文档库 最新最全的文档下载
当前位置:文档库 › 植物基因组学的的研究进展

植物基因组学的的研究进展

植物基因组学的的研究进展
植物基因组学的的研究进展

基因组学课程论文

题目:植物基因组学的的研究进展姓名:秦冉

学号:11316040

植物基因组学的的研究进展

摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。本文主要对拟南芥、水稻2种重要的模式植物在结构基因组学、比较基因组学、功能基因组学等领域的研究进展以及研究所使用的技术方法进行简单介绍。

关键词:植物;基因组学;研究进展

The recent progress in plant genomics research

Abstract: With the completion of genome sequencing ofthe model plant-- Arabid opsis and rice,more and more researches on plant genomics emerge in recent yea rs. The research progress of the 2 important model plant--Arabidopsis and rice in structural genomics,comparative genomics,functional genomics and technology methods used in this research are introduced briefly in this paper. Keywords:plant; genomics; research advances

前言

基因组是1924年提出用于描述生物的全部基因和染色体组成的概念。1986年由美国科学家Thomas Roderick提出的基因组学是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱)、核苷酸序列分析、基因定位和基因功能分析的一门科学。自从1990年人类基因组计划实施以来,基因组学发生了翻天覆地的变化,已发展成了一门生命科学的前沿和热点领域。而植物基因组研究与其他真核生物和人类基因组研究有很大的不同。首先,不同植物的基因组大小即使在亲缘关系非常近的种类之间差别也很大; 其次,很多植物是异源多倍体,即便是二倍体植物中有些种类也存在较为广泛的体细胞内多倍化( endopolyp loidy)现象[1]。基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能基因组学,即“后基因组计划”,是结构基因组研究的延伸,利用结构基因组提供的遗传信息,利用表达序列标签,建立以转录图谱为基础的功能图谱( 基因组表达图谱),系统研究基因的功能,植物功能基因组学是当前植物学最前沿的领域之一。③蛋白质组学,是功能基因组学的深入,因为基因的功能最终将以蛋白质的形式体现。

近来,以水稻( Oryza sativa)和拟南芥(Arabadopsis thaliana)为代表的植物基因组研究取得了很大进展,如植物分子连锁遗传图谱的构建,在此基础上,已经在植物基因组的组织结构和基因组进化等方面得到了有重要价值的结论; 植物基因组物理作图和序列测定的研究集中于拟南芥和水稻上; 植物比较基因组作图证实在许多近缘植物甚至整个植物界的部分染色体区段或整个基因组中都存在着广泛的基因共线性,使得我们可以利用同源性对各种植物的基因组结构进行研究、分析和利用。本文主要对拟南芥、水稻2种重要的模

式植物在结构基因组学、功能基因组学、比较基因组学等研究领域的研究进展进行归纳总结。

1 拟南芥基因组学的研究

1.1 拟南芥结构基因组学研究

美国自1990 年启动“植物基因组学”计划,2000 年底公布了模式植物拟南芥的全部序列。通过分析基因组序列能够获得基因结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。Bevan[2]对拟南芥第四染色体上1. 9 Mb 的片段进行了全序列测定. 结果发现:平均每4. 8 Kb 就有一个基因存在;54%的基因与GenBank 中的基因具有同源性;约20%的基因在该染色体片段上以基因家族的形式存在; 该染色体片段上共发现五种重复序列成分,约占所测序列的19% 左右:分别为:非编码区中的重复序列、逆转座子成分、叶绿体DNA片段、散布重复的基因家族成员和串联重复的基因家族成员。

高等植物中,拟南芥的基因组最小且具有很少的重复DNA 序列,快速复性序列仅占整个基因组的10% 左右. 两种相关的串联重复序列(180 bp 和500 bp)都定位于拟南芥染色体的中心粒异染区. 另一类串联重复序列( 160 bp)定位于染色体的中部. 第四种高度重复序列是端粒序列. 在拟南芥的1号染色体中心粒区的一个串联重复中发现了一个退化的端粒序列,紧接该序列是一个在遗传作图时有五个位点的重复单元,rDNA 的重复单位大小约为10 Kb,约占整个核基因组的8% 左右。5SrRNA 的编码基因是以497 bp 为重复单位的串联重复序列,约占基因组的0. 7%[3]。

在拟南芥中还鉴定出了类似逆转座子的成分)Ta1和其相关家族以及转座因子Tat1 和Tag 1,它们都相对具有较低的拷贝数。在拟南芥的突变体中已经鉴定出了多个遗传标记位点,包括RFLP、PAPD、SSR 等标记。已经发展了两套重组近交系作图群体,利用这些作图群体,已经构建了高密度的拟南芥分子标记遗传连锁图谱。拟南芥物理作图利用粘粒载体,YAC( YeastArtif icial Chromosome)载体进行,已经完成了拟南芥高密度物理图谱的构建。在拟南芥中已利用图位克隆的方法克隆了许多基因[4-5]。

1.2 拟南芥功能基因组学研究

2001 年开始,美国全面启动2010 年计划,目标是到2010 年确定拟南芥中所有基因的功能。中国国家自然科学基金委员会已于2001 年快速启动“拟南芥全部转录调控因子蛋白组学研究”重大国际合作研究项目,2004 年3月,研究取得了重要进展: 共克隆了44 个拟南芥转录调控因子家族中的1 282 个基因,获得了拟南芥所有已知和预测的1 864 个转录因子的序列,利用cDNA ( 互补DNA )微阵列芯片,检测了拟南芥幼苗的转录因子在光调控下的表达,所有表达的基因占整个转录因子的84% ,并通过蛋白质表达实验验证已克隆的拟南芥转录调控因子融合基因中85%以上有一定量的蛋白质表达。与基因组的全序列测定同时进行的拟南芥表达序列标签( expressedsequence tags)计划也已取得巨

大进展。据网站w ww.Arabido psis.or g 发布的信息表明,至2002 年中期拟南芥的ESTs 标记数已达174 625个。EST 计划的不足在于随机测序难以得到那些低丰度表达的基因和在特殊环境条件下( 如生物胁迫或非生物胁迫)诱导表达的基因。为了弥补不足,进行基因组全序列测定。通过分析基因组序列能够获得基因结构的完整信息,如基因在染色体上的排列顺序,基因间的间隔区结构,启动子的结构以及内含子的分布等。

拟南芥基因组全序列测定的完成对整个植物科学具有重要的意义,例如: 可以用于比较分析真核生物中的转录调节因子。拟南芥中约有超过5%的序列编码1500 多种转录调节因子,其中45% 是植物特有的。拟南芥中属于所有真核生物共有的转录调节因子,在其保守的DNA 结合结构域上并不完全与其它真核生物相同,大多数以其特异的线型组合排列。

2水稻基因组学的研究

2.1 遗传图谱

水稻是已知的单子叶植物中基因组最小的植物之一,基因组大小为450 Mb,共有12 条染色体。自1988年MeCoueh等[6]利用IR34583(籼)×Bulu Dalam(爪哇)的F2群体构建了第一张水稻分子连锁图谱(含135 RFLP标记)以来,高密度的图谱相继产生。近年来,随着分子遗传学的迅速发展,国际水稻基因组测序计划(International Rice GenomeSequenci ng Project,IRGSP)成员国以Nipponbare、Kasalath、IR64和Azucena等水稻品种为材料,构建了10个饱和的遗传图谱并与表型的标记进行了整合,以创造新的遗传资源。1998年,Harushima等[7]构建了一张高密度水稻遗传连锁图,包含2275个遗传标记,覆盖水稻基因组1521.6 cM。2001年Rice Genome Program(RGP)公布了包含3 267个RFLP分子标记的水稻分子连锁图。还利用次级三体和终级三体(telotrisomics)将经典遗传图和分子遗传图中的着丝粒位置确定,修正了分子图谱的方向,把RFLP标记定位到特定的染色体臂上;Wu 等[8]构建了水稻第11和第12染色体短臂末端重复基因组区域的图谱,重复基因组区域大小是2.5 Mb,表明水稻也存在大染色体片段的重复区域。上述遗传图谱在基因定位、物理图谱的构建和基因测序中发挥了或即将发挥巨大作用。

2.2 物理图谱

由于遗传图的精确性较低、分辨率有限,而物理图是对遗传图的进一步深化,并能直接应用于图位克隆技术分离目的基因[9-10]。1998年,Umehara等[11]构建了水稻第一张物理图谱,共筛选到5701个YAC,其中2117个单一YAC分配到12条染色体上,跨度216 Mb,覆盖水稻基因组的50%。接着日本水稻基因组计划(RGP)开始将YAC重叠群(contig)分解成粘粒(cosmid)DNA克隆,构建更精细的物理图谱。2001年,RGP还构建了一个覆盖270 Mb(全基因组的63%的YAC文库的物理图,由6934个YAC组成,插入片段平均长度为3 50 kb。由于YAC克隆不太稳定、插入DNA难以分离、转化效率低等原因,美国Clemson

大学基因组研究(Clemson University Genomics Institute,CUGI)又建成了两个BAC库,一个是由37000个Hindm酶切的BAC文库,插入片段平均长度为128.5 kb;另一个是有56 000个克隆的Eco R工BAC库,插入片段平均大小为120 kb,两者覆盖水稻基因组的26倍。2001年,RGP为了克服YAC克隆的局限性,又以PAC为载体构建了水稻Nipponbare 基因组文库,此文库由72 000个Sau3A I酶切克隆组成,平均插入片段长120 kb,覆盖水稻基因组的16倍。,国际水稻基因组测序计划(IRGSP)已于2002年12月宣布,利用克隆连克隆(逐步克隆)测定法(clone by clone sequencing),提前3年完成了水稻12条染色体的碱基测序工作。日本在其中发挥着主导作用,并最先以99.99%的精度完成了最长的第1条染色体的测序工作。另外,中国12家单位,于1998年至2001年利用全基因组霰弹法(w hole- genome shotgun sequencing,WGS),构建了籼稻93—11基因组工作框架图和低覆盖率的培矮64S草图,并最先向全世界公布了水稻93—11全基因组框架图。随后,美国先正达(Syngenta)公司也完成了日本晴基因组工作框架图的测序。两个框架图同时发表在20 02年4月的《Science》第296期第79~99页,它们都是对IRGSP的补充。水稻基因组框架图和全长序列的精确测定虽已基本完成,但片段之间或重叠群之间仍存在一些缺口或空隙(gap),如籼、粳两个亚种的基因组工作框架图分别覆盖了水稻全基因组的95.29%和93%,碱基准确率约99%。

当前基于物理图精确测序的图谱研究表明[12-13],水稻“日本晴”全基因组己获得372.1 Mb的高质量精确序列,余下的5%分布于12条染色体上的38个间隙(gaps)、10个着丝粒和10个端粒处;水稻全基因组预测有56278个基因位点,因为6498个基因位点编码104 32个转录本,所以总转录本为66710;如果去除15236个转座因子相关的蛋白编码基因后,共有41042个基因位点编码非转座因子相关的蛋白,平均9.4 kb含一个基因,其中约29%的基因成族出现,约71%与拟南芥基因(Arabidopsis,28000-29000个基因)享有同源性(反过来,约90%的拟南芥基因与水稻基因享有同源性)。31439个基因位点已经得到ESTs序列、全长cDNA序列、Tiling芯片检测、大规模平行测序(massively parallel sig.Nature se quencing,MPSS)检测的RNA转录水平上的确认,8226个基因位点的编码蛋白序列与功能已知的蛋白质序列相同或相似,另有13632个基因位点的编码蛋白含有已知的功能域。3 功能基因组的研究方法

3.1 芯片技术

芯片技术主要是有利于科学家在一次实验中检测了成千上万个基因表达水平的变化,或者更广泛地识别染色体上转录活性区域及甲基化等特殊区域[14]。这个技术是现代生物信息井喷时代的一个重要的检测手段。通过比较两张不同芯片的结果,就能在全基因组水平上调查各个基因的变化及其程度,这样有助于我们发现突变体中不同处理之间或者处理前后以及不同发育阶段中那些特异基因发生变化,从中寻找重要功能基因。基因芯片的设计,都是依

据已知的水稻表达序列(如EST、全长cDNA等数据库)以及IRGSP预测的水稻基因序列进行的。因此,这些基因芯片在检测未知的水稻表达序列上能力欠缺,由此产生了水稻全基因组或染色体的tiling(覆瓦式)芯片。tiling芯片是针对分析全基因组所有转录活性区域的DN A微阵列,根据各条染色体已知的序列,扩增一个个相互重叠的片段[15]或者每隔十或十几个碱基合成一段寡核苷酸探针,这样一步步覆盖整个水稻基因组或染色体[16]。一般tiling芯片由一个可操作的数目(如几十张芯片)组成,为了提高芯片的杂交质量还要求在设计的寡核苷酸探针中剔除一些高度重复区域内的探针。

3.2 大规模平行测序技术和基因表达系统分析方法

除了基因芯片采用杂交手段检测全基因组表达水平变化外,水稻基因表达的大规模分析平台里还有两个以测序为基础的检测方法:大规模平行测序技术(massively parallel signatur

e sequencing MPSS)[17]和基因表达的系统分析(serial analysis o

f gene expression,SAGE)[1

8]。两者检测的理论基础都是一个长度20 bp左右的寡核苷酸序列足以作为特定基因的识别标签.这些识别标签在表达文库中出现的频率能很好地代表特定基因体内的表达丰度。最近一篇文章报道了利用MPSS技术建立的整个基因组的水稻表达图谱[17],该研究从22个水稻mRNA文库中检测了46971553个短序列识别标签,验证和识别了大量已知的和未知的转录本。还从3个小RNA文库中检测了2953855个短序列识别标签,是目前最深入地挖掘作物中小RNA的研究工作。20~24 bp的小RNAs,包括microRNAs(简称miRNA)和short int erfering RNAs(简称siRNAs),两者都能通过序列互补与靶基因的mRNA结合并降解靶m RNA,使靶基因沉默。siRNAs还能通过DNA的甲基化或组蛋白的修饰引起靶基因的转录沉默。小RNA的研究是当今生物领域的热点之一,被公认为广泛地控制植物的各生长发育,以及生理代谢途径包括环境胁迫响应途径。MPSS技术是高度自动化的价格昂贵的检测技术,目前只掌握在少数几家实验室。由于没有芯片杂交的背景噪音,不能采用信号与背景比值的阈值来剔除假阳性,MPSS技术分析中小部分短序列识别标签的真伪难辨,但是与tilin g等基因芯片相比,大大提高了对极低表达丰度的转录活性位点的检出。

3.3 表达序列标签

表达序列标签(Expressed Sequence Tag,EST)是从cDNA 文库中随机挑取的克隆进行测序所获得的部分cDNA的5′或3′端序列,一般长为300-500bp 左右,建立这些序列的数据库即为EST 文库。基因表达的差异分析,可以通过计算某一基因片段在EST 文库中出现的频率的多少来确定。EST不仅为植物基因组遗传图谱的构建提供了大量的分子标记,而且来自不同组织和器官的EST也为基因的功能研究提供了有价值的信息,此外,E ST计划还为基因的鉴定提供了候选基因(candidates),是鉴定和发现表达基因的最快途径。EST 计划的不足之处在于通过随机测序有时难以获得那些低丰度表达的基因和那些在特殊环境条件下诱导表达的基因。

3.4 蛋白质组技术

由于基因芯片技术只能反映从基因组到R N A 的转录水平上的表达情况,而从R N A 到蛋白质须经过许多中间环节的影响,因此仅凭基因芯片技术我们还不能最终掌握生物功能具体执行者—蛋白质的整体表达状况。蛋白质组是指基因组表达的全部蛋白质及其存在方式,蛋白质组学旨在阐明生物体全部蛋白质的表达模式及功能模式,其内容包括鉴定蛋白质的表达、存在方式(修饰形式)、结构、功能和相互作用等,利用蛋白组研究植物功能基因组可以得到以下3方面信息:从基因序列预测的基因产物的翻译情况;基因产物的相对浓度;基因产物翻译后的修饰程度。蛋白质组学将基因表达的数据与植物代谢和植物表型的问题紧密连在一起,既可以用于研究植物生理机制,又可以用于研究未知功能的蛋白质[19]。蛋白质组学研究技术和方法很多,并不断发展和出现新的技术。

发展可替代或补充双向凝胶电泳的新方法已成为蛋白质组研究技术最主要的策略,目前二维色谱(2D-LC)、二维毛细管电泳(2D-CE)、液相色谱-毛细管电泳(LCCE)等新型分离技术都有补充和取代双向凝胶电泳之势。另一种策略则是以质谱技术为核心,开发质谱鸟枪法(Shot-gun)、毛细管电泳- 质谱联用(CE-MS)等新策略直接鉴定全蛋白质组混合酶解产物。随着对大规模蛋白质相互作用研究的重视,发展高通量和高精度的蛋白质相互作用检测技术也被科学家所关注。

3.5 正向遗传学与反向遗传学

传统的遗传学即正向遗传学(forward genetics)分离基因的方法,是首先研究突变体中某一已知突变性状的表现以及其遗传行为(如突变性状在后代中的传递规律、核质基因的判断、控制突变性状的基因数目等等),然后对主效基因进行染色体上的定位及精细定位,接着对定位区域内的候选基因筛选并且验证其功能,最后分离出控制突变性状的基因。这种方法被称为图位克隆法。反向遗传学(reverse genetics)是相对正向遗传学而言。是在功能基因序列发生已知突变后的基础上,对这些突变基因进行分析,研究该基因突变后在生物体内的功能作用即表型变化。在具备了水稻T-DNA、外源转座子以及内源逆转录转座子Tosl7插入突变群体和其它全基因组上已知序列突变的资源库后,水稻功能基因组学的研究正逐步由正向遗传学(突变—基因)向反向遗传学(基因—突变)发展。在水稻T-DNA或Tosl7插入突变体库应用中,多个实验室报道只有较低的频率观察到突变性状与插入标签存在连锁,部分原是在构建插入突变群体的组织培养过程中,产生了大量的非T-DNA或Tosl7等已知序列插入造成的突变体。这些现象使得先从突变体库筛选特定突变性状,再判断已知插入序列位点的基因与突变性状的连锁关系,最后分离出基因的传统正向遗传学方法困难不小。反向遗传学研究水稻基因的功能,既可以通过对插入突变库构建插入序列的旁邻序列FSTs数据库,也可以对突变库分组后进行筛选特定区域的序列突变的单株[20]。大规模的突变体的构建一方砸对反向遗传学研究带来极大的便利,另一方面这些大量突变体种子的储存、繁殖和分发则是极大的不便。加上对转基因植株种植的政策管理,也给种子的繁殖和分发形成一定

的阻碍。另外,水稻中部分功能基因的冗余在一定程度上也给反向遗传学研究方法造成了一些困难,虽然增强或过量表达基因的方法能够弥补一些不足。

4比较基因组学的研究方法

比较基因组学研究方法有两大支柱,即比较作图和比较生物信息学。基本方法是先用相同的一套cDNA 探针对不同物种进行作图,然后用生物信息学方法进行分析。现在发展成为DNA 序列来比较基因组的方法,尽管这对研究大多数种总基因组间的宏观共线(macrosy nteny)不太适用,但对研究部分区段的微观共线性(microcolinearity 或microsynteny)还是有效的。美国康乃尔大学曾确定了一套探针,在过去的几年中向50 多个研究单位进行了发放[21]。使用同一套探针,可以确定关系较远的基因组间的同源区域,也可比较不同实验室的作图结果。这套探针包括152个cDNA (67个来自水稻、63个来自燕麦、21个来自大麦、1个来自小麦)。这些cDNA 满足了以下要求: ①在Southern 分析中能与大多数禾谷类作物(水稻、小麦、大麦、燕麦、玉米、高粱和甘蔗)基因组杂交; ②在水稻中为单拷贝或低拷贝; ③基因组覆盖面大。这些探针的5′和3′端均已测序,序列已送到GenBank (序号为AA231638—AA231938)。其中78 %的DNA 序列编码的蛋白质序列与已知基因的蛋白质序列有相似性。在禾谷类作物的比较基因组学研究中,水稻常常也被当作模式植物,因为水稻上已有非常密集的分子标记及其他标记,基因组小。研究发现,其它基因组的连锁群包含有与水稻连锁群同源的区段,只是伴有复杂的重排而已。同等重要的是比较生物信息学,因为要把不同基因组当作一个整体遗传系统分析和处理还必须开发相应的算法和软件。美国开发出了一个交互显示软件以确定和显示不同种间的保守连锁区段(http :/ / probe. nal usda. gov :8300),另一个互联网站也提供了水稻基因组的比较图谱( http :/ / genome.cor nell. edu/ rice/ quickqueries)。该软件综合了水稻、玉米、燕麦和小麦的比较图谱资料,用户可以利用软件提供的一些方法研究进化关系、基因组结构及发现新基因。但比较生物信息学还需要进一步发展已适应更高层次的研究需要。对跨种、跨属、跨界的基因组比较对我们了解基因及基因组的结构、基因结构与功能的关系及DNA 变化如何导致生物多样性等有十分重要的意义。从比较遗传图谱上可发现,RLB10C 插入到RLB5 中即小麦族第1 组染色体和燕麦染色体A ,也可能是禾本科中所有Pooideae 亚科的种所共有的。与此类似,在Panicoideae 亚科的种的基因组中,则是RLB9 插入RLB7 ,RLB10 插入到RLB3 。由于RLB10 在Pooideae 和Panicoideae 两个亚科中均能见到,可以推测水稻基因组是最原始的[22] 。

以前曾假定染色体重排是随机发生的,因此可以作为确定进化时间表的依据,现在从比较基因组学的研究结果看这个假定存在一定问题。例如,普通小麦的D 染色体组与水稻基因组的共线性有11个断点[23],二者的染色体基数分别为7 和12;小麦和黑麦的基因组共线性有11 个断点[24],小麦和小伞山羊草的基因组共线性有12 个断点[22],它们的染色体

基数均为7;小麦D 染色体组与大麦基因组的共线性则没有断点。说明这些物种的形成时间显然与共线性的断点没有直接关系。但是,用比较基因组学方法可以从某种程度上判断基因组结构形成的时间早晚。例如,在玉米中DNA 片段常常重复,它们可能是多倍体发生的结果,即在早期曾是四倍体,其发生应在玉米从甘蔗[25]和高粱[26]分开之后,因为后两者的基因组没有这么多重复现象。

参考文献

[1] Galbraith D W, Harkins K R, Maddox J R, et al . Rapid Flow Cytometric Analysis o

f the Cell Cycle in Intact Plant Tissues[J]. Science, 1983, (220):1049~ 1051.

[2] BvanM, Bancroft I, Bent E, et al. Analysis of 1. 9 Mb of Cont iguous Sequence fro

m Chromosome 4 of Arbidopsi s thaliana [J] .Nature, 1998, (391):485~588.

[3] Campell B R, Song Y, Posch T E, et al . Sequence and Organization of 5S Ribosom al RNA- Encoding Genes of Arbidopsi s thalianan[J]. Gene, 1992,(112):225~ 228.

[4]刘霞,高岳芳,石玉红等.拟南芥叶绿体分裂突变体cpd111的基因定位与分析[J]. 植物学报,2 012,47(3):226~235.

[5]郭涛,黄永相,黄宣等.水稻叶色白化转绿及多分蘖矮秆基因hw-1(t)的图位克隆[J]. 作物学报,2012,38(8):1397~1406.

[6] McCouch S R,Kochert G,Yu Z H,el a1.Molecular mapping on rice chromosomes.T heor APpl Genet,1988,80:488~496.

[7] Harushima Y,Yano M,Shomura A,el a1.A high-density rice genetic linkage map with 2275 markers using a single F2 population.Genetics,1998,148:479~494.

[8] Wu J Z,Kurata N,Tanoue H,el a1.Physical mapping of duplicated genomic regio ns of two chromosomes ends in rice.Genetics,1998,150:1595~1603.

[9] Chen M,Presting G,Barbazak B,d a1.An integrated physical and genetic map of t he rice genome.Plant Celll,2002,14:537~545.

[10] Li X Y,Qian Q,Fu Z M, et a1.Control of tilling in rice.Nature,2003,422:61 8~621.

[11] Umehara Y A,Inagaki H,Tanoue Y, et a1.Construction and characterization of a r ice YAC 1ibrary for physical mapping.Mol Breeding, 1995, 1:79~89.

[12] ouyang S,Zhu W,Hamilton J,Lin H,Campbell M,Childs K,Thibaud.Nissen F,Malek RL,Lee Y,Zheng L. et al(2007). The TIGR Rice Genome AnnotatiOn Resource:improvements and new features.Nucleic Acids Res, 35:D883~887.

[13] ThnaKa T,Antonio BA,Kikuchi S,Matsumoto T,Nagamum Y,Numa H,Sakai H,Wu J,Itoh T,Sasaki T et al(2008).The Rice Annotation Project Database(RAP-DB)2008

update. Nucleic Acids Res, 36:D1028~1033.

[14] Rensink WA,Buell CR(2005).Microarray expression profiling fesources for plant ge nomics.Trends Plant Sci, 10:603-609.

[15] JiaoY,JiaP,WangX,Su N.Yu S。zllangD,MaL,FengQ,JinZ,Li L et aI(2005).A tiling microarray expression analysis of rice ctlromosome 4 suggests a chromosome·leVel regulation of tfanscription.Plant CeIl, 171641~1657.

[16] Li L, Wang X,SasidlIa R,Stolc V,Dlg W,et al(2007).Global idcntifica~tion and characcerization of t船nscriptjonaJly activc rcgions in the rice genome.Plant CeIl,,2:e29 4.

[17] Nobuta K,Venu RC,Lu C,Belo A,Vemaraju K, et al(2007).An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol.

[18] Gowda M, Wang GL, et al (2004).Robust-Long SAGE(RL-SAGE):a substantiaIly i mproved Long SAGE method for gene discovery and transcriptome analysis.Plant Physio l,l34:890~897.

[19] 梁宇.植物蛋白质组学研究进展[J].植物生态学报,2004,28(1):114~125.

[20] An G, Lee S,Kiln SH,Kim SR(2005).Molecular genetics of T-DNA in rice.Plan t Cell Physiol,46:14~22.

[21] Van Deynze AE , Sorrells ME , Park WD , et al. Theor Appl Genet, 1998 , 97:35 6~369. [ 22 ] Gale MD , Devos KM. Science, 1998 , 282:656~659.

[22] Gale MD , Devos KM. Science , 1998 , 282:656~659.

[23] Moore G, Devos KM , Wang ZM , et al. Curr Biol , 1995 , 5:737~739.

[24] Devos KM , Beales J , Nagamura Y, et al. Genome Res , 1999 ,9:825~829.

[25] Ming R , Liu SC , Lin YR , et al. Genetics, 1998 , 150:1663~1682.

[26] Pereira MG, Lee M.Theor Appl Genet, 1995 , 90:380~388.

第3章 人类基因组学

第三章人类基因组学 基因组指一个生命体的全套遗传物质。从基因组整体层次上研究各生物种群基因组的结构和功能及相互关系的科学即基因组学。基因组学的研究内容包括三个基本方面,即结构基因组学,功能基因组学和比较基因组学。 人类基因组计划(HGP)是20世纪90年代初开始,由世界多个国家参与合作的研究人类基因组的重大科研项目。其基本目标是测定人类基因组的全部DNA序列,从而为阐明人类全部基因的结构和功能,解码生命奥秘奠定基础。人类基因组计划的成果体现在人类基因组遗传图,物理图和序列图的完成,而基因图的完成还有待大量的工作。 后基因组计划(PGP)是在HGP的人类结构基因组学成果基础上的进一步探索计划,将主要探讨基因组的功能,即功能基因组学研究。由此派生了蛋白质组学,疾病基因组学,药物基因组学,环境基因组学等分支研究领域,同时也促进了比较基因组学的展开。后基因组计划研究的进展,促进了生命科学的变革,可以预见会对医学、药学和相关产业产生重大影响。 HGP的成就加速了基因定位研究的进展,也提高了基因克隆研究的效率。基因的定位与克隆是完成人类的基因图,进而解码每一个基因的结构和功能的基本研究手段。 一、基本纲要 1.掌握基因组,基因组学,结构基因组学,功能基因组学,比较基因组学,基因组医学, 后基因组医学的概念。 2.熟悉人类基因组计划(HGP)的历史,HGP的基本目标;了解遗传图,物理图,序列图,基因图的概念和构建各种图的方法原理。 3.了解RFLP,STR和SNP三代DNA遗传标记的特点。 4.熟悉后基因组计划(PGP)的各个研究领域即功能基因组学、蛋白质组学、疾病基因组学、药物基因组学,比较基因组学、生物信息学等的概念和意义。

【免费下载】真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

基因组学探究的应用前景-生物化学研究进展

基因组学探究的应用前景-生物化学研究进展20世纪90年代初,以完成人类基因组全序列测定和注释为核心任务的人类基因组计划在美国的领导下兴起.自1999年中国加入人类基因组计划到现在的10年时间里,中国基因组学得到了快速的发展,建立了先进的基因组学技术平台,并出色完成了多项重大基因组科学研究项目,对我国生命科学各个领域的发展产生了重要影响下面是小编搜集整理的基因组学探究的应用前景-生物化学研究进展的论文范文,欢迎大家阅读参考。 摘要:当代所研讨的基因组学其实是一门研讨基因组的构造框架,功用及表达产物的一门学科,据研讨基因的构造不只是蛋白质颗粒,还有许多构造复杂功用的DNA,包括三个的亚范畴,还包括构造基因组学,功用基因组学和遗传基因组学分子基因组学。最近研讨,基因组学在分子微生物药物,真菌、细菌、病毒基因,养分基因方面都有所研讨,前景是非常黑暗的而且这也是一个非常具有生命生机的新兴学科。可以造福人类,促进人类文明开展。值得去讨论。 关键词:基因组使用基因构造前景 基因组学的使用前景与剖析 养分基因组学 养分基因组学是全新的一门学问。爲什麼这麼说呢。道理很复杂,缘由也很明白,那就是以前没有人研讨过。大家都晓得的,养分是很重要的一种物质关系到我们的身心安康,所以从基因组学来研讨养分的学科是很有必要的。从中不但可以很好地效劳于人类还能是人类生

活的更好,最初还有利于基因组学的开展。养分基因组学研讨次要是养分干涉模型。随着这些功用弱小开展,全体性生物检测技术并结合了先进计算机技术生物信息学的办法的不时改良和进步,不时推进养分基因组学的开展。 毒理基因组学研讨 大家都晓得生物生活在自然界中都需求一定的进攻手腕。有些植物爲了进攻本身退化出来毒理作用,可以经过此作用来杀害入侵者或许自卫。从基因组学的方向可以研讨毒理基因组学,不但可以研讨毒理基因本身还可以爲传统毒理学检测提供更多的实际根据,阐明有毒物质怎样制毒的缘由,从而使风险评价的不确定性大大降低,目前虽然毒理基因组学只能作爲风险评价的参考,但是作爲风险评价提供所需无力的实际根据和精确的预测将会依赖独立基因组学。 乳酸菌基因组学研讨 大家都晓得酵糖类时次要的代谢产物是乳酸。乳酸杆菌是一个十分重要的菌种,所以研讨它的生理习性是十分有利于人类的,基因组学不但可以从分子角度爲我们提供研讨办法,还可以从基因角度来诠释,从事研讨乳酸杆菌的迷信家表示这是一门很有意义的学科,目前各国都在研讨这门学科以及其所带来的影响。如今迷信家重要研讨的是细菌能表达产物来自基因组的表达,所以增强研讨乳酸菌的基因组可以更好的理解基因组的表达调控翻译转录,从而破解其奥妙。 微生物药物菌功用基因组学研讨 微生物是自然界中的一支奇特的生物,形体很小却作用和影响很

植物基因功能研究方法的新进展

植物基因功能诠释研究方法的新进展 (东北农业大学,150030) 摘要:本文通过阅读大量的文献,总结了植物基因功能注释研究方法的最新进展。对每种方法的原理及优缺点做了综述,拟供初学者和作相关研究者参考。 关键词:基因功能;研究方法;新进展 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics)和以基因功能鉴定为目标的功能基因组(functional genomics)。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。功能基因组学(functional genomics)又往往被称为后基因组学(postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。[1,2]这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 自华大基因启动“千种动植物基因组参考序列谱构建计划”和“千种植物转录组研究”以来,已完成水稻、黄瓜、马铃薯、白菜等植物的基因组序列图谱绘制,并通过对大豆的重测序研究建立了高密度分子标记图谱。这将是21世纪生命科学研究的重要领域。[3]本文将对研究基因功能的新技术及其新进展作一综述。 1 利用生物信息学方法分析基因的功能 生物信息学是利用生物信息学和电子技术(互联网技术)寻找并克隆新的未知功能的基因,着重于技术和操作层面,利用生物信息学对新基因进行电子克隆,及克隆该新基因的序列后对其进行简单的功能分析,如基因的编码区、启动子区、内含子/外显子、翻译启始位点和翻译终止信号预测,基因的同源比对,编码的氨基酸辨识蛋白质,蛋白质的物理性质,蛋白质的二级/三级结构、特殊局部结构以及功能预测等[4]。 1.1 通过序列比对预测基因功能

发现毒理学的研究进展

*基金项目:国家高技术研究发展计划(863计划)基金(2002AA2Z342D 和2004A A2Z3774) 综 述 发现毒理学的研究进展 * 王全军,吴纯启,廖明阳 (军事医学科学院毒物药物研究所,国家北京药物安全评价研究中心,北京100850) [摘要] 发现毒理学又称为开发前毒理学(Predevelopmental Toxicology),是指在创新药物的研发早期,对所合成的系列新化合物实体(New Chemical Entities,NCEs)进行毒性筛选,以发现和淘汰因毒性问题而不适于继续研发的化合物,指导合成更安全的同类化合物。发现毒理学的研究既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的定义、必要性、研究内容、研究方法和我国当前的研究现状作一简述。 [关键词] 发现毒理学;新化合物实体(NCEs);毒性筛选 [中图分类号]R994 1;R965 1 [文献标识码]A [文章编号]1003-3734(2005)08-0958-04 Progresses of discovery toxicology research W ANG Quan jun,W U Chun qi,LI AO Ming yang (Institute o f Pharmacology and To xicology ,Academ y o f Military Medical Sciences ,National Beijing Center f o r Drug Sa fety Evaluation and Research ,Beijing 100850,China )[Abstract ] Discovery toxicology,also named predevelopmental toxicology,is to screen toxicities of new che mical entities (NCEs)in the discovery phase of ne w drug research,to discover and eliminate the compounds that are unsuitable for further development due to their toxicity as early as possible,and to optimize the next more safe compounds.Discovery toxicology research can break through the limitation and improve the efficiency of drug research.This article will present the concept of discovery toxicology,the essentiality of discovery toxicology research.The content,methods and current status of discovery toxicology in China are described too. [Key words ] discovery toxicology;new chemical entities(NCEs);toxicity screening 药物研发成功与否部分取决于在研发早期严格淘汰不适合进一步研发的化合物。在药物临床前阶段,毒性问题是研发失败的主要原因。在研发早期尽早发现候选化合物的潜在毒性是毒理学研究的重要问题。 多年来,新药研发越来越多地依赖于生命科学技术的研究进展。在新药设计方面,化学家参考药物作用靶、内源性配体和底物的化学结构特征,应用计算机辅助药物设计手段发现选择性作用于靶位的新药;在新药活性筛选方面,现代药物组合化学与体外高通量筛选的成功结合极大地提高了先导化合物的发现速度;在新药的药动学(ADME)研究方面,多种基于药物代谢酶或转运体的药动学筛选模型已开始应用于新药开发研究。这些新技术的成功运用大 大加快了药物研发早期的药物发现、药物合成、药效筛选的进程,从而产生大量的候选化合物。传统药物毒理学研究在时间、经费、样品消耗量和动物数等方面都花费巨大,在药物毒作用机制研究方面难以阐明一些临床使用药物的毒性机制和理想的应急解毒措施,因此传统药物毒理学无法满足因新的生物技术而产生的海量候选化合物的毒性筛选研究,成为限制整个药物研发的瓶颈。而发现毒理学(Discovery Toxicology)的研究将打破这个瓶颈,既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的含义、必要性、研究内容、研究方法和我国当前的研究现状作一简要综述。1 定义、产生背景和产生的必要性 伴随着科学技术的发展,当代毒理学的发展将 958

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

生命科学研究进展论文

RNA干涉及其应用 摘要 RNA干涉(RNAi)是将双链导入细胞引起特异基因mRNA降解的一种细胞反应过程.它是转录后基因沉默的一种。RNAi发生过程主要分为3个阶段:起始阶段,扩增阶段,效应阶段。RNAi在生物界中广泛存在.综述RNAi现象的发现、发生机制及其应用,并展望未来的研究. 关键词 RNA干涉 RNA干涉应用 RNA interference and its application Abstract Introduction of double-stranded RNA into cells can induce specific mRNA degradation. This process is called RNA interference(RNAi). It is a kind of post-transcriptional gene silencing. RNAi patlway can be divided into three step: initiation step, amplification step and effector step . RNAi exists in a wide variety of organisms. The discovery , mechanism and application were reviewed in the paper . In addition, the out look of RNAi was introduced . Key words RNA interference application RNA 干涉(RNA interference ,简称RNAi) 是将双链RNA(dsRNA) 导入细胞引起特异基因mRNA 降解的一种细胞反应过程.它是转录后基因沉默(PTGS)的种.1998 年, Fire 等人[1]在利用反义核酸技术来抑制线虫基因表达时意外地发现,由正义和反义RNA 退火形成dsRNA 引起的基因表达抑制要比单独应用正义或反义RNA 强10 倍以上. dsRNA 引起的基因表达抑制不是正义或反义RNA 引起的基因表达抑

植物功能组研究进展

程论文(作业)封面(2011 至2012 学年度第 2 学期)课程名称:_ ___ 课程编号:___________ 学生姓名:__ ________ 学号:_______ 年级:__ ___________ 任课教师: _ ____________ 提交日期:年月日成绩:__________________ 教师签字:__________________ 开课---结课:第周---第周评阅日期:年月日

植物的功能基因组学研究进展 摘要:基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为 目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE) 、cDNA 微阵列、DNA(基因) 芯片、蛋白组技术以及基于转座子标签和T-DNA 标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 关键词:功能基因组学; 基因表达的系统分析;cDNA 微阵列;DNA 芯片;蛋白组 以拟南芥和水稻为代表的植物基因组研究已取得了迅速的进展,到目前为止,占拟南芥基因组(100Mb) 近三分之一的DNA 序列已被测定并在GenBank 数据库中登记注册,预期到2001 年通过全球合作将完成拟南芥全基因组的序列测定工作。随着植物基因组计划的实施和进展,GenBank 中累积了大量的未知功能的DNA 序列,如何鉴定出这些基因的功能将成为基因组研究的重点课题, 因此, 基因组研究应该包括两方面的内容: 以全基因组测序为目标的结构基因组学(structural genomics) 和以基因功能鉴定为目标的功能基因组研究, 后者往往又被称为后基因组研究。功能基因组研究的内容是利用结构基因组所提供的信息, 发展和应用新的实验手段系统地分析基因的功能〔1 〕。目前人类和酵母的功能基因组研究已经全面展开, 尤其是对已完成全基因组测序的酵母来说, 其功能基因组研究任务更加紧迫。植物的基因组研究虽然起步较晚, 但由于吸取了人类基因组研究中积累的一些经验, 所以进展也相当迅速, 对植物功能基因组学的研究目前也已经受到重视, 在1998 年12月出版的最新一期Plant Cell (10 :1771) 和Plant Physiol . (118 :713) 上均编发了关于植物功能基因组学研究的编者按, 并由Bouchez 和Hofte (1998) 〔2 〕综述了植物尤其是拟南芥功能基因组学研究的现状, 本文在此基础上综述了目前植物功能基因组学研究中使用的主要技术手段以及最新的研究进展。 1 基因功能的含义 基因的功能主要包括: 生物化学功能, 如作为蛋白质激酶对特异的蛋白质进行磷酸化修饰; 细胞学功能, 如参与细胞间和细胞内的信号传递途径; 发育上的功能, 如参与形态建成等。目前,获得一段DNA 序列的功能信息的最简单的方法是将该DNA 序列与GenBank 中公布的基因序列进行同源性比较,如利用BLASTn 和BLASTx 两种软件分别进行核苷酸和氨基酸序列同源性比较等。同源性比较的结果大体可以分为如下类型: 与生化和生理功能均已知的基因具同源性; 与生化功能已知的基因具同源性, 但该基因的生理功能未知;与其它物种中生化和生理功能均未知的基因具同源性; 虽与生化和生理功能均已知的基因具同源性, 但对该基因功能的了解尚不深入, 仍停留在表观现象上。上述同源性检索分析方法仅仅为该DNA 片段的功能提供了间接的证据,对基因功能的直接证据还需要实验上的数据。Bouchez 和Hofte (1998)〔2 〕将所需要的实验证据归纳如下: (1) 通过研究基因的时空表达模式确定其在细胞学或发育上的功能, 如在不同细胞类型、不同发育阶段、不同环境条件下以及病原菌侵染过程中mRNA 和/ 或蛋白质的表达的差异等。(2) 研究基因在亚细胞内的定位和蛋白质的翻译后调控等。(3) 利用基因敲除(knock - out) 技术进行功能丧分析或通过基因的过量表达(转基因) 进行功能获(gain2of2function) 分析,进而研究目的基因与表型性状间的关系。(4) 通过比较研究自发或诱发突变体与其野生型植株在特定环境条件下基因表达的差异来获取基因功能的可能信息。 2 植物的表达序列标记(EST) 与基因组大规模测序 通过从cDNA 文库中随机挑取的克隆进行测序所获得的部分cDNA 的5′或3′端序列称为表达序列标记( EST) ,一般长300~500bp 左右, 利用EST作为标记所构建的分子遗传图

系统毒理学及其研究进展

系统毒理学及其研究进展 在总结国内外相关研究的基础上,综述了系统毒理学的原理、诞生背景、研究策略、研究基础及其主要应用。同时,通过介绍系统毒理学的研究实例来阐述其目前的研究进展情况。希望从分子生物学的发展中汲取足够营养并结合传统毒理学的研究成果发展壮大自己。 【Abstract】Based on the foundation of related research at home and abroad,paper summarizes the principle and research strategy,research background,basis and main application of system toxicology. At the same time,to explain its current status a case study of the system is introduced. And we hope to draw sufficient toxicological nutrition from the development of molecular biology and development itself combined with the research of traditional toxicology . 标签:背景;技术;应用;进展 1 系统毒理学及其诞生背景 系统毒理学是近10年来发展起来的一门新兴学科,代表着后基因组时代毒理学发展的新方向。所谓系统毒理学是指通过了解机体暴露后在不同剂量、不同时点的基因表达谱、蛋白质谱和代谢物谱的改变以及传统毒理学的研究参数,借助生物信息学和计算毒理学技术對其进行整合,从而系统地研究外源性化学物和环境应激等与机体相互作用的一门学科[1]。 近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列“组学”(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(cellomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。 另外,传统的毒理学研究依然存在许多不足,相对于飞速发展的分子生物学技术和越来越多的外源性物质,毒理学的研究方法急待革新。 系统毒理学的发展,既有系统生物学发展的外在刺激,又有传统毒理学在发展中克服自身不足的内在需求。 2 生物学基础 2.1 基因组学 基因组学是研究基因组的结构、功能及表达产物的学科。基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。将基因组学的方法与技术应用于毒理学研究领域,称之为毒物基因组学(toxicogenomics)。毒物基因组学的基本方法是通过观察生物在接触毒物后基因表达谱的变化,筛选毒性相关基因、揭示毒作用

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

芸薹属植物比较基因组学研究进展

植物学通报Chinese Bulletin of Botany 2007, 24 (2): 200?207, https://www.wendangku.net/doc/7d300238.html, 收稿日期: 2006-05-26; 接受日期: 2006-08-26 * 通讯作者。E-mail: yuanbeauty@https://www.wendangku.net/doc/7d300238.html, .专题介绍. 芸薹属植物比较基因组学研究进展 李媛媛, 傅廷栋, 马朝芝* 华中农业大学作物遗传改良国家重点实验室, 武汉 430070 摘要 芸薹属(Brassica )植物是双子叶植物比较基因组学研究的重点对象。经过十几年的研究, 芸薹属植物比较基因组学研究已取得很大进展。宏观共线性和微观共线性两个层次的研究均发现, 芸薹属植物之间以及芸薹属和拟南芥之间都存在广泛的共线性, 表明拟南芥信息在芸薹属中具有重要应用价值。芸薹属作物基因组内存在着多个拷贝的共线性区域, 支持二倍体芸薹属作物起源于多倍体祖先的假设。 关键词 芸薹属, 比较基因组, 拟南芥, 宏观共线性, 微观共线性 李媛媛, 傅廷栋, 马朝芝 (2007). 芸薹属植物比较基因组学研究进展. 植物学通报 24, 200?207. 比较基因组学(comparative genomics)又称比较遗传学, 是指在不同物种之间利用共同的标记构建图谱或对不同物种基因组相应部分(或全部)区域进行测序, 比较它们之间的基因数目、相对位置、结构关系等, 以揭示不同物种之间的基因家族成员数目和排列顺序的异同。一般来讲, 比较基因组学主要包括两个方面: 基于遗传图谱的宏观共线性和基于物理图谱或测序的微观共线性。目前, 禾本科植物的比较基因组研究最为透彻,而芸薹属(Brassica )植物则是双子叶植物比较基因组学研究的重点对象。从20世纪90年代至今, 经过十几年的历程, 芸薹属植物比较基因组学研究已在宏观共线性和微观共线性两方面都取得了较大进展。 1 芸薹属植物基因组概况 芸薹属是十字花科(Cruciferae)植物中最重要的一个属,包含许多有重要经济价值的油料、蔬菜和饲料作物。从细胞遗传学角度讲, 芸薹属栽培种包括白菜(B. rapa ;AA , 2n = 20)、甘蓝(B. oleracea ; CC , 2n = 18)和黑芥(B. nigra ; BB , 2n = 16) 3个二倍体基本种以及甘蓝型油菜(B. napus ; AACC , 2n = 38)、芥菜型油菜(B.juncea ; AABB , 2n = 36)和埃塞俄比亚芥(B. carinata ; BBCC , 2n = 34) 3个四倍体复合种。种间人工合成的研究结果表明, 白菜、甘蓝和黑芥为3个基本染色体种,它们通过相互杂交和自然加倍而形成了现在的四倍体种,这就是著名的禹氏三角(U, 1935)。通过对核DNA 含量的计算, 推测二倍体芸薹属基因组约为拟南芥基因组(125 Mb)的3-5倍, 而四倍体芸薹属基因组则是拟南芥基因组的10倍左右(Bennett and Sm ith, 1976;Arumuganathan and Earle, 1991)。 2 芸薹属植物比较遗传图谱 比较遗传作图是利用一个种的基因或者基因的部分片段或者遗传标记, 通过遗传学的方法在其它的物种中寻找其同源序列及构建相应的遗传标记图。芸薹属植物比较遗传图谱研究可对芸薹属植物之间的结构、亲缘关系及其进化演变提供分子水平的证据; 特别是芸薹属和拟南芥的比较遗传作图, 将大大增加芸薹属中可供利用的遗传标记。近年来, 芸薹属植物之间以及芸薹属植物与拟南芥之间的比较遗传作图研究都取得了一些重要结果。 2.1 芸薹属植物之间的比较作图 芸薹属不同种基因组的比较研究首先是在白菜和甘蓝之

镉的毒性和毒理学研究进展

2Chin J Ind Hyg Occup Dis,Febru ary1998,Vol.16,No.1 述 评 镉的毒性和毒理学研究进展 刘杰 镉(Cadmium)是一种重金属,它与氧、氯、硫等元素形成无机化合物分布于自然界中。镉对人体健康的危害主要来源于工农业生产所造成的环境污染。镉对肾、肺、肝、睾丸、脑、骨骼及血液系统均可产生毒性,被美国毒物管理委员会(ATSDR)列为第6位危及人体健康的有毒物质。环境中的镉不能生物降解,随着工农业生产的发展,受污染环境中的镉含量也逐年上升。镉在体内的生物半衰期长达10~30年,为已知的最易在体内蓄积的毒物。镉在肾脏的一般蓄积量与中毒阈值很接近,安全系数很低。在60年代提出了镉污染与日本“痛痛病”的因果关系后,环境中的镉与健康关系的研究日益受到重视。近几年来,有关镉毒理学研究的文献每年超过600篇(Medline检索)。美国目前有大约100个关于镉与健康的研究课题,涉及各个领域。国内对镉的毒性和毒理学的研究开展得也比较广泛,其中一些在中毒机制方面作了较深入的探讨,有的学者甚至进行了长达十几年的研究。 镉的毒性和毒理学研究进展主要包括以下几个方面: 一、镉污染与人类健康 1.环境中的镉:对环境中镉污染的早期关注局限于锌、铜、铅矿的冶炼。后来注意力转为镉在工业中的应用,如电池、电镀、合金、油漆和塑料等工业。经过多年的努力,国内外对职业劳动中接触镉的卫生保护已大大加强。近年来,对环境中的镉通过食物链对一般人群的潜在危害已受到高度重视。随着含镉磷肥的施用、污水灌溉等,土壤中镉含量增加,继而被某些植物摄取而进入食物链。1997年国际地球生化学会在美国加州专门对此问题进行了讨论并出版了专著;国际环境科学委员会(SCOPE)则进一步将土壤中镉的来源、价态、食物链中的转化以及对一般人群健康的影响定为目前镉研究的一个重点方向。 2.镉的摄入及监测:职业人群镉暴露的主要途径是吸入。对作业场所空气中镉的浓度进行监测并控制在容许范围之内,是保护工人健康的一个重要手段。对一般人群来说,镉暴露主要来源于食物和吸烟。人们每日可从食物中摄镉30~50 g,但仅有1%~3%被肠胃吸收。因此,对镉的胃肠吸收、体内分布和排泄的影响因素一直是镉毒理学研究中的一个热点。其中,镉与金属硫蛋白(m etal-lothio nein,MT)的结合,及镉与锌、钙的相互作用是影响镉体内代谢动力学的重要因素。血镉的含量可用来评价近期的镉暴露,尿镉含量则在一定程度上反映了镉性肾损伤和体内的镉负荷。尿中的 2-微球蛋白和尿M T的含量已作为镉暴露的生物标志物。 二、镉的毒性研究进展 1.镉的肾毒性:肾损伤是慢性染镉对人体的主要危害。一般认为镉所致的肾损伤是不可逆的,目前尚无有效的疗法。很多学者认为:镉所致的肾损伤是由在肝脏形成的镉-金属硫蛋白(M T)复合物(CdM T)引起的。因此,一次性大量注射CdMT造成肾损伤的动物模型用来研究镉的肾毒性机制已达20年之久。最近,用删除了M T的转基因动物的实验结果表明:镉所致的肾损伤并不一定依赖于CdM T的形成,无机镉亦能直接造成肾脏损伤。一次性注射CdM T主要造成肾小管细胞的坏死,而慢性染镉造成的病理改变则波及整个肾脏,包括肾小球的损伤和肾间质的炎症。慢性染镉 作者单位:66160美国堪萨斯城,堪萨斯大学医学中心药理毒理系

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

相关文档
相关文档 最新文档