文档库 最新最全的文档下载
当前位置:文档库 › 离散数学公式 (2)

离散数学公式 (2)

离散数学公式 (2)
离散数学公式 (2)

基本等值式

1.双重否定律 A ?┐┐A

2.幂等律 A ? A∨A, A ? A∧A

3.交换律A∨B ? B∨A,A∧B ? B∧A

4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C)

5.分配律 A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律)

A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律)

6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B

7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A

8.零律A∨1 ? 1,A∧0 ? 0

9.同一律A∨0 ? A,A∧1 ? A

10.排中律A∨┐A ? 1

11.矛盾律A∧┐A ? 0

12.蕴涵等值式A→B ?┐A∨B

13.等价等值式A?B ? (A→B)∧(B→A)

14.假言易位A→B ?┐B→┐A

15.等价否定等值式 A?B ?┐A?┐B

16.归谬论(A→B)∧(A→┐B) ?┐A

求给定公式范式的步骤

(1)消去联结词→、?(若存在)。

(2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。

(3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。

推理定律--重言蕴含式

(1) A ? (A∨B) 附加律

(2) (A∧B) ? A 化简律

(3) (A→B)∧A ? B 假言推理

(4) (A→B)∧┐B ?┐A 拒取式

(5) (A∨B)∧┐B ? A 析取三段论

(6) (A→B) ∧(B→C) ? (A→C) 假言三段论

(7) (A?B) ∧(B?C) ? (A ? C) 等价三段论

(8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性二难

(A→B)∧(┐A→B)∧(A∨┐A) ? B 构造性二难(特殊形式)

(9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C) 破坏性二难

设个体域为有限集D={a1,a2,…,an},则有

(1)?xA(x) ? A(a1)∧A(a2)∧…∧A(an)

(2)?xA(x) ? A(a1)∨A(a2)∨…∨A(an)

设A(x)是任意的含自由出现个体变项x的公式,则

(1)┐?xA(x) ??x┐A(x)

(2)┐?xA(x) ??x┐A(x)

设A(x)是任意的含自由出现个体变项x的公式,B中不含x的出现,则(1)?x(A(x)∨B) ??xA(x)∨B

?x(A(x)∧B) ??xA(x)∧B

?x(A(x)→B) ??xA(x)→B

?x(B→A(x)) ? B→?xA(x)

(2)?x(A(x)∨B) ??xA(x)∨B

?x(A(x)∧B) ??xA(x)∧B

?x(A(x)→B) ??xA(x)→B

?x(B→A(x)) ? B→?xA(x)

设A(x),B(x)是任意的含自由出现个体变项x的公式,则

(1)?x(A(x)∧B(x)) ??xA(x)∧?xB(x)

(2)?x(A(x)∨B(x)) ??xA(x)∨?xB(x)

全称量词“?”对“∨”无分配律。

存在量词“?”对“∧”无分配律。

UI规则。

UG规则。EG规则。

A(c)

xA(x)

A(y)

xA(x)

?

?

xA(x)

A(y)

?

xA(x)

A(c)

?

EI规则。

A∪B={x|x∈A∨x∈B } 、

A∩B={x|x∈A∧x∈B }

A-B={x|x∈A∧x?B }

幂集P(A)={x | x?A}

对称差集A⊕B=(A-B)∪(B-A)

A⊕B=(A∪B)-(A∩B)

绝对补集~A={x|x ? A }

广义并∪A={x | ?z(z∈A∧x∈z)} 广义交∩A={x | ?z(z∈A→x∈z)} 设A={{a,b,c},{a,c,d},{a,e,f}} B={{a}} C={a,{c,d}}

则∪A={a,b,c,d,e,f}

∪B={a}

∪C=a∪{c,d}

∪?=?

∩A={a}

∩B={a}

∩C=a∩{c,d}

集合恒等式

幂等律A∪A=A A∩A=A

结合律(A∪B)∪C=A∪(B∪C)(A∩B)∩C=A∩(B∩C)

交换律A∪B=B∪A A∩B=B∩A

A(c)

xA(x)

?

分配律A∪(B∩C)=(A∪B)∩(A∪C) A∩(B∪C)=(A∩B)∪(A∩C)

同一律A∪?=A A∩E=A

零律A∪E=E A∩?=?

排中律A∪~A=E

矛盾律A∩~A=?

吸收律A∪(A∩B)=A A∩(A∪B)=A

德摩根律A-(B∪C)=(A-B)∩(A-C)A-(B∩C)=(A-B)∪(A-C)~(B∪C)=~B∩~C~(B∩C)=~B∪~C

~?=E~E=?

双重否定律~(~A)=A

集合运算性质的一些重要结果

A∩B?A,A∩B?B

A?A∪B,B?A∪B

A-B?A

A-B=A∩~B

A∪B=B ? A?B ? A∩B=A ? A-B=?

A⊕B=B⊕A

(A⊕B)⊕C=A⊕(B⊕C)

A?⊕=A

A⊕A=?

A⊕B=A⊕C ? B=C

对偶(dual)式:一个集合表达式,如果只含有∩、∪、~、?、E、=、?、?,那么同时把∩与∪互换,把?与E互换,把?与?互换,得到式子称为原式的对偶式。

有序对具有以下性质:(1)当x≠y时,

(2)的充分必要条件是x=u且y=v。

笛卡儿积的符号化表示为A×B={|x∈A∧y∈B}

如果|A|=m,|B|=n,则|A×B|=mn。

笛卡儿积的运算性质

(1)对任意集合A,根据定义有

A×?=?, ?×A=?

(2)一般的说,笛卡儿积运算不满足交换律,即

A×B≠B×A (当A≠?∧B≠?∧A≠B 时)

(3)笛卡儿积运算不满足结合律,即

(A×B)×C≠A×(B×C) (当A≠?∧B≠?∧C≠?时)

(4)笛卡儿积运算对并和交运算满足分配律,即

A×(B∪C)=(A×B)∪(A×C) (B∪C)×A=(B×A)∪(C×A)

A×(B∩C)=(A×B)∩(A×C) (B∩C)×A=(B×A)∩(C×A)

(5)A?C ∧B?D ? A×B ? C×D

常用的关系

对任意集合A,定义

全域关系 EA={|x ∈A ∧y ∈A}=A ×A 恒等关系 IA={|x ∈A}

空关系 ?

小于或等于关系:LA={|x,y ∈A ∧x ≤y},其中 A ?R 。

整除关系:DB={|x,y ∈B ∧x 整除y},其中 A ?Z* ,Z*是非零整数集 包含关系:R ?={|x,y ∈A ∧x ?y},其中 A 是集合族。

关系矩阵和关系图

设 A={1,2,3,4},R={<1,1>,<1,2>,<2,3>,<2,4>,<4,2>}, 则R 的关系矩阵和关系图分别是

定义域 dom R = {x | ?y(∈R )} 值域 ran R ={y | ? x(∈R)} 域 fld R =dom R ∪ ran R

例 求R={<1,2>,<1,3>,<2,4>,<4,3>}的定义域、值域和域。 解答 dom R ={1,2,4} ran R ={2,3,4} fld R ={1,2,3,4}

逆 R-1={|∈R}

右复合 F ?G ={ | ?t(∈F ∧∈G)}

限制 R ↑A={|xRy ∧x ∈A} 像 R[A]=ran(R ↑A)

例 设R ={<1,2>,<1,3>,<2,2>,<2,4>,<3,2>}

R ↑{1}={<1,2>,<1,3>} R ↑? =? R ↑{2,3}={<2,2>,<2,4>},<3,2>} R[{1}]={2,3} R[?] =? R[{3}]={2}

设F 是任意的关系,则 (1)(F-1)-1=F

(2)dom F-1=ran F ,ran F-1=dom F 设F ,G ,H 是任意的关系,则 (1)(F ?G)?H =F ?(G ?H) (2)(F ?G)-1=G-1 ? F-1

设R 为A 上的关系,则R ? IA =IA ? R =R 设F ,G ,H 是任意的关系,则 (1) F ?(G ∪H)=F ?G ∪F ?H (2) (G ∪H)?F =G ?F ∪H ?F (3) F ?(G ∩H)?F ?G ∩F ?H (4) (G ∩H)?F ?G ?F ∩H ?F

?????

????

???=00

1

000011000011M R

设F为关系,A,B为集合,则

(1) F↑(A∪B)=F↑A∪F↑B

(2) F[A∪B]=F[A]∪F[B]

(3) F↑(A∩B)=F↑A∩F↑B

(4) F[A∩B]?F[A]∩F[B]

关系的幂运算

设R为A上的关系,n为自然数,则R的n次幂定义为:

(1)R0={|x∈A}=IA

(2)Rn+1=Rn ? R

幂运算的性质

设A为n元集,R是A上的关系,则存在自然数s和t,使得Rs=Rt。

设R是A上的关系,m,n∈N,则

(1)Rm ? Rn=Rm+n (2)(Rm)n=Rmn

设R是A上的关系,若存在自然数s,t(s

(1) 对任何k∈N有Rs+k=Rt+k

(2) 对任何k,i∈N有Rs+kp+i=Rs+i,其中p=t-s

(3) 令S={R0,R1,…,Rt-1},则对于任意的q∈N有Rq∈S

自反?x(x∈A→∈R),

反自反?x(x∈A→?R),

对称?x?y(x,y∈A∧∈R→∈R)

反对称?x?y(x,y∈A∧∈R∧∈R→x=y),

传递?x?y?z(x,y,z∈A∧∈R∧∈R→∈R)

关系性质的等价描述

设R为A上的关系,则

(1)R在A上自反当且仅当IA ? R

(2)R在A上反自反当且仅当R∩IA=?

(3)R在A上对称当且仅当R=R-1

(4)R在A上反对称当且仅当R∩R-1 ? IA

(5)R在A上传递当且仅当R?R?R

(1)若R1,R2是自反的和对称的,则R1∪R2也是自反的和对称的。

(2)若R1和R2是传递的,则R1∩R2也是传递的。

关系性质的特点

自反性反自反性对称性反对称性传递性集合表达式IA ? R R∩IA=?R=R-1 R∩R-1 ? IA R?R?R

关系矩阵主对角线元

素全是1 主对角线元素

全是0

矩阵是对称矩

若rij=1,且i

≠j,则rji=0

对M2中1所

在位置,M中

相应的位置都

是1

关系图每个顶点都

有环每个顶点都没

有环

如果两个顶点

之间有边,一

定是一对方向

相反的边(无

单边)

如果两点之间

有边,一定是

一条有向边(无

双向边)

如果顶点xi到

xj有边,xj到

xk有边,则从

xi到xk也有边

关系的性质和运算之间的关系

自反性反自反性对称性反对称性传递性R1-1 √√√√√

R1∩R2 √√√√√

R1∪R2 √√√××

R1-R2 ×√√√×

R1 ? R2 √××××

闭包的构造方法

设R为A上的关系,则有

(1)自反闭包r(R)=R∪R0

(2)对称闭包s(R)=R∪R-1

(3)t(R)=R∪R2∪R3∪…

关系性质与闭包运算之间的联系

设R是非空集合A上的关系,

(1)若R是自反的,则s(R)与t(R)也是自反的。

(2)若R是对称的,则r(R)与t(R)也是对称的。

(3)若R是传递的,则r(R)是传递的。

等价类的性质

设R是非空集合A上的等价关系,则

(1)?x∈A,[x]是A的非空子集。

(2)?x,y∈A,如果xRy,则[x]=[y]。

(3)?x,y∈A,如果?R,则[x]与[y]不交。

(4)∪{[x]|x∈A}=A。

偏序集中的特殊元素

为偏序集,B?A,y∈B。

(1)若?x(x∈B→y≤x)成立,则称y为B的最小元。

(2)若?x(x ∈B →x ≤y)成立,则称y 为B 的最大元。

(3)若?x(x ∈B ∧x ≤y →x =y)成立,则称y 为B 的极小元。 (4)若?x(x ∈B ∧y ≤x →x =y)成立,则称y 为B 的极大元

B

上界

下界 上确界 下确界 {2,3,6,12,24,36} 无 无

无 无 {6,12} 12,24,36 2,3,6 12 6 {2,3,6} 6,12,24,36 无 6 无 {6}

6,12,24,36, 2,3,6,

6

6

函数相等

由定义可知,两个函数F 和G 相等, 一定满足下面两个条件: (1)dom F =dom G

(2)?x ∈dom F =dom G ,都有 F(x )=G(x )

所有从A 到B 的函数的集合记作BA ,读作“B 上A ”,符号化表示为 BA ={f | f :A →B} 。 例:设A ={1,2,3},B ={a,b},求BA 。

BA ={ f 0, f 1, f 2, f 3, f 4, f 5, f 6, f 7} 。其中

f 0={<1,a>,<2,a>,<3,a>} f 1={<1,a>,<2,a>,<3,b>} f 2={<1,a>,<2,b>,<3,a>} f 3={<1,a>,<2,b>,<3,b>} f 4={<1,b>,<2,a>,<3,a>} f 5={<1,b>,<2,a>,<3,b>} f 6={<1,b>,<2,b>,<3,a>} f 7={<1,b>,<2,b>,<3,b>}

设f :A →B ,(1)若ran f =B ,则称f :A →B 是满射(surjection )的。

(2)若?y ∈ran f 都存在唯一的x ∈A 使得f (x )=y ,则称 f :A →B 是单射(injection )的。 (3)若f 既是满射又是单射的,则称f :A →B 是双射(bijection )

单射 双射 函数 满射 例:判断下面函数是否为单射、满射、双射的,为什么?

B

最大元 最小元 极大元 极小元

{2,3,6,12,24,36} 无 无 24,36 2,3 {6,12} 12 6 12 6 {2,3,6} 6 无 6 2,3 {6}

6

6

6

6

a b c

1 2 3

d

36

3

24

2

12 6

a b c

1 2 3 4

a b c

1 2 3

4 d

a b c

1 2 3

4 d

(1) f:R→R,f(x)= -x2+2x-1 (2) f:Z+→R,f(x)=ln x,Z+为正整数集

(3) f:R→Z,f(x)=?x?(4) f:R→R,f(x)=2x+1。

解(1)f 在x=1取得极大值0。既不是单射也不是满射的。

(2)f 是单调上升的,是单射的,但不满射。ran f={ln1, ln2, …}。

(3)f 是满射的,但不是单射的,例如f(1.5)=f(1.2)=1。

(4)f 是满射、单射、双射的,因为它是单调函数并且ran f=R。

例:(1) 给定无向图G=,其中V={v1,v2,v3,v4,v5},

E={(v1,v1),(v1,v2),(v2,v3),(v2,v3),(v2,v5),(v1,v5),(v4,v5)}.

(2) 给定有向图D=,其中V={a,b,c,d},

E={,,,,,,}。

画出G与D的图形。

邻域:NG(v1) ={v2,v5} 后继元集:Г+D(d ) ={c}

闭邻域:NG(v1) ={v1,v2,v5} 先驱元集:Г-D(d ) ={a,c}

关联集:IG(v1) ={e1,e2,e3} 邻域:ND(d ) ={a,c}

闭邻域:ND(d )={a,c,d}

d(v1)=4(注意,环提供2度),出度:d+(a)=4,入度:d-(a)=1

△=4,δ=1,(环e1提供出度1,提供入度1),

v4是悬挂顶点,e7是悬挂边。d(a)=4+1=5。△=5,δ=3,

△+=4 (在a点达到)

度数列为4,4,2,1,3。δ+=0(在b点达到)

△-=3(在b点达到)

δ-=1(在a和c点达到)

按字母顺序,度数列:5,3,3,3

出度列:4,0,2,1 入度列:1,3,1,2

设G=是n阶m条边的无向图,则下面各命题是等价的:

(1)G是树。(2)G中任意两个顶点之间存在唯一的路径。

(3)G中无回路且m=n-1。(4)G是连通的且m=n-1。

(5)G是连通的且G中任何边均为桥。

(6)G中没有回路,但在任何两个不同的顶点之间加一条新边,在所得图中得到唯一的一个含新边的圈。

例题已知无向树T中,有1个3度顶点,2个2度顶点,其余顶点全是树叶,试求树叶数,并画出满足要求的非同构的无向树。

解答设有x片树叶,于是结点总数

n=1+2+x=3+x

由握手定理和树的性质m=n-1可知,

2m=2(n-1)=2×(2+x)

=1×3+2×2+x

解出x=3,故T有3片树叶。

故T的度数应为1、1、1、2、2、3。

求最小生成树的算法(避圈法(Kruskal))

(1)设n阶无向连通带权图G=有m条边。不妨设G中没有环(否则,可以将所有的环先删去),将m条边按权从小到大排序:e1,e2,…,em。

(2)取e1在T中。

(3)依次检查e2,…,em,若ej(j≥2)与已在T中的边不构成回路,取ej也在T中,否则弃去ej。

(4)算法停止时得到的T为G的最小生成树为止。

例:求下图所示两个图中的最小生成树。

W(T1)=6 W(T2)=12

T是n(n≥2)阶有向树,

(1) T为根树—T中有一个顶点入度为0,其余顶点的入度均为1

(2) 树根——入度为0的顶点

(3) 树叶——入度为1,出度为0的顶点

(4) 内点——入度为1,出度不为0的顶点

(5) 分支点——树根与内点的总称

(6) 顶点v的层数——从树根到v的通路长度

(7) 树高——T中层数最大顶点的层数

根树的画法:树根放上方,省去所有有向边上的箭头。

树叶——8片内点—— 6个分支点—— 7个高度—— 5

求带权为1、1、2、3、4、5的最优树。

W(T)=38

中序行遍法:b a (f d g) c e前序行遍法:a b (c (d f g) e)

后序行遍法:b ((f g d) e c) a

高等数学等价替换公式泰勒公式资料讲解

应用高等数学等价替换公式 1、无穷小量: 设0)x (g lim )x (f lim 0 x x x x ==→→ *1)若0) x (g ) x (f lim x x =→,f (x )是g (x )的 高阶 无穷小 *2)若∞=→) x (g ) x (f lim x x ,f (x )是g (x )的 低阶 无穷小 *3)若c ) x (g ) x (f lim x x =→,f (x )是g (x )的 同阶 无穷小 *4)若1) x (g ) x (f lim x x =→,f (x )是g (x )的 等价 无穷小 *5)若0) x (g ) x (f lim k x x 0 =→,f (x )是g (x )的 k 阶 无穷小 2、等价替换: 若x →x 0,f (x )~ f 1(x ),g (x )~ g 1(x ) 则=→)x (g ) x (f lim x x ) x (g )x (f lim 11x x 0→ 6、常用等价形式: 当f (x )→0时 *1)sinf (x )~ f (x ) *2)arc sinf (x )~ f (x ) *3)tanf (x )~ f (x )

*4)arc tanf (x )~ f (x ) *5)In (1+f (x ))~ f (x ) *6)e f (x )-1~ f (x ) *7)1-cosf (x )~ 2 ) x (f 2 *8)(1+f (x ))α -1~ αf (x ) 二、函数的连续: 1、间断点: *1)第一类间断点:f -(x 0)、f +(x 0)均 存在的 间断点 ⑴跳跃间断点: f -(x 0)≠f +(x 0) ⑵可去间断点: f -(x 0)=f +(x 0) *2)第二类间断点:f -(x 0)、f +(x 0)至少有一个 不存在的 间断点 ⑴无穷间断点: f -(x 0)、f +(x 0)中至少有一个为 ∞ ⑵振荡间断点: f -(x 0)、f +(x 0)中至少有一个 振荡不存在 三、导数: 1、定义:)x (f '= x △) x (f -)x △x (f lim 000 x △+→ 2、导数的常见形式: *1) 0 0x x 0x -x ) x (f -)x (f lim )x (f 0 →=' *2) h ) x (f -)h x (f lim )x (f 000 h +='→

离散数学(集合论)课后总结

第三章集合论基础 1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。 ⑴{a}∈A T ⑵?({a}? A) F ⑶c∈A F ⑷{a}?{{a,b},c} F ⑸{{a}}?A T ⑹{a,b}∈{{a,b},c} T ⑺{{a,b}}?A T ⑻{a,b}?{{a,b},c} F ⑼{c}?{{a,b},c} T ⑽({c}?A)→(a∈Φ) T 2、证明空集是唯一的。(性质1:对于任何集合A,都有Φ?A。) 证明:假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得Φ1 ?Φ2 。 因为Φ2是空集,则由性质1得Φ2 ?Φ1 。 所以Φ1=Φ2 。 3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念) a)是否Φ∈B?是否Φ?B? b)是否{Φ}∈B? 是否{Φ}?B? c)是否{{Φ}}∈B? 是否{{Φ}}?B? 解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}} 在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b} B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}} 然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}} 以后熟悉后就可以直接写出。 a) Φ∈B Φ?B b) {Φ}∈B {Φ} ? B c) {{Φ}}∈B {{Φ}}?B a)、b)、c)中命题均为真。 4、证明A?B ? A∩B=A成立。 证明:A∩B=A ??x(x∈A∩B ?x∈A) ??x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B)) ??x((x?A∩B∨x∈A)∧(x?A∨x∈A∩B)) ??x((?(x∈A∧x∈B)∨x∈A)∧(x?A∨(x∈A∧x∈B)) ??x(((x?A∨x?B)∨x∈A)∧(x?A∨(x∈A∧x∈B))) ??x(T∧(T∧( x?A∨x∈B))) ??x( x?A∨x∈B)??x(x∈A→x∈B)? A?B 5、(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) ?x∈(A-C)∧x?(B-C) ?(x∈A∧x?C)∧?(x∈B∧x?C) ?(x∈A∧x?C)∧(x?B∨x∈C) ?(x∈A∧x?C∧x?B)∨(x∈A∧x?C∧x∈C) ?x∈A∧x?C∧x?B?x∈A∧x?B∧x?C ?(x∈A∧x?B)∧x?C ?x∈A-B∧x?C?x∈(A-B)-C 所以(A-B)-C=(A-C)-(B-C)

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

离散数学基本公式

、基本等值式 ⑴双重否定律 A A ⑵籍等律 A A A A A V A A ⑶交换律 A A B BA A A V B BV A ⑷结合律 A V (B V C) (A V B) V C A A (B A C) (A A B) A C ⑸分配律 A V (B A C) (A V B) A (A V C) A A (B V C) (A A B) V (A A C) (6)德摩根律(A V B) AA B (A A B) AV B ⑺吸收律 A (8)零律A ⑼同一律 A (10) 排中律 A (11) 矛盾律 A (12) 蕴含等值式A (13) 等价等值式A V (A A B) V1 1 A1 A V A 1 A A 0 B AV B (A A A A A B B) A (B A) A (A V B) A 0 0 V 0 A A A B (AV B) A (A V B) A B (A A B) V ( AA B ) (14) 假言易位ABBA (15) 等价否定等值式ABA B (16)归谬论(A B) A (A B) A 一、推理定律里口编涵式 1.A ( A B) 附加律 2.( A B) A 化简律 3.( A B) A B 假言推理 4.( A B) B A 拒取式 5.( A B) B A 析取三段论 6.( A B) (B C) (A 假言三段论 7.( A B) (B Q (A C) 等价三段论 8.( A B) (C D) (A C) (B D) 构造性二难 (A B) ( A B) B 构造性二难(特殊形式) 9.( A B) (C D) ( B D) ( A Q 破坏性二难 三、量词辖域收缩与扩张 x(A(x) V B) xA(x) VB x(A(x) A B) xA(x) AB x(A(x) —B) xA(x) F x(B t A(x)) B T xA(x) x(A(x) V B) xA(x) VB x(A(x) A B) xA(x) A B x(A(x) —B) xA(x) F x(B t A(x)) B T xA(x) 四、量词分配 x(A(x) A B(x)) xA(x) A xB(x) x(A(x) V B(x)) xA(x) V xB(x) x(A(x) V B(x)) xA(x) V xB(x)

(完整word)高等数学等价替换公式

无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用 →x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x Θ .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x Θ .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n Θ .})1({时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。

离散数学之集合论

第二篇集合与关系 集合论是现代各科数学的基础,它是德国数学家康托(Geog Cantor, 1845~1918)于1874年创立的,1876~1883年康托一系列有关集合论的文章,对任意元的集合进行了深入的探讨,提出了关于基数、序数和良序集等理论,奠定了集合论深厚的基础,19世纪90年代后逐渐为数学家们采用,成为分析数学、代数和几何的有力工具。 随着集合论的发展,以及它与数学哲学密切联系所作的讨论,在1900年前后出现了各种悖论,使集合的发展一度陷入僵滞的局面。1904~1908年,策墨罗(Zermelo)列出了第一个集合论的公理系统,它的公理,使数学哲学中产生的一些矛盾基本上得到了统一,在此基础上以后就逐渐形成了公理化集合论和抽象集合论,使该学科成为在数学中发展最为迅速的一个分支。 现在,集合论已经成为内容充实、实用广泛的一门学科,在近代数学中占据重要地位,它的观点已渗透到古典分析、泛函、概率、函数论、信息论、排队论等现代数学各个分支,正在影响着整个数学科学。集合论在计算机科学中也具有十分广泛的应用,计算机科学领域中的大多数基本概念和理论几乎均采用集合论的有关术语来描述和论证,成为计算机科学工作者必不可少的基础知识。集合论可作为数学学科的通用语言,一切必要的数据结构都可以利用集合这个原始数据结构而构造出来,计算机科学家或许也可以利用这种方法。 本篇介绍集合论的基础知识,主要内容包括集合及其运算、性质、序偶、关系、映射、函数、基数等。 第2-1章集合及其运算 §2-1-1 集合的概念及其表示 一、集合的概念 “集合”是集合论中的一个原始的概念,因此它不能被精确地定义出来。一般地说,把具有某种共同性质的许多事物,汇集成一个整体,就形成一个集合。构成这个集合的每一个事物称为这个集合的一个成员(或一个元素),构成集合的这些成员可以是具体东西,也可以是抽象东西。例如:教室内的桌椅;图书馆的藏书;全国的高等学校;自然数的全体;程序设计语言C的基本字符的全体等均分别构成一个集合。通常用大写的英文字母表示集合的名称;用小写的英文字母表示元素。若元素a属于集合A记作

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为(). A.自反的B.对称的 C.传递且对称的D.反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为(). A.自反的B.对称的 C.对称和传递的D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学自学笔记命题公式及其真值表

离散数学自学笔记命题公式及其真值表 我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。 命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。下面我们引入高一级的语言成分——命题公式。 定义1.1 以下三条款规定了命题公式(proposition formula)的意义: (1)命题常元和命题变元是命题公式,也称为原子公式或原子。 (2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。 (3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。 命题公式简称公式,常用大写拉丁字母A,B,C等表示。公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。 例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。 为使公式的表示更为简练,我们作如下约定: (1)公式最外层括号一律可省略。 (2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。 (3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。湖南省自考网:https://www.wendangku.net/doc/b4231134.html,/整理 例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s))) 设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为(). A.自反的 B.对称的 C.传递且对称的 D.反自反且传递的 8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为(). A.自反的 B.对称的 C.对称和传递的 D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学公式

离散数学公式

————————————————————————————————作者: ————————————————————————————————日期: ?

基本等值式 1.双重否定律A?┐┐A 2.幂等律 A ? A∨A,?A ?A∧A 3.交换律?A∨B?B∨A,?A∧B ?B∧A 4.结合律??(A∨B)∨C? A∨(B∨C) ?(A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C)?(A∨B)∧(A∨C)(∨对∧的分配律)??A∧(B∨C)?(A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律?┐(A∨B) ?┐A∧┐B ┐(A∧B)?┐A∨┐B 7.吸收律?A∨(A∧B) ?A,A∧(A∨B) ?A 8.零律?A∨1?1,A∧0 ?0 9.同一律?A∨0 ?A,A∧1?A 10.排中律A∨┐A ?1 11.矛盾律?A∧┐A? 0 12.蕴涵等值式A→B?┐A∨B 13.等价等值式??A?B?(A→B)∧(B→A) 14.假言易位A→B?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B)?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1)A ?(A∨B) 附加律 (2) (A∧B)? A ?化简律 (3) (A→B)∧A? B ??假言推理 (4) (A→B)∧┐B?┐A 拒取式 (5)(A∨B)∧┐B? A ?析取三段论 (6) (A→B) ∧(B→C)?(A→C) ?假言三段论 (7) (A?B) ∧(B?C) ? (A? C)?等价三段论 (8) (A→B)∧(C→D)∧(A∨C) ?(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) ?B构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) ?(┐A∨┐C) 破坏性二难

大学高等数学等价无穷小教学总结

这个问题很多人都搞不明白,很多自认为明白的人也不负责任地说一句“乘除可以,加减不行”,包括不少高校教师。其实这种讲法是不对的!关键是要知道其中的道理,而不是记住结论。 1.做乘除法的时候一定可以替换,这个大家都知道。 如果f(x)~u(x),g(x)~v(x),那么lim f(x)/g(x) = lim u(x)/v(x)。关键要记住道理 lim f(x)/g(x) = lim f(x)/u(x) * u(x)/v(x) * v(x)/g(x) 其中两项的极限是1,所以就顺利替换掉了。 2.加减法的时候也可以替换!但是注意保留余项。 f(x)~u(x)不能推出f(x)+g(x)~u(x)+g(x),这个是很多人说不能替换的原因,但是如果你这样看: f(x)~u(x)等价于f(x)=u(x)+o(f(x)),那么f(x)+g(x)=u(x)+g(x)+o(f(x)),注意这里是等号,所以一定是成立的! 问题就出在u(x)+g(x)可能因为相消变成高阶的无穷小量,此时余项o(f(x))成为主导,所以不能忽略掉。当u(x)+g(x)的阶没有提高时,o(f(x))仍然是可以忽略的。 比如你的例子,ln(1+x)+x是可以替换的,因为 ln(1+x)+x=[x+o(x)]+x=2x+o(x), 所以ln(1+x)+x和2x是等价无穷小量。 但是如果碰到ln(1+x)-x,那么 ln(1+x)+x=[x+o(x)]-x=o(x), 此时发生了相消,余项o(x)成为了主导项。此时这个式子仍然是成立的!只不过用它来作为分子或分母的极限问题可能得到不定型而无法直接求出来而已。 碰到这种情况也不是说就不能替换,如果你换一个高阶近似: ln(1+x)=x-x^2/2+o(x^2) 那么 ln(1+x)-x=-x^2/2+o(x^2) 这个和前面ln(1+x)-x=o(x)是相容的,但是是更有意义的结果,此时余项o(x^2)可以忽略。也就是说用x-x^2/2作为ln(1+x)的等价无穷小量得到的结果更好。

【离散数学】知识点及典型例题整理

【半群】G非空,·为G上的二元代数运算,满足结合律。 【群】(非空,封闭,结合律,单位元,逆元)恰有一个元素1适合1·a=a·1=a,恰有一个元素a-1适合a·a-1=a-1·a=1。 【Abel群/交换群】·适合交换律。可能不只有两个元素适合x2=1 【置换】n元置换的全体作成的集合Sn对置换的乘法作成n 次对称群。 【子群】按照G中的乘法运算·,子集H仍是一个群。单位子群{1}和G称为平凡子群。 【循环群】G可以由它的某元素a生成,即G=(a)。a所有幂的集合an,n=0,±1,±2,…做成G的一个子群,由a生成的子群。若G的元数是一个质数,则G必是循环群。 n元循环群(a)中,元素ak是(a)的生成元的充要条件是(n,k)=1。共有?(n)个。【三次对称群】{I(12)(13)(23)(123)(132)} 【陪集】a,b∈G,若有h∈H,使得a =bh,则称a合同于b(右模H),a≡b(右mod H)。H有限,则H的任意右陪集aH的元数皆等于H的元数。任意两个右陪集aH和bH或者相等或者不相交。 求右陪集:H本身是一个;任取a?H而求aH又得到一个;任取b?H∪aH而求bH又一个。G=H∪aH∪bH∪… 【正规子群】G中任意g,gH=Hg。(H=gHg-1对任意g∈G都成立) Lagrange定理G为有限群,则任意子群H的元数整除群G的元数。 1有限群G的元数除以H的元数所得的商,记为(G:H),叫做H在G中的指数,H的指数也就是H的右(左)陪集的个数。 2设G为有限群,元数为n,对任意a∈G,有an=1。 3若H在G中的指数是2,则H必然是G的正规子群。证明:此时对H的左陪集aH,右陪集Ha,都是G中元去掉H的所余部分。故Ha=aH。 4G的任意多个子群的交集是G的子群。并且,G的任意多个正规子群的交集仍是G的正规子群。 5 H是G的子群。N是G的正规子群。命HN为H的元素乘N的元素所得的所有元素的集合,则HN是G的子群。 【同态映射】K是乘法系统,G到K的一个映射σ(ab)=σ(a)σ(b)。 设(G,*),(K,+)是两个群,令σ:x→e,?x∈G,其中e是K的单位元。则σ是G到K 内的映射,且对a,b∈G,有σ(a*b)=e=σ(a)+ σ(b)。即,σ是G到K的同态映射,G~σ(G)。σ(G)={e}是K的一个子群。这个同态映射是任意两个群之间都有的。 【同构映射】K是乘法系统,σ是G到σ(G)上的1-1映射。称G与σ(G)同构,G?G′。同构的群或代数系统,抽象地来看可以说毫无差别。G和G′同态,则可以说G′是G的一个缩影。 【同态核】σ是G到G′上的同态映射,核N为G中所有变成G′中1′的元素g的集合,即N=σ-1(1′)={g∈G∣σ(g)=1′}。 N是G的一个正规子群。对于Gˊ的任意元素aˊ,σ-1(aˊ)={x|x∈G ,σ(x)= aˊ}是N在G 中的一个陪集。Gˊ的元素和N在G中的陪集一一对应。 设N是G的正规子群。若A,B是N的陪集,则AB也是N的陪集。 【环】R非空,有加、乘两种运算 a+b=b+a2)a+(b+c)=(a+b)+c, 3)R中有一个元素0,适合a+0=a, 4)对于R中任意a,有-a,适合a+(-a)=0, 5)a(bc)=(ab)c,

离散数学公式

基本等值式 1.双重否定律 A ?┐┐A 2.幂等律 A ? A∨A, A ? A∧A 3.交换律A∨B ? B∨A, A∧B ? B∧A 4.结合律(A∨B)∨C ? A∨(B∨C) (A∧B)∧C ? A∧(B∧C) 5.分配律A∨(B∧C) ? (A∨B)∧(A∨C) (∨对∧的分配律) A∧(B∨C) ? (A∧B)∨(A∧C) (∧对∨的分配律) 6.德·摩根律┐(A∨B) ?┐A∧┐B ┐(A∧B) ?┐A∨┐B 7.吸收律 A∨(A∧B) ? A,A∧(A∨B) ? A 8.零律A∨1 ? 1,A∧0 ? 0 9.同一律A∨0 ? A,A∧1 ? A 10.排中律A∨┐A ? 1 11.矛盾律A∧┐A ? 0 12.蕴涵等值式A→B ?┐A∨B 13.等价等值式A?B ? (A→B)∧(B→A) 14.假言易位A→B ?┐B→┐A 15.等价否定等值式 A?B ?┐A?┐B 16.归谬论(A→B)∧(A→┐B) ?┐A 求给定公式范式的步骤 (1)消去联结词→、?(若存在)。 (2)否定号的消去(利用双重否定律)或内移(利用德摩根律)。 (3)利用分配律:利用∧对∨的分配律求析取范式,∨对∧的分配律求合取范式。 推理定律--重言蕴含式 (1) A T (A∨B) 附加律 (2) (A∧B) T A 化简律 (3) (A→B)∧A T B 假言推理 (4) (A→B)∧┐B T┐A 拒取式 (5) (A∨B)∧┐B T A 析取三段论 (6) (A→B) ∧(B→C) T (A→C) 假言三段论 (7) (A?B) ∧(B?C) T (A ? C) 等价三段论 (8) (A→B)∧(C→D)∧(A∨C) T(B∨D) 构造性二难 (A→B)∧(┐A→B)∧(A∨┐A) T B 构造性二难(特殊形式) (9)(A→B)∧(C→D)∧(┐B∨┐D) T(┐A∨┐C)破坏性二难

离散数学及其应用集合论部分课后习题答案

作业答案:集合论部分 P90:习题六 5、确定下列命题是否为真。 (2)?∈? (4){}?∈? (6){,}{,,,{,}}a b a b c a b ∈ 解答:(2)假(4)真(6)真 8、求下列集合的幂集。 (5){{1,2},{2,1,1},{2,1,1,2}} (6){{,2},{2}}? 解答: (5)集合的元素彼此互不相同,所以{2,1,1,2}{1,2}=,所以该题的结论应该为 {,{{1,2}},{{2,1,1}},{{1,2},{2,1,1}}}? (6){,{{,2}},{{2}},{{,2},{2}}}??? 9、设{1,2,3,4,5,6}E =,{1,4}A =,{1,2,5}B =,{2,4}C =,求下列集合。 (1)A B (2)()A B 解答: (1){1,4}{3,4,6}{4}A B == (2)(){1}{2,3,4,5,6}A B == 31、设A,B,C 为任意集合,证明 () ()()()A B B A A B A B --=- 证明: ()() {|}{|()()}{|()()()()} {|()()}{|()()}{|()()} {|()()}{|()(A B B A x x A B x B A x x A x B x B x A x x A x B x B x B x A x A x B x A x x A x B x B x A x x A B x A x B x x A B x A x B x x A B x B x x A B x A --=∈-∨∈-=∈∧?∨∈∧?=∈∨∈∧?∨∈∧∈∨?∧?∨?=∈∨∈∧?∨?=∈∧?∨?=∈∧∈∨∈=∈∧∈=∈∧∈)} B A B A B =-

离散数学作业答案

离散数学集合论部分形成性考核书面作 业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外) 安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出 掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第一次作业,大家要认真及时地完成集合论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有 解答过程,要求本学期第11周末前完成并上交任课教师(不收电子稿)。并在 03任务界面下方点击“保存”和“交卷”按钮,完成并上交任课教师。 一、填空题 1.设集合{1,2,3},{1,2} ==,则P(A)-P(B )= {{3},{1,3},{2,3}, A B {1,2,3}} ,A?B= {<1,1>,<1,2>,<2,1>,<2,2>,<3,1>,<3.2>} .2.设集合A有10个元素,那么A的幂集合P(A)的元素个数为 1024 .3.设集合A={0, 1, 2, 3},B={2, 3, 4, 5},R是A到B的二元关系, 则R的有序对集合为 {<2, 2>,<2, 3>,<3, 2>},<3,3> .4.设集合A={1, 2, 3, 4 },B={6, 8, 12},A到B的二元关系 R=} ∈ y x∈ y < > = {B , , x , 2 y A x 那么R-1= {<6,3>,<8,4>} 5.设集合A={a, b, c, d},A上的二元关系R={, , , },则R具有的性质是没有任何性质. 6.设集合A={a, b, c, d},A上的二元关系R={, , , },若在R中再增加两个元素{,} ,则新得到的关系就具 有对称性. 7.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有 2 个. 8.设A={1, 2}上的二元关系为R={|x?A,y?A, x+y =10},则R的自 反闭包为 {<1,1>,<2,2>} . 9.设R是集合A上的等价关系,且1 , 2 , 3是A中的元素,则R中至少 包含 <1,1>,<2,2>,<3,3> 等元素. 10.设集合A={1, 2},B={a, b},那么集合A到B的双射函数是

《离散数学》(集合论部分)自测试题

第 1 页 共 4 页 2015 - 2016学年第一学期 《离散数学》(集合论部分)自测试题 一、单项选择题(本大题共8小题,每小题2分,共16分) 在每小题列出的四个备选项中只有一个是最符合题目要求的,请将其代码填写在题后的括号内。错选、多选或漏选均不得分。 1)等价关系一定不是..【 】 A. 对称的 B. 自反的 C. 可传递的 D. 反自反的 2)设{,{1}}A a =,则下列描述中正确..的是【 】 A. {1}A ∈ B. {1}A ? C. {a}A ∈ D. A ?∈ 3)设A 、B 是两个任意集合,则A B -=??【 】 A. A B = B. A B ? C. A B ? D. B =? 4)设{{},{},{}}X a b =?,则其幂集()P X 的元素总个数为【 】 A. 4 B. 8 C. 16 D. 32 5)设R 是实数集合,:f R R →,()21f x x =+,则f 【 】 A. 是关系,但不是函数 B. 仅是满射函数 C. 仅是单射函数 D. 是双射函数 6)设R 是A 上的二元关系,r 、s 、t 分别指关系的自反闭包、对称闭包、传递闭包、则下列描述不正确...的是【 】 A. ()A r R R I = B. 2()t R R R = C. 1 ()s R R R -= D. -1-1 R R =() 7)如果R 1和R 2是集合A 上的自反关系,则R 1∪R 2, R 1∩R 2, R 1―R 2中自反关系有【 】个 A. 0 B. 1 C. 2 D. 3 8)设集合A={a,b,c },B={1,2,3,4},作f :A →B ,则不同的函数个数为【 】个 A. 12 B. 81 C. 64 D. 以上均不正确 二、填空题(本大题共12空,每空2分,共24分) 请在每小题的空格中填上正确答案。错填、漏填均不得分。 7)设集合A={1,2,3,4},则A 中的划分有_____________个. 8)设=<1,2>,<1,3>,<2,4>,<4,3>R {},那么fld R =_____________. 9)设集合A ={1,2,3,4},则A A ⊕= _____________. 10)设关系F ={<3,3>,<6,2>},G ={<2,3>},则F G = _____________. ----------------------------------------第-------------------1---------------------装--------------------------------线---------------------------------------

完整word版,离散数学知识汇总,推荐文档

离散数学笔记 第一章命题逻辑 合取 析取 定义 1. 1.3否定:当某个命题为真时,其否定为假,当某个命题为假时,其否定为真定义 1. 1.4条件联结词,表示“如果……那么……”形式的语句 定义 1. 1.5双条件联结词,表示“当且仅当”形式的语句 定义 1.2.1合式公式 (1)单个命题变元、命题常元为合式公式,称为原子公式。 (2)若某个字符串A 是合式公式,则?A、(A)也是合式公式。 (3)若A、B 是合式公式,则A ∧B、A∨B、A→B、A?B 是合式公式。 (4)有限次使用(2)~(3)形成的字符串均为合式公式。 1.3等值式 1.4析取范式与合取范式

将一个普通公式转换为范式的基本步骤

1.6推理 定义 1.6.1 设 A 与 C 是两个命题公式, 若 A → C 为永真式、 重言式,则称 C 是 A 的有 效结论,或称 A 可以逻辑推出 C ,记为 A => C 。(用等值演算或真值表) 第二章 谓词逻辑 2.1、基本概念 ?:全称量词 ?:存在量词 一般情况下, 如果个体变元的取值范围不做任何限制即为全总个体域时, 带 “全称量词”的谓词公式形如"?x(H(x)→B(x)),即量词的后面为条件式,带“存在量词”的谓词公式形如?x(H(x)∨WL(x)),即量词的后面为合取式 例题 R(x)表示对象 x 是兔子,T(x)表示对象 x 是乌龟, H(x,y)表示 x 比 y 跑得快,L(x,y)表示x 与 y 一样快,则兔子比乌龟跑得快表示为: ?x ?y(R(x)∧T(y)→H(x,y)) 有的兔子比所有的乌龟跑得快表示为:?x ?y(R(x)∧T(y)→H(x,y)) 2.2、谓词公式及其解释 定义 2.2.1、 非逻辑符号: 个体常元(如 a,b,c)、 函数常元(如表示22 y x 的 f(x,y))、 谓词常元(如表示人 类的 H(x))。 定义 2.2.2、逻辑符号:个体变元、量词(??)、联结词(﹁∨∧→?)、逗号、括号。 定义 2.2.3、项的定义:个体常元、变元及其函数式的表达式称为项(item)。 定义 2.2.4、原子公式:设 R(n x x ... 1)是 n 元谓词,n t t ...1是项,则 R(t)是原子公式。原子公式中的个体变元,可以换成个体变元的表达式(项),但不能出现任何联结词与量词,只能为单个的谓词公式。 定义 2.2.5 合式公式:(1)原子公式是合式公式;(2)若 A 是合式公式,则(﹁A)也是合式公式;(3)若 A,B 合式,则 A ∨B, A ∧B, A →B , A ?B 合式(4)若 A 合式,则?xA 、?xA 合式(5)有限次使用(2)~(4)得到的式子是合式。 定义 2.2.6 量词辖域:?xA 和?xA 中的量词?x/?x 的作用范围,A 就是作用范围。 定义 2.2.7 约束变元:在?x 和?x 的辖域 A 中出现的个体变元 x ,称为约束变元,这是与量词相关的变元,约束变元的所有出现都称为约束出现。 定义 2.2.8 自由变元:谓词公式中与任何量词都无关的量词,称为自由变元,它的每次出现称为自由出现。一个公式的个体变元不是约束变元,就是自由变元。 注意:为了避免约束变元和自由变元同名出现,一般要对“约束变元”改名,而不对自由变元改名。 定义 2.2.9 闭公式是指不含自由变元的谓词公式

高等数学等价无穷小替换_极限的计算

讲义 无穷小 极限的简单计算 【教学目的】 1、理解无穷小与无穷大的概念; 2、掌握无穷小的性质与比较 会用等价无穷小求极限; 3、不同类型的未定式的不同解法。 【教学内容】 1、无穷小与无穷大; 2、无穷小的比较; 3、几个常用的等价无穷小 等价无穷小替换; 4、求极限的方法。 【重点难点】 重点是掌握无穷小的性质与比较 用等价无穷小求极限。 难点是未定式的极限的求法。 【教学设计】首先介绍无穷小和无穷大的概念和性质(30分钟),在理解无穷小与无穷大的概念和性质的基础上,让学生重点掌握用等价无穷小求极限的方法(20分钟)。最后归纳总结求极限的常用方法和技巧(25分钟),课堂练习(15分钟)。 【授课内容】 一、无穷小与无穷大 1.定义 前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数() x f 的极限、0x x →(+→0x x 、- →0x x )函数()f x 的极限这七种趋近方式。下面 我们用

→x *表示上述七种的某一种趋近方式,即 *{ } - + →→→-∞→+∞→∞→∞→∈00 x x x x x x x x x n 定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x * 。 例如, ,0sin lim 0 =→x x .0sin 时的无穷小是当函数→∴x x ,01lim =∞→x x .1 时的无穷小是当函数∞→∴x x ,0)1(lim =-∞→n n n .})1({ 时的无穷小是当数列∞→-∴n n n 【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何 非零常量都不是无穷小。 定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无 穷大,即()∞=→x f x * lim 。显然,∞→n 时, 、 、、32n n n 都是无穷大量, 【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。无穷 小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如 0lim =-∞ →x x e , +∞=+∞ →x x e lim , 所以x e 当-∞→x 时为无穷小,当+∞→x 时为无穷大。 2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大, 则 ()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则() x f 1为无穷大。 小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。 3.无穷小与函数极限的关系: 定理 1 0 lim () ()(),x x x f x A f x A x α其中)(x α是自变量在同一变化过 程0x x →(或∞→x )中的无穷小. 证:(必要性)设0 lim () ,x x f x A 令()(),x f x A α则有0 lim () 0,x x x α ).()(x A x f α+=∴

离散数学第三章集合的基本概念和运算知识点总结

集合论部分 第三章、集合的基本概念和运算 3.1 集合的基本概念集合的定义与表示 集合与元素 集合没有精确的数学定义 理解:一些离散个体组成的全体组成集合的个体称为它的元素或成员集合的表示 列元素法A={ a, b, c, d } 谓词表示法B={ x | P(x) } B 由使得P(x) 为真的x构成常用数集 N, Z, Q, R, C 分别表示自然数、整数、有理数、 实数和复数集合,注意0 是自然数. 元素与集合的关系:隶属关系 属于∈,不属于? 实例 A={ x | x∈R∧x2-1=0 }, A={-1,1} 1∈A, 2?A 注意:对于任何集合A 和元素x (可以是集合), x∈A和x?A 两者成立其一,且仅成立其一.

集合之间的关系 包含(子集)A?B??x (x∈A→x∈B) 不包含A?B??x (x∈A∧x?B) 相等A = B?A?B∧B?A 不相等A≠B 真包含A?B?A?B∧A≠B 不真包含A?B 思考:≠和?的定义 注意∈和?是不同层次的问题 空集?不含任何元素的集合 实例{x | x2+1=0∧x∈R} 就是空集 定理空集是任何集合的子集 ??A??x (x∈?→x∈A) ?T 推论空集是惟一的. 证假设存在?1和?2,则?1??2 且?1??2,因此?1=?2全集E 相对性

在给定问题中,全集包含任何集合,即?A (A?E ) 幂集定义P(A) = { x | x?A } 实例 P(?) = {?}, P({?}) = {?,{?}} P({1,{2,3}})={?,{1},{{2,3}},{1,{2,3}}} 计数 如果|A| = n,则|P(A)| = 2n 3.2 集合的基本运算 集合基本运算的定义??-~⊕ 并A?B = { x | x∈A∨x∈B } 交A?B = { x | x∈A∧x∈B } 相对补A-B = { x | x∈A∧x?B } 对称差A⊕B = (A-B)?(B-A) = (A?B)-(A?B) 绝对补~A = E-A 文氏图(John Venn)

相关文档