文档库 最新最全的文档下载
当前位置:文档库 › 几何分布的数学期望与方差计算

几何分布的数学期望与方差计算

几何分布的数学期望与方差计算
几何分布的数学期望与方差计算

几何分布的数学期望与方差计算

一、几何分布的定义

设离散型随机变量X 的分布律为

P(X=k)=(1-p)k-1p (0

则称随机变量X 服从参数为p 的几何分布。

二、几何分布的数学期望

p p

p p p p p p p p p k X E k k k k

k k /1]1[])1(11[])1[(])1[()1()(20111=--='---='--='--=-=∑∑∑∞

=∞=∞=-

三、几何分布的方差 22)]([)()(X E X E X D -=

22222222

320

22

22

11122112)(2221)1(2][)1(2]2)[1(]1)[1(])1(11)[1(])1[()1(])1[()1()

1)(1()1()1)(1()

1)(1()]1([)

()]1([][)]

1([][p p p p p X D p

p p p p p p p X E p p p p p p p p p p p p p p p p p p k k p p p p k k p p k k X X E X E X X E X E X X E X X E k k k k k k k k k k -=--=∴-=+-=+-=∴-=-='--=''---=''--=''--=---=--=--=-+-=∴-=-∑∑∑∑∑∞=∞

=∞=-∞=-∞=- 又

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n 次伯努利试验中,试验k 次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k 次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n 次伯努利实验,n 的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n 次成功,m 的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ; , 。 概率为p 的事件A ,以X 记A 首次发生所进行的试验次数,则X 的分布列: , 具有这种分布列的随机变量X ,称为服从参数p 的几何分布,记为X ~Geo (p )。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。

(1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k

则S q p =-=11122 () 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++ x x x x k '()'()'()'23 6 12322221+++++-q q k q k =+++++()'q q q kq k 2323

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

高中数学离散型随机变量的期望与方差练习(含答案)

离散型随机变量均值与方差专题练习 一、单选题(共16题;共32分) 1.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P (B|A)分别是() A. , B. , C. , D. , 2.已知随机变量ξ服从正态分布N(1,1),若P(ξ<3)=0.977,则P(﹣1<ξ<3)=() A. 0.683 B. 0.853 C. 0.954 D. 0.977 3.随机变量X的取值为0,1,2,若P(X=0)= ,E(X)=1,则D(X)=() A. B. C. D. 4.已知随机变量X服从正态分布N(3,1),且P(X≥4)=0.1587,则P(2<X<4)=() A. 0.6826 B. 0.3413 C. 0.4603 D. 0.9207 5.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是() A. B. C. D. 6.不透明袋子中装有大小、材质完全相同的2个红球和5个黑球,现从中逐个不放回地摸出小球,直到取出所有红球为止,则摸取次数的数学期望是() A. B. C. D. 7.下面说法中正确的是() A. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的概率的平均值 B. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的平均水平 C. 离散型随机变量ξ的均值E(ξ)反映了ξ取值的平均水平 D. 离散型随机变量ξ的方差D(ξ)反映了ξ取值的概率的平均值 8.每次试验的成功率为,重复进行10次试验,其中前7次都未成功,后3次都成功的概率为() A. B. C. D. 9.已知随机变量,则() A. B. C. D. 10.设随机变量的分布列为,,则等于() A. B. C. D. 11.现在有张奖券,张元的,张元的,某人从中随机无放回地抽取张奖券,则此人得奖金额的数学期望为()

随机变量的数学期望与方差

第9讲随机变量的数学期望与方差 教学目的:1.掌握随机变量的数学期望及方差的定义。 2.熟练能计算随机变量的数学期望与方差。 教学重点: 1.随机变量的数学期望 For personal use only in study and research; not for commercial use 2.随机变量函数的数学期望 3.数学期望的性质 4.方差的定义 For personal use only in study and research; not for commercial use 5.方差的性质 教学难点:数学期望与方差的统计意义。 教学学时:2学时。 For personal use only in study and research; not for commercial use 教学过程: 第三章随机变量的数字特征 §3.1 数学期望 For personal use only in study and research; not for commercial use 在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X的概率分布,那么X的全部概率特征也就知道了。然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望 我们来看一个问题: 某车间对工人的生产情况进行考察。车工小张每天生产的废品数X 是一个随机变 量,如何定义X 取值的平均值呢? 若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品, 21天每天出三件废品。这样可以得到这100天中每天的平均废品数为 27.1100 213100172100301100320=?+?+?+? 这个数能作为X 取值的平均值吗? 可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的 天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是 1.27。 对于一个随机变量X ,若它全部可能取的值是 ,,21x x , 相应的概率为 ,,21P P , 则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。但是,如果试验次数 很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近 ∑∞=1k k k p x 由此引入离散随机变量数学期望的定义。 定义1 设X 是离散随机变量,它的概率函数是 ,2 ,1,)()(====k P x X P x p K K k 如果 ∑∞ =1||k k k p x 收敛,定义X 的数学期望为 ∑∞ ==1)(k k k p x X E 也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。 例1 某人的一串钥匙上有n 把钥匙,其中只有一把能打开自己的家门,他随意地 试用这串钥匙中的某一把去开门。若每把钥匙试开一次后除去,求打开门时试开次数 的数学期望。

几何分布的期望与方差

几何分布的期望与方差 康永清 高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给出了结论:(1)E p ξ=1,(2)D p p ξ=-12 ,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

记S q q kq k =+++++-12321 qS q q k q k =+++-+-2121 () 相减, ()111121-=+++++=--q S q q q q k 则S q p =-=11122() 还可用导数公式()'x nx n n =-1,推导如下: 12321+++++-x x kx k =+++++=+++++x x x x x x x x k k '()'()'()'()' 2323 =-=----=-( )'()()()()x x x x x x 111112 2 上式中令x q =,则得 1231112122 +++++=-=-q q kq q p k () (2)为简化运算,利用性质D E E ξξξ=-22()来推导(该性质的证明,可见本刊6页)。 可见关键是求E ξ2 。 E p qp q p k q p k ξ22222123=+++++- =+++++-p q q k q k ()12322221 对于上式括号中的式子,利用导数,关于q 求导:k q kq k k 21-=()',并用倍差法求和,有

总体分布的估计、总体期望和方差的

§12.2总体分布的估计、总体期望和方差的估计 (时间:45分钟满分:100分) 一、选择题(每小题7分,共35分) 1.为了解一片大约一万株树木的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出的样本频率分布直方图如图所示,那么在这片树木中,底部周长小于110 cm的株数大约是() A.3 000 B.6 000 C.7 000 D.8 000 2.(2010·山东)在某项体育比赛中,七位裁判为一选手打出的分数如下: 90899095939493 去掉一个最高分和一个最低分后,所剩数据的期望值和方差分别为() A.92,2 B.92,2.8 C.93,2 D.93,2.8 3.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是() A.32 B.27 C.24 D.33

4.(2010·陕西)如图,样本A和B分别取自两个不同的总体,它们的样本期望值分别为x A 和x B,样本标准差分别为s A和s B,则() A.x A>x B,s A>s B B.x As B C.x A>x B,s A

常见分布的期望和方差

5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

《数学期望与方差》习题解答

概率论《数学期望与方差》 习题参考解答 1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为 ξ 0 1 P 1/3 2/3 因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3 2. 矩形土地的长与宽为随机变量ξ和η, 周长ζ=2ξ+2η, ξ与η的分布律如下表所示: 而求出的周长ζ的分布律如下表所示: 长的分布计算. 解: 由长和宽的分布率可以算得 E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9 E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得 E ζ=2(E ξ+E η)=2×(29.9+20)=99.8 而如果按ζ的分布律计算它的期望值, 也可以得 E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质. 4. 连续型随机变量ξ的概率密度为 ?? ?><<=其它 )0,(10)(a k x kx x a ? 又知E ξ=0.75, 求k 和a 的值。 解: 由性质?+∞ ∞ -=1)(dx x ? 得11 1 )(| 10 1 1 =+= += =++∞ ∞ -??a k x a k dx kx dx x a a ?

即k =a +1 (1) 又知 75.02 2 )(| 10 2 1 1 =+= += = = +++∞ ∞ -?? a k x a k dx kx dx x x E a a ?ξ 得k =0.75a +1.5 (2) 由(1)与(2)解得 0.25a =0.5, 即a =2, k =3 6. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较. 解 (90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为 (10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.17 7. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值(计算时以组中值为代表). E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=4959 8. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有 E ξi =10, D ξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此 ∑== 100 1 i i ξ ξ,则ξ的数学期望和标准差为

期望与方差例题选讲有详解

概率统计(理)典型例题选讲 (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: ① 计算一次试验的基本事件总数n ; ② 设所求事件A ,并计算事件A 包含的基本事件的个数m ; ③ 依公式()m P A n =求值; ④ 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项. (4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 典型例题分析 1.有10张卡片,其中8张标有数字2,有2张标有数字5.从中随机地抽取3张卡片,设3张卡片上的数字和为ξ,求Eξ与Dξ.

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

常见分布的期望和方差

常见分布的期望和方差

概率与数理统计重点摘要 1、正态分布的计算:()()()X F x P X x μ σ-=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞=??具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:22226(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度:()(,)()(,)X Y f x f x y dy f y f x y dx +∞-∞ +∞-∞==? ? 边缘分布函数:()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞ -∞+∞-∞-∞=+∞==+∞=???? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution )是离散型概率分布。其中一种定义为:在n次伯努利试验中, 试验k次才得到第一次成功的机率。详细的说,是:前 k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,…』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: 概率为p的事件A,以X记A首次发生所进行的试验次数,则 X的分布列: P(X二灯二加(打二(1-P尸% 口23…"?? 具有这种分布列的随机变量X,称为服从参数 p的几何分布,记为 X~Geo(p)。几何分布的期望 II )比原来的修订本新增加随机变量的几何分布,但书中 (1)E = -,(2)D二匕当,而未加以证明。本文给出证明,并用于解题。p P (1)由P「二k) =q k'p,知 高中数学教科书新版第三册(选修 只给出了结论:

< 2 k 1 2 k 1 E 二 p 2pq 3q p M p ,(1 2q 3q kq _ ) p 下面用倍差法(也称为错位相减法)求上式括号内的值。记 2 k 1 S k -1 2q 3q kq qSk =q 2q 2 (k -1)q k , kq k 两式相减,得 2 k 1 k (1 一 q)S k =1 q q 恥川q - kq 1 _q k kq k (1 -q)2 k 由 0 : p :: 1,知 0 : q : 1,则 lim q = 0,故 1 2p 3q 2 卡q k j 二 lim S k k _SC 从而E J p _ a 1 S — (|q|:::1)(见教科书91页阅读材料),推导如下: 1 -q 记 S = 1 2q 3q 2 侶 - ^kq k 亠 qS = q 2q 2 亠亠(k - 1)q k ° 相减, 2 k 1 1 (1 -q)S =1 q q q 1 -q 1 (1 -q)2 也可用无穷等比数列各项和公式

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

超几何分布的期望和方差详细证明

超几何分布的期望和方差 山西大学附属中学 韩永权 hyq616@https://www.wendangku.net/doc/b518875704.html, 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件 {}X k =发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --===, 其中min{,}m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X 服从超几何分布,记作:(,,)X H n N M 口诀记忆: 总N ,次M , 取n 1 求证:X 的数学期望()M E X n N = 0 ()k n k m M N M n k N k E X C C C --=?=∑ 11 1 (01)n n k n k m n m n M N M M N M M N M M N M N k m C C C C C C C C C -------= ??+??+ +??+ ?? ( 由1 1k k M M k M C C --=?得) 1 1 2 1111111 () n n k n k m n m n M N M M N M M N M M N M N M M M M C C C C C C C C C --------------= ??+??+ +??+ ?? 0 1 1 2 1 1 1111()n n k n k m n m n M N M M N M M N M M N M N M C C C C C C C C C --------------= ?+?+ +?+ ? 11 n n N N M C C --= (由 1 1 n n m n m n M N M M N M M N M N C C C C C C C -----+++=得) M n N = ∴()M E X n N = 和二项分布的期望()E X np =一致 2 X 的数学方差:()(1)1M M N n D X n N N N -=-- 证明:由22 ()()D X EX EX =-22 ()k n k m M N M n k N k M n N C C C --=?= -∑ x 0 1 m p n M N M n N C C C -? 1 1 n M N M n N C C C --? m n m M N M n N C C C --?

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

二项分布、超几何分布数学期望与方差公式的推导

二项分布、超几何分布数学期望与方差公式的推导 高中教材中对二项分布和超几何分布数学期望与方差公式没有给出推导公式,现笔者给出一推导过程仅供参考。 预备公式一 11--=k n k n nC kC (1≥n ) ,利用组合数计算公式即可证明。 预备公式二 []2 2)()()(ξξξE E D -=,证明过程可见教材。 预备公式三 2 2)1()1(---=-k n k n C n n C k k (2,2≥≥k n ) ,利用组合数计算公式即可证明。 预备公式四 ),,,,(022110n k m k N k n m C C C C C C C C C k n m m k n k m n k m n k m n ≤≤∈=++++++--Λ,利用恒等 式m n n m x x x )1()1() 1(++=++的二项展开式中k x 的系数相等可证。 一、二项分布 在n 次独立重复试验中,每次试验中事件A 发生的概率为p (10<

常见分布的期望和方差78835

常见分布的期望和方差 5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 几何分布(Geometric distribution)是离散型概率分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下: , ;

, 。 概率为p的事件A,以X记A首次发生所进行的试验次数,则X的分布列: , 具有这种分布列的随机变量X,称为服从参数p的几何分布,记为X~Geo(p)。 几何分布的期望 ,方差 。 高中数学教科书新版第三册(选修II)比原来的修订本新增加随机

变量的几何分布,但书中只给出了结论:(1)E p ξ= 1,(2)D p p ξ=-12,而未加以证明。本文给出证明,并用于解题。 (1)由P k q p k ()ξ==-1,知 E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 () 下面用倍差法(也称为错位相减法)求上式括号内的值。记 S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 () 两式相减,得 ()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 由01<

几何分布的期望与方差

几何分布的期望与方差 (1),(2),本文给出证明,并用于解题。 (1)由,知 下面用倍差法(也称为错位相减法)求上式括号内的值。记 两式相减,得 由,知,则,故 从而 也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下:

记 相减, 则 还可用导数公式,推导如下: 上式中令,则得 (2)为简化运算,利用性质来推导(该性质的证明,可见本刊6页)。可见关键是求。

对于上式括号中的式子,利用导数,关于q求导:,并用倍差法求和,有 则,因此 利用上述两个结论,可以简化几何分布一类的计算问题。 例1. 一个口袋内装有5个白球和2个黑球,现从中每次摸取一个球,取出黑球就放回,取出白球则停止摸球。求取球次数的数学期望与方差。 解:每次从袋内取出白球的概率,取出黑球的概率。的取值为1,2,3,……,有无穷多个。我们用表示前k-1次均取到黑球,而第k次取到白球,因此 。可见服从几何分布。所以

例2. 某射击运动员每次射击击中目标的概率为p(0 解:射手射击次数的可能取值为1,2,…,9,10。 若,则表明他前次均没击中目标,而第k次击中目标;若k =10,则表明他前9次都没击中目标,而第10次可能击中也可能没击中目标。因此的分 布列为 用倍差法,可求得 所以

说明:本例的试验是有限次的,并且,不符合几何分布的概率特征,因而随机变量不服从几何分布,也就不能套用几何分布的相关公式。但求解过程可参照相关公式的推导方法。

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差的证明

几何分布的定义以及期望与方差 分布。其中一种定义为:在n次伯努利试验中,试验k次才得到第一次成功的机率。详细的说,是:前k-1次皆失败,第k次成功的概率。 公式: 它分两种情况: 1. 得到1次成功而进行,n次伯努利实验,n的概率分布,取值范围为『1,2,3,...』; 2. m = n-1次失败,第n次成功,m的概率分布,取值范围为『0,1,2,3,...』. 由两种不同情况而得出的期望和方差如下:

高中数学教科书新版第三册(选修II )比原来的修订本新增加随机变量的几何分布,但书中只给 出了结论:(1),(2),而未加以证明。本文给出证明,并用于解题。 (1)由,知 下面用倍差法(也称为错位相减法)求上式括 E p ξ=1D p p ξ=-12 P k q p k ()ξ==-1E p pq q p kq p q q kq p k k ξ=++++=+++++--231232121 ()

号内的值。记 两式相减,得 由,知,则,故 从而也可用无穷等比数列各项和公式(见教科书91页阅读材料),推导如下: 记相减, S q q kq k k =++++-12321 qS q q k q kq k k k =+++-+-2121 ()()1121-=++++--q S q q q kq k k k S q q kq q k k k =----1112() 01<

相关文档
相关文档 最新文档