文档库 最新最全的文档下载
当前位置:文档库 › 函数奇偶性与非负性的判定方法及其应用

函数奇偶性与非负性的判定方法及其应用

函数奇偶性与非负性的判定方法及其应用
函数奇偶性与非负性的判定方法及其应用

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

函数奇偶性的判定方法

函数奇偶性的判定方法 山东 刘海 函数奇偶性的判定方法较多,下面举例介绍常见的判定方法. 1.定义域判定法 例1 判定()(1)f x x =- 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称,∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数具有奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-的奇偶性. 解: 函数()f x x a x a =++-的定义域为R , 且 ()()()()f x x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数奇偶性. 3.等价形式判定法 例3 判定()f x =的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =,∴图象过原点. 又0x ≠ 时,22 22()(1)(1)1()(1)(1) f x x x f x x x -+-+==-+--,()()f x f x ∴-=-. 又(0)0f =,()f x ∴为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,[]()()f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数, 试判定()()()x f x g x ?= 的奇偶性.

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2 )(,(2) x x x f -=3 )( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

函数奇偶性的判断方法

函数奇偶性的判断方法 (周口卫生学校 马爱华 466000) 摘要:本文由两个高考题来验证判断函数奇偶性的三种常见方法:1、利用奇偶函数的定义来判断(这是最基本,最常用的方法);2、用求和(差)法判断;3、用求商法判断。 关键词:奇函数 偶函数 定义域 求和(差)法 求商法 函数的奇偶性是函数的一个重要的性质,其重要性质体现在它与函数的各种性质的联系之中,那么,怎样来判断函数的奇偶性呢? 函数的奇偶性的判断应从两方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性)二是看)(x f 与)(x f -的关系。判断方法有以下三种: 1、利用奇偶函数的定义来判断(这是最基本,最常用的方法) 定义:如果对于函数y=f (x )的定义域A 内的任意一个值x , 都有f (-x )=-f (x )则这个涵数叫做奇函数 f (-x )=f (x ) 则这个函数叫做偶函数 2、用求和(差)法判断 若0)()(=-+x f x f (()()2())f x f x f x --=则)(x f 为奇函数 若())(2)()(0)()(x f x f x f x f x f =-+=-- 则)(x f 为偶函数 3、用求商法判断 若 ()0)(1)()(≠-=-x f x f x f 则)(x f 为奇函数 若()0)(1) ()(≠=-x f x f x f 则)(x f 为偶函数

例1、判断函数()x x x f ++=21lg )(的奇偶性(对口升学07年高考题) 解法一(定义法) 函数的定义域为R ,关于原点对称 () x x x f -+=-21lg )( =222(1)(1) lg 1x x x x x x +-++++=()1221lg 11lg -++=++x x x x = 2lg(1)x x -++ ()f x =- )(x f ∴为奇函数 解法二(求和(差)法) ()()x x x x x f x f -++++=-+221lg 1lg )()( ()() x x x x -+++=2211lg =01lg = )(x f ∴为奇函数 解法三(求商法) ()()()() ()x x x x x x x x x x x x x f x f ++++-=+++=++-+=-2222221lg 1lg 1lg 11 lg 1lg 1lg )()( )0(1≠-=x )(x f ∴为奇函数 例2判断函数?? ? ??+-=21121)(x x x f 的奇偶性(对口升学08年高考题) 解法一(定义法) 函数的定义域为0≠x 的全体实数,关于原点对称

函数奇偶性与单调性的综合应用 专题

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“2 121) ()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是 考察单调性; 3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值围); 6.确定函数解析式或定义域中某一未知数(参数)的取值围.

二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; 例1 设)(x f 是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =)3 1(log 2 f ,b =)2 1 (log 3 f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >> C .b a c >> D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质. 【解析】 因为log 2 3

《函数的奇偶性》公开课优秀教案

《函数的奇偶性》教案 授课教师 授课时间:授课班级: 教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版) 教材主要特点:这本教材注意与初中有关知识紧密衔接,注重基础,增加弹性,使用教材可以根据有关专业的特点,选用相关的章节,教学要求和练习内容分A、B两档,适应分层教学。练习A的题目主要是基础练习,供全体学生学习,也是最低的要求;练习B的题目为拓展延伸的练习,供学有余力并且准备进一步深造的学生学习。 教学要求:教师在授课时主要是探究用奇、偶函数的定义判断函数的奇、偶性,奇、偶函数的性质(课本不要求证明)是作为拓展延伸的内容,以学生自学为主,教师适当给予辅导。教材已经分层编写,有利于实施分层教学时可以不分班教学。 任教班级特点:会计072班共有学生62人,男生6人,女生56人。学生数学平均入学成绩为58.3分,上课纪律良好,学生上课注意力比较集中,使用了这本教材后,绝大多数学生喜欢学数学,学生的学习成绩越来越好。

教学目标 知识与技能目标:使学生了解奇函数、偶函数的概念,掌握判断函数奇偶性的方法,培养学生判断、推理的能力。 过程与方法目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想 情感、态度、价值观目标:通过数学的对称美来陶冶学生的情操.使学生学会认识事物的特殊性与一般性之间的关系。 教 学重点 用定义判断函数的奇偶性. 教 学难点 弄清的关系. 教 学手段 多媒体辅助教学(展示较多的函数图像) 【教学过程】: 一、创设情境,引入新课 [设计意图:从生活中的实例出发,从感性认识入手,为学生认识奇偶函数的图像特征做好准备] 对称性在自然界中的存在是一个普遍的现象.如美丽的蝴蝶是左右对称的(轴对称)。现实生活中有许多以对称形式呈现的事物,如汽车的车前灯、音响中的音箱,汉字中也有诸如“双”、“林”等对称形式的字体,这些都给以对称的感觉。函数里也有这样的现象。 提出问题让学生回答:1、中心对称图形的概念(提醒学生:中心对称——图

判定三类特殊函数的奇偶性

判定三类特殊函数的奇偶性 一、要点解读 1、理解奇、偶函数的定义要把握好两个问题:其一,定义域关于原点对称是函数f (x )为奇函数或偶函数的必须满足的条件;其二,)()(x f x f -=-或)()(x f x f =-是定义域上的恒等式. 2、具有奇偶性的函数的图像的特征;偶函数的图像关于y 轴对称;奇函数的图像关于 原点对称.所以判断函数的奇偶性,除了定义法还有图像法. 3、由奇函数的定义可知,在x =0处有意义的奇函数f (x ),有f (0)=0成立. 4、有时可以应用定义的等价形式来判断函数的奇偶性. )()(x f x f ±=-,即0)()(=-x f x f ,即).0)((1) ()(≠±=-x f x f x f 5、偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性相同. 二、典例剖析 1、常见函数的奇偶性的判断 例1、判断函数1||)(2-= x x x f 是否具有奇偶性. 解:先看定义域,由012≠-x 得1±≠x ,则定义域}1,|{±≠∈=x R x x D 关于原点 对称,即任取D x ∈,都有D x ∈-,又1)(||)(2---=-x x x f )(1 ||2x f x x =-=, 所以1 ||)(2-=x x x f 为偶函数. 点评:第一步:判断定义域是否关于原点对称;第二步:若定义域不关于原点对称,则该函数既不是奇函数也不是偶函数,若定义域关于原点对称,则进一步寻找f (-x )与f (x )之间的关系;第三步:根据定义下结论. 2.分段函数的奇偶性 例2、判断函数???>+-<-=) 0)(1()0)(1()(x x x x x x x f 的奇偶性. 解:由题意,得函数f (x )的定义域关于原点对称,当x<0时,-x>0,

人教新课标版数学高一-数学必修1练习 1.3.2函数奇偶性的应用

课时作业 15 一、选择题 1.[2014·荆州中学高一检测]下列各函数在其定义域中,既是奇函数,又是增函数的是 ( ) A .y =x +1 B .y =-x 3 C .y =-1x D .y =x |x | 解析:A 中函数不具有奇偶性;B 中函数在定义域内为减函数;C 中函数在定义域内不具有单调性. 答案:D 2.[2014·哈师大附中高一联考]已知x >0时,f (x )=x -2012,且知f (x )在定义域上是奇函数,则当x <0时,f (x )的解析式是( ) A .f (x )=x +2012 B .f (x )=-x +2012 C .f (x )=-x -2012 D .f (x )=x -2012 解析:由f (-x )=-f (x ),可知f (x )=-f (-x )=-[(-x )-2012]=x +2012.选A. 答案:A 3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .既不是奇函数也不是偶函数 解析:因为F (-x )=f (-x )-f [-(-x )]= f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ), 所以F (x )是奇函数. 答案:A 4.[2014·福建六校高一联考]偶函数y =f (x )在区间[0,4]上单调递减,则有( ) A .f (-1)>f (π3 )>f (-π) B .f (π3 )>f (-1)>f (-π)

C .f (-π)>f (-1)>f (π3 ) D .f (-1)>f (π)>f (π3 ) 解析:由f (x )为偶函数可知 f (-1)=f (1),f (-π)=f (π). 又因f (x )在[0,4]上递减, ∴f (1)>f (π3 )>f (π), 即f (-1)>f (π3 )>f (-π).选A. 答案:A 二、填空题 5.已知函数f (x )是定义在(-∞,+∞)上的偶函数,当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0,+∞)时,f (x )=________. 解析:当x ∈(0,+∞)时,有-x ∈(-∞,0),注意到函数f (x )是定义在(-∞,+∞)上的偶函数.于是,有f (-x )=-x -(-x )4=-x -x 4=f (x ). 答案:-x -x 4 6.f (x ),g (x )都是定义在R 上的奇函数,且F (x )=3f (x )+5g (x )+2,若F (a )=-2009,则F (-a )=________. 解析:由f (x ),g (x )都是定义在R 上的奇函数,知f (a )+f (-a )=0,g (a )+g (-a )=0. 所以F (a )+F (-a )=3f (a )+5g (a )+2+3f (-a )+5g (-a )+2=4,所以F (-a )=4-F (a )=4+2009=2013. 答案:2013 7.已知函数f (x )为偶函数,其图象与x 轴有四个不同的交点,则这四个不同交点的横坐标之和为________. 解析:由题意可知函数f (x )的图象关于y 轴对称.所以函数f (x )的图象与x 轴的四个不同交点关于y 轴对称,因此四个不同交点的横坐标之和为0. 答案:0 三、解答题 8.定义在[-3,-1]∪[1,3]上的函数y =f (x )是奇函数,其部分图象如图所示. (1)请在坐标系中补全函数f (x )的图象.

相关文档
相关文档 最新文档