文档库 最新最全的文档下载
当前位置:文档库 › 二维抛物方程的有限差分法

二维抛物方程的有限差分法

二维抛物方程的有限差分法
二维抛物方程的有限差分法

二维抛物方程的有限差分法

摘要

二维抛物方程是一类有广泛应用的偏微分方程,由于大部分抛物方程都难以求得解析解,故考虑采用数值方法求解。有限差分法是最简单又极为重要的解微分方程的数值方法。本文介绍了二维抛物方程的有限差分法。

首先,简单介绍了抛物方程的应用背景,解抛物方程的常见数值方法,有限差分法的产生背景和发展应用。讨论了抛物方程的有限差分法建立的基础,并介绍了有限差分方法的收敛性和稳定性。其次,介绍了几种常用的差分格式,有古典显式格式、古典隐式格式、Crank-Nicolson隐式格式、Douglas差分格式、加权六点隐式格式、交替方向隐式格式等,重点介绍了古典显式格式和交替方向隐式格式。进行了格式的推导,分析了格式的收敛性、稳定性。并以热传导方程为数值算例,运用差分方法求解。通过数值算例,得出古典显式格式计算起来较简单,但稳定性条件较苛刻;而交替方向隐式格式无条件稳定。

关键词:二维抛物方程;有限差分法;古典显式格式;交替方向隐式格式

FINITE DIFFERENCE METHOD FOR

TWO-DIMENSIONAL PARABOLIC

EQUATION

Abstract

Two-dimensional parabolic equation is a widely used class of partial differential equations. Because this kind of equation is so complex, we consider numerical methods instead of obtaining analytical solutions. finite difference method is the most simple and extremely important numerical methods for differential equations. The paper introduces the finite difference method for two-dimensional parabolic equation.

Firstly, this paper introduces the background and common numerical methods for Parabolic Equation, Background and development of applications. Discusses the basement for the establishment of the finite difference method for parabolic equation And describes the convergence and stability for finite difference method.Secondly, Introduces some of the more common simple differential format,for example, the classical explicit scheme, the classical implicit scheme, Crank-Nicolson implicit scheme, Douglas difference scheme, weighted six implicit scheme and the alternating direction implicit format. The paper focuses on the classical explicit scheme and the alternating direction implicit format. The paper takes discusses the derivation convergence,and stability of the format . The paper takes And the heat conduction equation for the numerical example, using the differential method to solve. Through numerical examples, the classical explicit scheme is relatively simple for calculation, with more stringent stability conditions; and alternating direction implicit scheme is unconditionally stable.

Keywords:Two-dimensional Parabolic Equation; Finite-Difference Method; Eclassical Explicit Scheme; Alternating Direction Implicit Scheme

目录

摘要.................................................................................................................................................. I Abstract .......................................................................................................................................... II 1绪论. (1)

1.1课题背景 (1)

1.2发展概况 (1)

1.2.1抛物型方程的常见数值解法 (1)

1.2.2有限差分方法的发展 (2)

1.3差分格式建立的基础 (3)

1.3.1区域剖分 (3)

1.3.2差商代替微商 (3)

1.3.3差商代替微商格式的误差分析 (4)

1.4本文主要研究容 (5)

2显式差分格式 (7)

2.1常系数热传导方程的古典显式格式 (7)

2.1.1古典显式格式格式的推导 (7)

2.1.3古典显式格式的算法步骤 (8)

3隐式差分格式 (10)

3.1古典隐式格式 (10)

3.2 Crank-Nicolson隐式格式 (12)

3.3 Douglas差分格式 (13)

3.4加权六点隐式格式 (14)

3.5交替方向隐式格式 (15)

3.5.1 Peaceman-Rachford格式 (15)

3.5.2 Rachford-Mitchell格式 (15)

3.5.3 Mitchell-Fairweather格式 (15)

3.5.4交替方向隐式格式的算法步骤 (16)

4实例分析与结果分析 (17)

4.1算例 (17)

4.1.1已知有精确解的热传导问题 (17)

4.1.2未知精确解的热传导问题 (19)

4.2结果分析 (20)

5稳定性探究与分析 (21)

5.1稳定性问题的提出 (21)

5.2 几种分析稳定性的方法 (21)

5.3 r变化对稳定性的探究 (23)

5.3.1 古典显式格式的稳定性 (23)

5.3.2 P-R格式格式的稳定性 (24)

结语 (26)

参考文献 (27)

附录P-R格式的C++实现代码 (28)

致谢 (30)

1绪论

1.1课题背景

抛物方程是一类特殊的偏微分方程,二维抛物方程的一般形式为

u Lu t

?=? (1-1) 其中

1212((,,))((,,))(,,)(,,)(,,)u u u u u u L a x y t a x y t b x y t b x y t C x y t x x y y x y

??????=++++?????? 120,0,0a a C >>≥。[1]

渗流、扩散和热传导、静电场等很多领域经常会遇到求解二维抛物型方程。微分方程愈复杂,找出解的解析表达式愈困难。对大部分的抛物方程而言,找出解的解析表达式及其困难。因此求出抛物方程的近似解是很有意义的[1]。

本文研究的近似方法是数值方法,目标在于给出解在一些离散点上的近似解值。常见的数值求解方法有有限差分法,有限元法,有限体积法等。有限差分法(Finite Difference Methed)是在1966年Yee 提出的,用于解决电机工程中电磁场的初值和边值问题[2]。有限差分法得到迅速发展后,不仅广泛应用于自然科学,在社会科学的各领域也在越来越多地被应用着[2]。某些常用的数值解法,欧拉方法,隐式欧拉法,一般单步法,Crank-Nicolson 隐式格式,Runge-Kutta 方法等,已成为微分方程数值解领域的经典方法.,在工程计算中的应用随处可见[1];基于这些方法,人们也在做更深的研究。

采用有限差分法解决二维抛物方程,一些研究者采用一维抛物型方程的古典显格式,古典隐格式,Crank-Nicolson 隐式格式,加权六点隐格式等的直接推广;还有有一些研究者采用交叉方向的隐式差分格式(Alternating Direction Implicit Scheme)等基于二维的方法。

1.2发展概况

1.2.1抛物型方程的常见数值解法

抛物型方程的常见数值解法有有限差分法,有限元法,有限体积法,有限单元法,无网格方法等。

有限差分法(Finite Difference Methed)的主要思想是将问题离散化,将问题离散化,用差商代替微商,将微分方程和定界问题都用代数方程来代替。然后解这些代数问题构成的方程组。该方法包括区域剖分和差商代替导数两个过程。具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。其次,利用Taylor 级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组[1]。

有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。该方法的构造过程包括以下三个步骤。首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。再次,在每个单元选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式[1]。

有限体积法(Finite Volume Methods)又称为控制体积法。其基本思路是:将计算区域划分为一系列互不重叠的控制体,并使每个网格点周围有一个控制体;将待求解的微分方程对每一个控制体积积分,便得出一组离散方程。该方法的未知量为网格点上的函数值。为了求出控制体积的积分,须假定函数值在网格点控制体边界上的变化规律。从积分区域的选取方法看来,有限体积法属于有限元方法中检验函数取分片常数插值的子区域法;从未知量的近似方法看来,有限体积法属于采用局部近似的离散方法[1]。

有限单元法的基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元,选择一些合适的节点作为求解函数的插值点,借助于变分原理或加权余量法,将微分方程离散求解[1]。无网格方法的近似函数建立在一些离散的节点上,不需要借助网格,在涉及到网格畸变,网格移动等问题中显示出了明显的优势[1]。

1.2.2有限差分方法的发展

随着人们对显示格式的进一步研研究,提出了很多新的高精度,绝对稳定的差分格式。文献2讨论了变系数热传导方程的两层绝对稳定差分格式。研究了二维变系数非齐次热传导方程的两层绝对稳定的差分格式问题。首先运用Pade 逼近导出了差分格式,给出了差分格式的截断误差;讨论了差分格式的绝对稳定性和收敛性,且收敛阶为24()O k h +;最后给出了数值例子,数值结果和理论结果是吻合的。

文献3第一部分用待定系数法对P 维抛物型方程(1,2,3,4)P =构造出了高精度(截断误差达24()O k h +)能显式计算,稳定性较好(1/2r ≤)的三层(特殊情况下可以是两层)显式差分格式,在空间变量更多的情况下,指出了构造高精度差分格式的一般方法。

文献3第二部分用算子方法对二维和三维抛物型方程构造出了高精度(截断误差达24()O k h +)的绝对稳定的交替方向隐式差分格式,在空间变量更多的情况下,也指出了构造高精度交替方向隐式差分格式的一般方法。并附有数值例子,它表明理论分析的正确性和所建立的差分格式的有效性。

文献4对二阶抛物型方程构造了一族含参数高精度三层差分格式。当参数满足一定的条件时,差分格式绝对稳定,其局部截断误差阶数最高可达24()O k h +。适当地调节参数,可以得到一个七点显式差分格式和一个两层六点隐格式。数值例子表明,对稳定性所作的分析是正确的。

文献5多维抛物型方程和双曲方程的差分解法对一般m 维热传导方程,波动方程的初、边值问题,提出若干个交替方向的差分格式。

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

抛物形扩散方程的有限差分法及数值实例

偏微分方程数值解 所在学院:数学与统计学院 课题名称:抛物形扩散方程的有限差分法及数值实例学生姓名:向聘

抛物形扩散方程的有限差分法及数值实例 1.1抛物型扩散方程 抛物型偏微分方程是一类重要的偏微分方程。考虑一维热传导方程: 22(),0u u a f x t T t x ??=+<≤?? (1.1.1) 其中a 是常数,()f x 是给定的连续函数。按照初边值条件的不同给法,可将(1.1.1)的定解分为两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件: ()()x x u ?=0,, ∞<<∞-x (1.1.2) 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件: ()()x x u ?=0,, 0x l << (1.1.3) 及边值条件 ()()0,,0==t l u t u , T t ≤≤0 (1.1.4) 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 1.2抛物线扩散方程的求解 下面考虑如下热传导方程 22()(0.)(,)0(,0)()u u a f x t x u t u L t u x x ????=+????? ==??=??? (1.2.1) 其中,0x l <<,T t ≤≤0,a (常数)是扩散系数。 取N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,用两族

平行直线jh x x j ==, ()N j ,,1,0 =和k t t k τ ==, ()M k ,,1,0 =将矩形域 G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 (),j k x t 表示网格节点;h G 表示 网格内点(位于开矩形G 中的网格节点)的集合;h G 表示位于闭矩形G 中的网格节点的集合;h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点(),j k x t 处的待求近似解,N j ≤≤0,M k ≤≤0。 现在对方程进行差分近似: (一) 向前差分格式 =-+τ k j k j u u 111 2 2(())k k k j j j j j j u u u a f f f x h +--++= (1.2.2) ()j j j x u ??==0, k u 0=k N u =0 (1.2.3) 计算后得: 111(12)k k k k j j j j j u ru r u ru f τ++-=+-++ (1.2.4) 其中,2 a r h τ = ,1,,1,0-=N j ,1,,1,0-=M k 。 显然,这是一个四点显示格式,每一层各个节点上的值是通过一个方程组求解到的。方程组如下: 1000 121011000 232121000 3432310001121(12)(12)(12)(12)N N N N N u ru r u ru f u ru r u ru f u ru r u ru f u ru r u ru f ττττ----?=+-++?=+-++??=+-++? ???=+-++? (1.2.5) 若记 () T k N k k k u u u 1 21,,,-= u ,()()()()T N x x x 121,,,-=???? ,()()()()T N x f x f x f 121,,,-=τττ f 则显格式(1.2.4)可写成向量形式 10 ,0,1,,1 k k k M φ +?=+=-?=? u Au f u (1.2.6) 其中

抛物型方程的计算方法

分类号:O241.82 本科生毕业论文(设计) 题目:一类抛物型方程的计算方法 作者单位数学与信息科学学院 作者姓名 专业班级2011级数学与应用数学创新2班 指导教师 论文完成时间二〇一五年四月

一类抛物型方程的数值计算方法 (数学与信息科学学院数学与应用数学专业2011级创新2班) 指导教师 摘要: 抛物型方程数值求解常用方法有差分方法、有限元方法等。差分方法是一种对方程直接进行离散化后得到的差分计算格式,有限元方法是基于抛物型方程的变分形式给出的数值计算格式.本文首先给出抛物型方程的差分计算方法,并分析了相应差分格式的收敛性、稳定性等基本理论问题.然后,给出抛物型方程的有限元计算方法及理论分析. 关键词:差分方法,有限元方法,收敛性,稳定性 Numerical computation methods for a parabolic equation Yan qian (Class 2, Grade 2011, College of Mathematics and Information Science) Advisor: Nie hua Abstract: The common methods to solve parabolic equations include differential method, finite element method etc. The main idea of differential method is to construct differential schemes by discretizing differential equations directly. Finite element scheme is based on the variational method of parabolic equations. In this article, we give some differential schemes for a parabolic equation and analyze their convergence and stability. Moreover, the finite element method and the corresponding theoretical analysis for parabolic equation are established. Key words: differential method, finite element method, convergence, stability

一维抛物线偏微分方程数值解法(附图及matlab程序)

一维抛物线偏微分方程数值解法(4) 上一篇参看一维抛物线偏微分方程数值解法(3)(附图及matlab程序) 解一维抛物线型方程(理论书籍可以参看孙志忠:偏微分方程数值解法) Ut-Uxx=0, 00) U(x,0)=e^x, 0<=x<=1, U(0,t)=e^t,U(1,t)=e^(1+t), 0

ADI(交替方向隐格式)求解二维抛物方程(含matlab程序)

ADI 法求解二维抛物方程 学校:中国石油大学(华东)学院:理学院:道德时间:2013.4.27 1、ADI 法介绍 作为模型,考虑二维热传导方程的边值问题: (3.6.1),0,,0(,,0)(,)(0,,)(,,)(,0,)(,,)0t xx yy u u u x y l t u x y x y u y t u l y t u x t u x l t ?=+<<>?? =??====? 取空间步长1h M ,时间步长0,作两族平行于坐标轴的网线: ,,,0,1, ,,j k x x jh y y kh j k M =====将区域0,x y l ≤≤分割成2M 个小矩形。第 一个ADI 算法(交替方向隐格式)是Peaceman 和Rachford (1955)提出的。 方法: 由第n 层到第n+1层计算分为两步: (1) 第一步: 12,1 2 n j k xx yy u +从n->n+,求u 对向后差分,u 向前差分,构造出差分格 式为: 1 (3.6.1)11112222,,1,,1,,1,,1 2 2 1 222,,2-22=2 1()n n n n n n n n j k j k j k j k j k j k j k j k n n x j k y j k h h h τ δδ+ + + + +-+-+-+-+=+u u u u u u u u ( + ) u u (2) 第二步:12,1 2 n j k xx yy u +从n+->n+1,求u 对向前差分,u 向后差分,构造出差分格 式为: 2 (3.6.1)1111111222,,1,,1,,1,,1 2 2 1 2212,,2-22=2 1()n n n n n n n n j k j k j k j k j k j k j k j k n n x j k y j k h h h τ δδ+ + + +++++-+-++-+-+=+u u u u u u u u ( + ) u u 其中12 11 ,1,,1,0,1,2, ,()22n j k M n n n τ+=-=+=+上表表示在t=t 取值。 假定第n 层的,n j k u 已求得,则由1(3.6.1)求出12 ,n j k u +,这只需按行 (1, ,1)j M =-解一些具有三对角系数矩阵的方程组;再由2(3.6.1)求出

抛物形扩散方程的有限差分法及数值实例(完整资料).doc

此文档下载后即可编辑 偏微分方程数值解 所在学院:数学与统计学院 课题名称:抛物形扩散方程的有限差分法及数值实例 学生姓名:向聘 抛物形扩散方程的有限差分法及数值实例

1.1抛物型扩散方程 抛物型偏微分方程是一类重要的偏微分方程。考虑一维热传导方程: 22(),0u u a f x t T t x ??=+<≤?? (1.1.1) 其中a 是常数,()f x 是给定的连续函数。按照初边值条件的不同给法,可将(1.1.1)的定解分为两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件: ()()x x u ?=0,, ∞<<∞-x (1.1.2) 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1.1)和初始条件: ()()x x u ?=0,, 0x l << (1.1.3) 及边值条件 ()()0,,0==t l u t u , T t ≤≤0 (1.1.4) 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 1.2抛物线扩散方程的求解 下面考虑如下热传导方程

22()(0.)(,)0(,0)()u u a f x t x u t u L t u x x ????=+????? ==??=??? (1.2.1) 其中,0x l <<,T t ≤≤0,a (常数)是扩散系数。 取N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是自然 数,用两族平行直线 jh x x j ==, ()N j ,,1,0Λ=和 k t t k τ ==, ()M k ,,1,0Λ=将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 (),j k x t 表示网格节点;h G 表示网格内点(位于开矩形G 中的网格 节点)的集合;h G 表示位于闭矩形G 中的网格节点的集合;h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点(),j k x t 处的待求近似解, N j ≤≤0,M k ≤≤0。 现在对方程进行差分近似: (一) 向前差分格式 =-+τ k j k j u u 111 2 2(()) k k k j j j j j j u u u a f f f x h +--++= (1.2.2) () j j j x u ??==0, k u 0 = k N u =0 (1.2.3) 计算后得: 111(12)k k k k j j j j j u ru r u ru f τ++-=+-++ (1.2.4) 其中,2 a r h τ = ,1,,1,0-=N j Λ,1,,1,0-=M k Λ。 显然,这是一个四点显示格式,每一层各个节点上的值是通过一个方程组求解到的。方程组如下:

二维抛物线方程数值解法(ADI隐式交替法)方法

ADI隐式交替法三种解法及误差分析(一般的教材上只说第一种) 理论部分参看孙志忠:偏微分方程数值解法 注意: 1.最好不要直接看程序,中间很多公式很烦人的(一定要小心),我写了两天,终于写对了。 2.中间:例如r*(u(i-1,m1,k)+u(i+1,m1,k))形式写成分形式:r*u(i-1,m1,k)+r*u(i+1,m1,k)后面会出错,我也不是很清楚为什么,可能由于舍入误差,或者大数吃掉小数的影响。 3.下面有三个程序 4.具体理论看书,先仔细看书(孙志忠:偏微分方程数值解法)或者网上搜一些理论。 Matlab程序: 1.function [u u0 p e x y t]=ADI1(h1,h2,m1,m2,n) %ADI解二维抛物线型偏微分方程(P-R交替隐式,截断) %此程序用的是追赶法解线性方程组 %h1为空间步长,h2为时间步长 %m1,m2分别为x方向,y方向网格数,n为时间网格数 %p为精确解,u为数值解,e为误差 %定义u0(i,j,k)=u(i,j,k+1/2),因为矩阵中,i,j,k必须全为整数 x=(0:m1)*h1+0;%定义x0,y0,t0是为了f(x,t)~=0的情况% y=(0:m2)*h1+0; t=(0:n)*h2+0; t0=(0:n)*h2+1/2*h2; for k=1:n+1 for i=1:m2+1 for j=1:m1+1 f(i,j,k)=-1.5*exp(0.5*(x(j)+y(i))-t0(k)); end end end for i=1:m2+1 for j=1:m1+1 u(i,j,1)=exp(0.5*(x(j)+y(i))); end end for k=1:n+1 for i=1:m2+1 u(i,[1 m1+1],k)=[exp(0.5*y(i)-t(k)) exp(0.5*(1+y(i))-t(k))]; u0(i,[1 m1+1],k)=[exp(0.5*y(i)-t0(k)) exp(0.5*(1+y(i))-t0(k))] ; end end for k=1:n+1 for j=1:m1+1

热传导方程抛物型偏微分方程和基本知识

1. 热传导的基本概念 1.1温度场 一物体或系统内部,只要各点存在温度差,热就可以从高温点向低温点传导, 即产生热流。因此物体或系统内的温度分布情况决定着由热传导方式引起的传热速率(导热速率)。 温度场:在任一瞬间,物体或系统内各点的温度分布总和。 因此,温度场内任一点的温度为该点位置和时间的函数。 〖说明〗 若温度场内各点的温度随时间变化,此温度场为非稳态温度场,对应于非稳 态的导热状态。 若温度场内各点的温度不随时间变化,此温度场为稳态温度场,对应于稳态 的导热状态。 若物体内的温度仅沿一个坐标方向发生变化,且不随时间变化,此温度场为 一维稳态温度场。 1.2 等温面 在同一时刻,具有相同温度的各点组成的面称为等温面。因为在空间同一点不可能同时有两个不同的温度,所以温度不同的等温面不会相交。 1.3 温度梯度 从任一点起沿等温面移动,温度无变化,故无热量传递;而沿和等温面相交 的任一方向移动,温度发生变化,即有热量传递。温度随距离的变化程度沿法向最大。 温度梯度:相邻两等温面间温差△t与其距离△n之比的极限。 〖说明〗 温度梯度为向量,其正方向为温度增加的方向,与传热方向相反。 稳定的一维温度场,温度梯度可表示为:grad t = dt/dx

2. 热传导的基本定律——傅立叶定律 物体或系统内导热速率的产生,是由于存在温度梯度的结果,且热流方向和 温度降低的方向一致,即与负的温度梯度方向一致,后者称为温度降度。 傅立叶定律是用以确定在物体各点存在温度差时,因热传导而产生的导热速率大小的定律。 定义:通过等温面导热速率,与其等温面的面积及温度梯度成正比: q = dQ/ds = -λ·dT/dX 式中:q 是热通量(热流密度),W/m2 dQ是导热速率,W dS是等温表面的面积,m2 λ是比例系数,称为导热系数,W/m·℃ dT / dX 为垂直与等温面方向的温度梯度 “-”表示热流方向与温度梯度方向相反 3. 导热系数 将傅立叶定律整理,得导热系数定义式: λ= q/(dT/dX) 物理意义:导热系数在数值上等于单位温度梯度下的热通量。因此,导热系 数表征物体导热能力的大小,是物质的物性常数之一。其大小取决于物质的组成结构、状态、温度和压强等。 导热系数大小由实验测定,其数值随状态变化很大。 3.1 固体的导热系数 金属:35~420W/(m·℃),非金属:0.2~3.0W/ (m·℃) 〖说明〗

有限差分法求解抛物型方程说明

有限差分法求解抛物型方程 偏微分方程只是在一些特殊情况下,才能求得定解问题解的解析式,对比较复杂的问题要找到解的解析表达式是困难的,因此需采用数值方法来求解.有限差分法是一种发展较早且比较成熟的数值求解方法,只适用于几何形状规则的结构化网格.它在微分方程中用差商代替偏导数,得到相应的差分方程,通过解差分方程得到微分方程解的近似值.本章主要介绍有限差分法的基本思想,并给出一些具体的数值实例. §1 差分方法的基本思想 有限差分法把偏微分方程的求解区域划分为有限个网格节点组成的网格,主要采用Taylor 级数展开等方法,在每个网格节点上用有限差分近似公式代替方程中的导数,从而建立以网格节点上的函数值为未知数的代数方程组. 有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式.从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式和显隐交替格式等.目前常见的差分格式,主要是上述几种格式的组合,不同的组合构成不同的差分格式. 泰勒级数展开法对有限差分格式的分类和公式的建立起着十分重要的作用.下面采用泰勒展开式导出一个自变量系统的若干有限差分表达式. 首先考虑单变量函数()u x ,如图1把区域x 离散为一批结点,记 0()(), =0,1,2,i i u x u x ih u i =+= 图1 单变量函数离散化 函数()u x 在点i x 处的泰勒展开式为 23 ()()()()()2!3! i i i i i u x u x u x h u x u x h h h ''''''+=++ ++ (1) 或 23 ()()()()()2!3! i i i i i u x u x u x h u x u x h h h ''''''-=-+ -+ (2) 式(1)和(2)重新整理可得 2()()()()()2!3! i i i i i u x h u x u x u x u x h h h '''''+-'= --- (3)

抛物型方程

前言 抛物型方程解的估计及其应用 1前言 数学物理方程主要指从物理学及其它各门自然科学、技术科学中所产生的偏微分方程(有时也包括积分方程、微分方程等),它们反映了有关的未知变量关于时间的导数和关于空间变量的导数之间的制约关系.连续介质力学、电磁学、量子力学等等方面的基本方程属于数学物理方程的范围.它以具有物理背景的偏微分方程(组)作为研究的主要对象.它与其他数学分支及物理、化学等自然科学和工程技术的很多领域都有着广泛的联系,因此,无论在历史上还是在今天的现实生活中,它对于推动数学理论的发展,加强理论与实际的联系,帮助人们认识世界和改造世界都起着重要大的作用. 微积分产生以后,人们就开始把力学中的一些问题,归结为偏微分方程进行研究.早在18世纪初,人们已经将弦线振动问题归结为弦振动方程,并探讨了它的解法.随后,人们又陆续了解了流体的运动、弹性体的平衡和振动、热传导、电磁相互作用、原子核和电子的相互作用、化学反应过程等等自然现象的基本规律,把它们写成偏微分方程的形式,并且求出了典型问题的解答,从而能通过实践,验证这些基本规律的正确性,显示了数学物理方程对于认识自然界基本规律的重要性.有了基本规律,人们还要利用这些基本规律来研究复杂的自然现象和解决复杂的工程技术问题,这就需要求出数学物理方程中许多特定问题的解答,随着计算机的出现及计算技术的发展,即使是相当复杂的问题,也可以计算出足够精确的数值来,这对于预测自然现象的变化(如气象预报)和进行各种工程设计(如机械强度的计算)都有着很重要的作用. 在研究数学物理方程的同时,人们对偏微分方程的性质也了解得越来越多、越来越深入,形成数学中的一门重要分支——偏微分方程理论.它既有悠久的历史,又不断地更新着它的对象、内容和方法.它直接联系着众多自然现象和实际问题,不断地提出或产生需要解决的新课题和新方法.它所面临的数学问题多样而复杂,不断地促进着许多相关数学分支(如泛函分析、复变函数、微分几何、计算数学等)的发展,并从它们之间引进许多有力的解决问题的工具.因此,数学物理方程又是纯粹数学的

用显式格式求解二维抛物型偏微分方程

用显式格式求解二维抛物型偏微分方程 2010-05-14 10:41 function varargout=liu(varargin) T=1;a=1;h=1/32;dt=1/200; [X,T,Z]=chfenmethed(h,dt,a,T); mesh(X,T,Z(:,:,3)); shading flat; % xlabel('X','FontSize',14); % ylabel('t','FontSize',14); % zlabel('error','FontSize',14); % title('误差图'); function [X,Y,Z]=chfenmethed(h,dt,a,T); %求解下问题 %u_t-a*(u_xx+u_yy)=f(x,y,t) 0

r=a*dt/h^2; [X,Y]=meshgrid(x,y); Z=zeros(m,m,n); U=zeros(m,m,n); for i=1:m for j=1:m U(i,j,1)=d(x(i),y(j)); end end for j=2:n for k=1:m U(1,k,j)=g0(y(k),t(j)); U(m,k,j)=g1(y(k),t(j)); U(k,1,j)=h0(x(k),t(j)); U(k,m,j)=h1(x(k),t(j)); end end for k=2:n for i=2:m-1 for j=2:m-1 U(i,j,k)=U(i,j,k-1)+r*a*(U(i+1,j,k-1)+U(i-1,j,k-1)+U(i,j+1,k-1)... +U(i,j-1,k-1)-4*U(i,j,k-1))+f(x(i),y(j),t(k-1));

有限元解二维变系数抛物方程

%%%%% 真解u=sin(pi*x)*sin(pi*y)*sin(t) %%%%% 方程diff(u,t)-div(a(x,y)*grad(u))=f %%%%% a(x,y)=x^2+y^2+1 %%%%% f=sin(pi*x)*sin(pi*y)*cos(t)-2*pi^2*sin(pi*x)*sin(pi*y)*sin(t)*(x^2+y^2+1)+2*pi*sin(t)*(x*cos( pi*x)*sin(pi*y)+y*sin(pi*x)*cos(pi*y)) %clear all % clc %%%%finite element code for parabolic equation with constant coefficient %%%mesh%% node=[0,0;1,0;1,1;0,1]; elem=[2,3,1;4,1,3]; T=1; bdEdge=setboundary(node,elem,’Dirichlet’); n=input(‘Please input initial mesh:’); M=input(‘M=’); for i=1:n [node,elem,bdEdge]=uniformrefine(node,elem,bdEdge); end N=size(node,1); NT=size(elem,1); S=1/NT; r=1/M; A=zeros(N,N);; u=zeros(N,M+1); u1=zeros(N,1); f=inline(‘sin(pi*xx(1,1))*sin(pi*xx(1,2))*cos(t)-2*pi^2*sin(pi*xx(1,1))*sin(pi*xx(1,2))*sin(t)*(x x(1,1)^2+xx(1,2)^2+1)+2*pi*sin(t)*(xx(1,1)*cos(pi*xx(1,1))*sin(pi*xx(1,2))+y*sin(pi*xx(1,1))* cos(pi*xx(1,2)); a=inline(‘xx(1,1)^2+xx(1,2)^2+1’,’xx’); [lambda,weight]=quadpts(5); p=node’; T=elem’; totalEdge=[elem(:,[2,3]);elem(:,[3,1]);elem(:,[1,2])]; isBdEdge=reshape(bdEdge,3*NT,1); Dirichlet=totalEdge(isBdEdge==1),:); isBdNode=false(N,1); isBdNode(Dirichlet)=true; bdNode=find(isBdNode); freeNode=find(~isBdNode); for j=2:M+1 for i=1:NT F=zeros(N,1); F_ele=zeros(1,3);

一类二维抛物型方程的ADI格式

一类二维抛物型方程的ADI格式 【摘要】本文针对一类二维抛物型方程,建立了一个在空间和时间方向上均具有二阶精度的ADI格式,并分析其稳定性. 比较以往算法,此格式具有精度较高,无条件稳定等优点,同时,该方法通过求解两个线性代数方程得到原问题的解,避免了非线性迭代运算,提高了计算效率. 【关键词】二维抛物型方程;ADI格式;稳定性;截断误差 1.引言 抛物型偏微分方程在研究热传导过程、一些扩散现象及电磁场传播等许多问题中都有广泛的应用,对这一类方程数值解法的研究一直是科研工作者关注的热点问题之一,其中高精度的有限差分方法更是受到了越来越多的重视. 考虑如下的初边值问题[1]: 其中,为常数. 在文献[1]中对问题(1)建立了差分格式,格式的截断误差阶为.本文将在文献[1]的基础上进一步研究问题(1)的高效差分格式,建立了一个高精度的交替方向隐式差分格式(即ADI格式),提高了时间方向上的精度,并给出相应的稳定性分析。 2.差分格式的建立 为了得到问题(1)的有限差分格式,首先将求解区域进行网格剖分,结点为. 选取正整数L和N,并令为方向上的网格步长,为方向上的网格步长,记 假定第层的已知,则由第(Ⅰ)步,通过解一个三对角线性代数方程组求出,再由第(Ⅱ)步,再解一个三对角线性代数方程组即可求出. 所以,只要利用追赶法求解两个三对角线性代数方程组即可,此时计算量与储存量都较小. 另外,在处理边界条件时,为了提高精度,采取中心差分,这样会出现虚拟值,此时,只要再与格式中的方程联立,即可消去虚拟值[2]. 3. 稳定性分析 下面采用von Newmann方法[3]对上述D格式进行稳定性分析. 一般地,低阶项不影响差分格式的稳定性,所以不妨略去项,并对(3)、(5)式消去中间变量得: 利用Taylor展开式求误差,可知此处建立的D格式的截断误差阶为. 参考文献:

第九章-偏微分方程差分方法汇总

第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

抛物型方程差分方法

偏微分方程数值解复习提纲 一.基本内容:(1)椭圆型方程差分方法;(2)抛物型方程差分方法;(3)双曲型方程差分方法;(4)椭圆型方程的有限元方法. 二.基本概念: (1)显式和隐式差分格式,网格比和加密路径; (2)差分格式的截断误差、相容性、稳定性、收敛性、逼近精度阶和收敛阶; (3)双曲型方程(组)的特征与Riemann不变量,差分格式的依赖区域和CFL条件; (4)差分格式的增长因子和增长矩阵、振幅误差与相位误差、耗散与色散、群速度; (5)双曲守恒方程的弱解与激波传播速度; (6)守恒性与守恒型差分格式、有限体积法; (7)差分格式的Fourier分析与L2稳定性、最大值原理与L∞稳定性、实用稳定性和强稳 定性、网格的P`e clet数; (8)椭圆边值问题的变分形式与弱解、强制边界条件与自然边界条件; (9)Galerkin方法与Ritz方法,协调与非协调有限元方法; (10)有限元与有限元空间,有限元插值算子与插值函数,有限元方程与有限元解; (11)有限元的仿射等价与等参等价,有限元剖分的正则性和拟一致性. 三.基本方法与技巧: (1)比较函数与利用最大值原理的误差分析; (2)Taylor展开、Fourier分析、最大值原理; (3)修正方程分析、能量法分析; (4)充分利用解的守恒性和特征,以及适当处理初始条件与边界条件; (5)Sobolev空间及其基本性质,如嵌入定理、迹定理,Poincar′e-Friedrichs不等式; (6)仿射等价、多项式不变算子、商空间与商范数、Sobolev空间半范数的关系; (7)Aubin-Nische技巧,bramble-Hilbert引理,双线性引理. 四.基本格式: (1)二维Poisson方程的五点差分格式; (2)抛物型方程的显式差分格式、隐式差分格式、Crank-Nicolson格式和θ-方法; (3)具有热守恒性质的格式; (4)ADI格式与LOD格式; (5)双曲型方程的迎风格式、Lax-Wendro?格式、盒式格式和蛙跳格式;

抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数, jh x x j ==, ()N j ,,1,0 =; τk y y k ==, ()M k ,,1,0 = 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。

注意到在节点()k i t x ,处的微商和差商之间的下列关系((,)k j k j u u x t t t ???? ≡ ?????) : 可得到以下几种最简差分格式 (一) 向前差分格式 ()24.1 ()j j j x u ??==0, k u 0=k N u =0 其中1,,1,0-=N j ,1,,1,0-=M k 。取2h a r τ = 为网比,则进一步有 ()14.1' 1+k j u =k j ru 1++()r 21-k j u +k j ru 1-+j f τ 此差分格式是按层计算:首先,令0=k ,得到 1j u =01+j ru +()r 21-0j u +0 1-j ru +j f τ 于是,利用初值() j j j x u ??==0和边值k u 0=k N u =0,可算出第一层的1 j u , 1,,1,0-=N j 。再由()14.1'取1=k ,可利用1j u 和k u 0=k N u =0算出2j u , 1,,1,0-=N j 。如此下去,即可逐层算出所有k j u (1,,1,0-=N j , 1,,1,0-=M k ) 。 由于第()1+k 层值可以通过第()k 层值直接得到,如此的格式称为显格式。并 视k j u 为()k j t x u ,的近似值。 若记 () T k N k k k u u u 1 21,,,-= u ,()()()()T N x x x 121,,,-=???? ,()()()()T N x f x f x f 121,,,-=τττ f 则显格式()14.1' 可写成向量形式 其中 若记 那末截断误差 (1.5) ()=u R k j () ()[]k j k j h Lu t x u L -,1=()ττO t x t u r k j +??? ? ??????? ??--)~,~(2112122=()2 h O +τ。 其中(,)j k x t 是矩形11+-<

第九章 偏微分方程差分方法汇总

170 第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

相关文档
相关文档 最新文档