因表达的组织特异性,从而使大部分转基因表达水平极低,极少部分基因表达水平过高。 (2)难以控制转基因在宿主基因组中的行为,转基因随机整合于动物的基因组中,可能会引起宿生细胞染色体的插入突变,还会造成插入位点的基因片段丢失,插入位点周围序列的倍增及基因的转移,也可能激活正常状态下处于关闭状态的基因。 (3)不了解哪些基因控制多数生理过程,不了解基因表达的发育控制和组织特异性控制的机制。 (4)制作转基因动物的效率低,这是目前几乎所有从事转基因动物研究的实验室都面临的问题,也是制约着这项技术广泛应用的关键。 (5)对传统伦理是一种挑战,对人类的生存有一定的负面作用等。 当然,我们不能因为这些缺点的存在就否定转基因技术的研究价值。因为它作为一种新兴的生物技术,配合其他相关的生物技术将具有广阔的应用前景。随着这一技术日趋成熟,许多问题有望逐步得到解决。

肿瘤基因治疗的最新进展

肿瘤基因治疗的最新进展 王佩星 (徐州师范大学科文学院 08生物技术 088316103) 摘要:癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。癌症的基因治疗目前主要是用复制缺陷型载体转运抗血管生成因子、抑癌基因、前药活化基因(如HSV-1胸腺嘧啶激酶)以及免疫刺激基因。主要抗肿瘤机制为:抑制肿瘤细胞生长、诱导肿瘤细胞凋亡、诱导抗肿瘤免疫反应、提高肿瘤细胞对化疗的敏感性、提高肿瘤细胞对放疗的敏感性、切断肿瘤细胞的营养供应。 关键词:肿瘤、基因治疗、免疫、原癌基因、抑癌基因 The latest progress of cancer gene therapy WangPeiXing (xuzhou normal university institute of biotechnology 088316103 foremen who 2008) Abstract: the cancer is a genetic disease, its occurrence, development and recurrence are associated with genetic variation, loss, deformity related. Human body cell carries oncogenes and tumor-suppressor genes. Cancer gene therapy is now primarily with copy DCF with carrier transport antiangiogenic factors, tumor-suppressor genes, before medicine activated genes (such as HSV - 1 thymine bases kinase) and immune irritancy genes. Main antitumor mechanism for: inhibiting tumor cell growth, inducing tumor cell apoptosis, inducing antineoplastic immune response, improving the sensitivity of the tumor cells to chemotherapy, radiotherapy of tumor cells to improve sensitivity, cut tumor cells to nutrition. Keywords: tumor, gene therapy, immunity, protocarcinogenic gene, tumor-suppressor genes 从本质上来讲,癌症是一种基因病,其发生、发展与复发均与基因的变异、缺失、畸形相关。人体细胞携带着癌基因和抑癌基因。正常情况下,这两种基因相互拮抗,维持协调与平衡,对细胞的生长、增殖和衰亡进行精确的调控。在遗传、环境、免疫和精神等多种内、外因素的作用下,人体的这一基因平衡被打破,从而引起细胞增殖失控,导致肿瘤发生。基因治疗的策略有基因替代、基因修复、基因添加、基因失活,目前临床使用的最主要方式是基因添加。针对肿瘤的特异性分子靶点设计肿瘤治疗方案,具有治疗特异性强、效果显著、基本不损伤正常组织的优点。这种肿瘤靶向治疗是肿瘤治疗中最有前景的方案。 1.肿瘤基因治疗的历史进展 肿瘤、艾滋病、遗传病是困扰人们的三大疾病,对肿瘤的根治是人们一直迫不及待想要实现的愿望。

【免费下载】真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

课程论文 转基因作物的研究进展

生物与环境工程学院课程论文 转基因作物的研究进展 学生姓名: 学号: 专业/班级: 课程名称:生物工程原理 指导教师:教授 生物与环境工程学院 2011年5月

转基因作物的研究进展 摘要:人们将所需要的外源基因(如高产、抗病虫害优质基因) 定向导入作物细胞中, 使其在新的作物中稳定遗传和表现,产生转基因作物新品种, 是大幅度提高作物产量的一项新技术。本文先描述了转基因作物的发展进程,对其基因问题的研究作了讨论,并列出转基因作物目前存在的主要问题并作分析,最后对此项技术作出展望。 关键词:转基因作物;DNA技术;基因导入;安全性 前言 转基因植物(transgenic plant),是指基因工程中运用DNA 技术将外源基因整合于受体植物基因组、改变其遗传组成后产生的植物及其后代。转基因植物的研究主要在于改进植物的品质,改变生长周期等提高其经济价值或实用价值。[ 1 ]其主要范围是在作物方面,如可食用的大豆、玉米等,或者可投入生产的棉花等作物。 从表面上看来,转基因作物同普通植物似乎没有任何区别,它只是多了能使它产生额外特性的基因。从1983年以来,生物学家已经知道怎样将外来基因移植到某种植物的脱氧核糖核酸中去,以便使它具有某种新的特性:抗除莠剂的特性,抗植物病毒的特性,抗某种害虫的特性。[ 2 ]这个基因可以来自于任何一种生命体:细菌、病毒、昆虫等。这样,通过生物工程技术,人们可以给某种作物注入一种靠杂交方式根本无法获得的特性,这是人类9000年作物栽培史上的一场空前革命。[ 3 ] 1 转基因作物的发展进程 转基因作物的研究最早始于20世纪80年代初期。1983年,全球第一例转基因烟草在美国问世。1986年,首批转基因抗虫和抗除草剂棉花进入田间试验。1996年,美国最早开始商业化生产和销售转基因作物(包括大豆、玉米、油菜、

基因治疗研究进展_虎艳

基因治疗研究进展 虎 艳 (甘肃省张掖医学高等专科学校 734000) 摘 要 基因治疗是21世纪具有很大发展前景的新医疗技术,有望成为人类战胜疾病的利器。本文阐述了基因治疗技术的发展和应用进展。 关键词 基因治疗 载体 癌基因 基因治疗(genetherapy)是医学领域中发展起来的一项新技术,它主要是通过向靶细胞或组织引入外源基因DNA或RNA片段,来纠正或补偿基因的缺陷,关闭或抑制异常基因的表达,从而达到治疗疾病的目的。基因治疗通常包括基因替代、基因修饰、基因修正、基因抑制或失活等。上世纪80年代初,Anders on首先阐述了基因治疗的概念。1990年美国的B lease等成功地进行了世界上首例临床基因治疗,即对腺苷脱氨酶(adenosinedeam inase,ADA)缺陷病人进行了基因治疗。1991年我国首例基因治疗B型血友病也获得成功[2]。目前,基因治疗已从遗传病扩展到心血管疾病、肿瘤、神经系统疾病及传染病等。此外,基因治疗也能用于亚健康状态的治疗,如疲劳、肥胖、脱发、衰老等。然而基因治疗依然存在诸如缺少高效的传递系统、缺少持续稳定的表达和寄主产生免疫反应等一系列问题。但随着科学家对人类基因及其功能、疾病发病的分子机制研究的不断深入,不久的将来基因治疗一定会给人类健康事业带来深远的影响。 1 基因治疗的方法 基因治疗有两种途径:①把一个健康的正常基因拷贝插入病变靶细胞以补偿缺陷基因;②引入经过改造的基因来赋予细胞新的特性。目前基因治疗常用的技术有体内疗法(in vivo)和体外疗法(ex vivo)两种。1.1 体内疗法 体内疗法是将含外源基因的重组病毒、脂质体或裸DNA直接导入受体体内有关的器官组织和细胞内,以达到治疗目的。这是一种操作简便易行的方法,如静脉注射、肌肉注射、器官内灌输、皮下包埋等,但其缺点是基因转染率较低,疗效短。例如在遗传性疾病的基因治疗方面,以腺病毒等为载体的体内疗法常见于囊性纤维变性(cystic fibr osis,CF)的基因治疗研究。CF为一种白种人常见的致死性疾病,是累及少数器官系统的常染色体隐性遗传病,该病是由于跨膜转导因子(cystic fibrosis trans membrane conductance regulat or,CFTR)基因发生突变导致上皮细胞氯离子通道异常,从而使肺、胃肠道、胰腺和肝胆系统等多种器官功能受损。在CF累及的器官中目前只有肺可作为基因治疗的靶器官,载体主要是腺病毒,还有脂质体、质粒和与腺相关病毒载体。1.2 体外疗法 目前研究和应用较多的还是体外疗法,即将有基因缺陷的细胞取出,在体外将外源基因导入到载体细胞,然后将基因转染后的细胞回输给受者,使携有外源基因的载体细胞在体内表达治疗产物,以达到治疗目的。例如,1991年复旦大学遗传学研究所与第二军医大学长海医院血液科合作进行的血友病B 基因治疗就是利用皮肤成纤维细胞为靶细胞的体外疗法。该方案应用XL C I X和N2C MV I XC9逆转录病毒载体转染患者的成纤维细胞,以细胞胶原悬液注射到患者皮下,使患者血浆中F I X抗原和F I X活性升高1~2倍,并持续两年以上,患者鼻出血等症状有所好转,每年所需输血次数也减少。此后又进行了2例血友病的基因治疗,跟踪4~7年未发现与基因治疗相关的毒副作用,但转入的F I X表达水平仍有待进一步提高[2]。 另外,W ils on等应用肝细胞为靶细胞的体外疗法治疗了家庭性高胆固醇血症(fam ilial hyperchlester olae2 m ia,FH)。FH是一种由于低密度脂蛋白受体(l ow density lipop r otein recep t or,LDLR)功能或表达异常所致的遗传病。W ils on等首先切除患者部分肝以获取原代培养的肝细胞,然后在体外用含LDLR cDNA的逆转录病毒载体转染后回输,经门静脉注射植入肝脏。治疗后患者血液中LDL水平较治疗前下降约30%,LDL/ HDL(低密度脂蛋白/高密度脂蛋白)之比从治疗前10~13降至5~8,这一水平维持了18个月以上。由于该方案需要切除患者约1/3的肝脏,目前已停止临床应用[2]。 2基因治疗的载体 基因治疗载体可分病毒性载体和非病毒性载体两大类。 2.1 病毒性载体 包括逆转录病毒(R t)、腺病毒(Ad)、疱疹病毒(HS V)及腺相关病毒(AAV)等。 2.1.1 逆转录病毒载体 逆转录病毒(R t)是一类可在感染细胞内将其RNA反转录为DNA的病毒。R t最大的优点是可以有效地整合到靶细胞的基因组中,并稳定持久地表达所带的外源基因,病毒基因组以转座的方式整合,其基因组不会发生重排。因此所携带的外源基因也不会改变,而且转染率高。 2.1.2 腺病毒载体 腺病毒(Ad)是一种线性双链

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

转基因动物技术应用研究进展汇总

转基因动物技术应用研究进展 摘要:本文主要对动物转基因技术发展状况作了概述,重点是近年发展的提高转基因效率的非定点整合转基因方法, 如睾丸转基因法和卵巢转基因法; 提高转基因精确性的定点整合转基因的基因打靶法作了介绍。然后对转基因技术的应用作了论述,最后对转基因技术的发展前景作了展望。 关键字:动物转基因技术;应用;展望 Progress on Techniques for Producing Transgenic Animals And their Application Abstract: This review describes the recently developed animal gene transfer techniques, including gene transfer into the testis and ovary for easily making non-site specific methods; gene targeting in embryonic stem cells, somatic cells and primordial germ cells for site specific methods.The application and prospect of transgenic technology was also discussed. Key words: animal gene transfer technique; application;prospect 动物转基因技术是将外源基因移入动物细胞并整合到基因组中, 从而使其得以表达。自Palmiter等[1] (1982)把大鼠生长激素基因导入小鼠受精卵获得超级巨鼠以来,世界各国科学家对转基因技术应用于动物生产的研究产生了极大的兴趣,并相继在兔、羊、猪、牛、鸡、鱼等动物上获得转基因成功。转基因动物研究是近年来生命科学中最热门、发展最快的领域之一,其应用已广泛渗透于分子生物学、发育生物学、免疫学、制药及畜牧育种等各个研究领域中。这项技术正在对动物生产产生一场新的革命,在提高生长速度、生产性能,改善产品品质、抗病育种、基因治疗等方面取得了可喜的进展,显示出诱人的应用前景。 1 转基因动物技术 1.1 显微注射法 这一方法是发展最早,目前应用最广泛和最为有效的制作转基因动物的方法,创始人是Jaenisch和Mintz等,Gorden等[2]和最先通过此法获得转基因动物。其基本原理是:通过显微操作仪将外源基因直接用注射器注入受精卵,利用受精卵繁殖过程中DNA的复制过程,将外源基因整合到DNA中,发育成转基因动物。 1.2 逆转录病毒载体导入法 将目的基因重组到逆转录病毒载体上,制成高滴度的病毒颗粒,人为感染着床前后的胚胎,

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

小麦转基因研究进展

转基因小麦研究进展及前景 摘要:自第一株转基因小麦报道以来,小麦转基因育种研究发展迅速,通过转基因技术实现的小麦遗传转化弥补了经典小麦育种的不足,突破了可利用基因库的限制,取得了可喜的进展。简要介绍了基因枪法、农杆菌介导法和花粉管通道法等基因转化方法在小麦遗传转化中的应用,讨论了转基因技术在获得抗除草剂、抗病虫、抗逆、改良品质和雄性不育转基因小麦植株等方面的应用现状及其存在的主要问题与对策。 关键词:小麦;转基因;分子育种;进展 采用远缘杂交技术将小麦野生近缘物种中的有益外源基因导入小麦栽培品种,对其抗性、品质、产量的提高发挥了重要作用。但由于双亲亲缘关系较远造成杂交不结实、杂种不育、杂种后代长期分离、预见性差,使该技术在小麦遗传改良上的应用受到一定限制。 植物转基因技术被证明是进行外源基因定向转移独特而有力的手段,一定程度上补充或改进了传统的育种方法。通过植物遗传转化技术,可以按照需要,将有遗传信息的DNA 片段即目的基因进行人工重组,在离体条件下转入宿主细胞进行复制、表达,定向改造植物,可以打破基因流的界限,而且大大缩短育种周期。小麦是举世公认的最难转化的重要农作物之一,且转基因研究起步较晚,经过许多学者十几年的不懈努力,取得了长足的进展。目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效、兼抗性及多用途等诸多方面,一批抗逆性(如抗病、抗虫、抗除草剂)转基因作物已进入商品化生产阶段。美国研制成功的世界第一例抗草甘磷除草剂转基因小麦已经通过安全性试验;抗草胺膦转基因小麦、抗咪唑啉酮转基因小麦、高蛋白转基因小麦、抗虫和耐镇草宁除草剂转基因小麦、抗蚜虫转基因小麦、抗小麦黄花叶病毒转基因小麦,以及抗白粉病、赤霉病和黄矮病的转基因小麦正在田间释放[1,2];高分子量谷蛋白亚基转基因小麦[3]、转Trx-S 基因抗穗发芽小麦新品系已进入中试阶段[4]。近年来,中国在小麦转基因方面也取得了初步的进展,并获得了一批具有抗病虫、抗逆境及改善品质的转基因小麦新材料,部分品系已经进入环境释放阶段。本文概述了小麦转基因研究常用遗传转化技术及其在小麦遗传改良中的应用,讨论了存在的主要问题及采取的应对措施。 1 小麦转基因技术 小麦转基因技术是指用人工方法将外源基因或DNA 导入小麦细胞,使之稳定地整合、表达并遗传的综合技术。小麦转基因技术可根据转化目的基因否需要通过组织培养再生植株分为两大类,第一类需要通过组织培养,常用的方法有农杆菌介导法、基因枪介导法、花粉管通道法等;第二类不需要通过组织培养,如PEG法、电激法等。在小麦遗传改良中应用最广泛的是第一类方法。 1.1 花粉管通道法 中国学者周光宇1974 年提出的DNA 片段杂交假说是花粉管通道法的理论基础,他于1983 年建立了花粉管通道法,该技术利用植物授粉后花粉萌发形成的花粉管,将外源DNA 送入胚囊中尚不具备正常细胞壁的合子。利用该法进行基因转移的工作主要集中在中国。1992 年,周文麟等通过花粉管法将C4作物的DNA 导入小麦,获得了具有C4作物若干性状的转“基因”后代[5]。随后,曾君祉等利用该法将带有GUS基因的pBI121 质粒导入小山3号,获得 5株转基因植株,转化率为4.7%[6]。阎新甫等将抗白粉病的大麦DNA导入花76,既获得了符合遗传规律的稳定抗病后代,还明确了抗白粉病基因由一对显性基因控制[7]。Ziberstein A 等将质粒DNA 涂于授粉的柱头,提高了转化频率,并完成后代分析和分子鉴定[8]。成卓敏等将大麦黄矮病毒GPV 株系的外壳蛋白基因导入小麦品种,获得了抗黄矮病毒GPV 的转基

基因治疗的研究现状以及应用前景分析

基因治疗的研究现状以及应用前景分析 摘要: 基因治疗是一种通过基因水平的操作而达到治疗或预防的高新技 术。可治疗包括遗传性疾病、癌症、感染性疾病、心血管疾病和自身 免疫性疾病在内的多种疾病。近几年来基因治疗在全球范围内虽然取 得了快速发展,但也遇到了很多技术、伦理以及法律问题。未来基因 治疗的主要目 标是在法律和伦理要求范围内,开发更加安全高效的基因导入系统, 更好的服务于人类。本文主要论述了基因治疗的研究现状,并在此基 础上分析了其应用前景。 关键词:基因治疗,研究现状,应用前景 Abstract: ?Gene therapy is a new technology by which people can cute and prevent many diseases at the level of genes, such as,genetic disease,infectional disease,cardiovascular disease and autoimmune disease.At the past years , gene therapy has been developed all around the world , however , it has also come across some probloms , including technology ,laws and ethics. At the future , the main aim of gene therapy is to develop more safe and efficient gene delivery system within the limits of laws and ethics .The research status and application prospect of gene therapy are discussed in this paper.

环境基因组学的研究进展及其应用

环境基因组学的研究进展及其应用 贾海鹰 张徐祥 孙石磊 赵大勇 程树培* (南京大学,环境学院,南京,210093) E-mail(jhy194@https://www.wendangku.net/doc/b218446572.html,) 摘 要:本文系统地介绍了环境基因组学的基本概念、研究的主流技术平台及其在环境污染控制、健康风险检测与评价等方面地应用,并阐明了环境基因组学与生物信息学两者之间的关系。环境基因组学在分子水平上揭示了环境污染物与生物之间的相互作用,为检测、控制环境污染维护环境健康注入了新的活力。 关键词:环境基因组学 生物信息学 健康风险评价 环境污染 环境健康 1.引言 2003年4月14日,人类基因组计划(Human Genome Project)顺利完成。HGP成功地绘制出了遗传图谱、物理图谱、序列图谱和转录图谱4张图谱。这标志着人类基因组计划的所有目标全部实现。至此,HGP的研究发生了翻天覆地的变化,已从结构基因组学研究时代进入了功能基因组(后基因组)时代[1-2],因此也就有了“人类后基因组计划”。HGP正朝着生物信息科学、计算机生物技术、数据处理、知识产权及社会伦理学研究等多方面发展,对生命科学、环境科学、医疗卫生、食品制药、人文科学各领域产生了广泛而深远的影响。环境基因组学(environmental genomics)是在人类基因组基础上发展的功能基因组内容之一,由基因组学和环境科学交叉融合而成,是一个近期发展起来的新型边缘学科,是基因组学技术和成果在环境污染保护与控制和生态风险评价中的应用,在其发展的短短的几年时间内已渗透到环境科学研究的各个研究领域并发挥着日益重要的作用。 2.环境基因组学的概念与定义 至今,国内外学者对环境基因组学还没有统一明确的定义。但是,大多数学者认为,环境基因组学(environmental genomics)的概念与毒理基因组学(toxicogenomics)密切相关。自从1999年Nuwaysir等[3]首次提出毒理基因组学概念至今,在短短的八年的时间里这一概念不断地发展和完善着。目前人们普遍采纳的定义有两种,一种是美国国家毒理学规划机构给出的定义[3]:毒物基因组学是研究外来化学物对基因活性和基因产物的影响及相互作用的科学;另一种是由世界卫生组织给出的定义[3],认为毒物基因组学是一门与遗传学、基因组水平上RNA表达(转录组学) 、细胞和组织范围的蛋白表达(蛋白质组学)、代谢谱(代谢组学) 、生物信息学和常规毒理学结合,以阐明化学物作用模式和基因-环境相互作用的潜在意义的科学。1998年4月4日,美国国会顾问环境卫生科学委员会正式投资专项基金进行环境基因组计划研究,其目的是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因,鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度方面的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库,把公用的多态性应用于社会、法律和伦理学[4-7]。2001年,Miller 提出环境基因组(Environmental Genomics)是在人类基因组(HGP)基础上发展起来的后 - 1 -

基因组研究进展作业 (2)

通过转录组测序我们得到了某木本植物A的一条EST(ExpressedSequenceTag)序列(核基因组),同时发现这个EST序列的表达量在干旱胁迫下明显升高,且本植物A目前没有可参考的基因组序列,但它的同源性与毛果杨(Populustrichocarpa)很高。 论述:(2000-3000字,可以加相关的图示说明) 1.你如何判断这个EST序列是否是一个完整的ORF(OpenReadingFrame)。如果不完整,我们可以通过什么样的方法得到它完整的ORF,并简要说明原理? 2.通过实验1.得到这个EST序列的完整ORF后,我们如何来初步预测它的生物学功能? 3.我们可以通过哪些实验方法对这个ORF所编码的蛋白质进行功能研究,并请说明设计这些实验的目的和必要性,以及原理。 EST简介 EST(Expressed Sequence Tag,表达序列标签)是指通过对cDNA 文库随机挑取的克隆 进行大规模一步法测序所获得的cDNA 的5'或3'端序列,长度一般为300~500bp,EST 是基因的“窗口”,可代表生物体组织某一时空的表达基因,故称之为“表达序列标签”。EST 概念提出后,被广泛应用于基因克隆、功能分析等方面,直接推动了人类基因组计划提前 完成;EST 技术也是基因芯片技术的基础,将在执行EST 计划中所获得的序列点制成芯片,成为了研究基因功能的强大平台。 一.ORF完整性的判断 ORF(开放阅读框)是起始密码子和终止密码子之间的碱基序列,是潜在的蛋白质编码区。判断ORF完整性可以采用Kozak 规则预测以及软件预测两种方法。 ORF的一般规律: a. ORF通常不会出现在重复片段区域 b. 随机出现较长ORF的概率很小,因此,当ORF较长时可信度较高 c. 根据是否存在Kozak序列(ACCACCAUGG)判断起始位点 d.寻找起始密码子上游是否存在核糖体结合位点(起始密码子上游约8~13核苷酸处,AGGAGG)

相关文档
相关文档 最新文档