文档库 最新最全的文档下载
当前位置:文档库 › 量子信息与计算的量子体系,量子态表示,密度矩阵, 混合态,量子不可克隆定理, Schmidt分解,量子测量等

量子信息与计算的量子体系,量子态表示,密度矩阵, 混合态,量子不可克隆定理, Schmidt分解,量子测量等

量子克隆进化算法

量子克隆进化算法 刘 芳,李阳阳 (西安电子科技大学计算机学院,陕西西安710071) 摘 要: 本文在量子进化算法的基础上结合基于克隆选择学说的克隆算子,提出了改进的进化算法———量子克 隆进化策略算法(QCES ).它既借鉴了量子进化算法的高效并行性又利用克隆算子来代替其中的变异和选择操作,以增加种群的多样性,避免了早熟,且收敛速度快.本文不仅从理论上证明了该算法的收敛,而且通过仿真实验表明了此算法的优越性. 关键词: 克隆算子;进化算法;量子克隆进化策略中图分类号: T N957 文献标识码: A 文章编号: 037222112(2003)12A 22066205 Quantum Clonal Evolutionary Algorithms LI U Fang ,LI Y ang 2yang (Institute o f Computer ,Xidian University ,Xi ’an ,Shaanxi 710071,China ) Abstract : Based on the combining of the quantum ev olutionary alg orithms (QE A )with the main mechanisms of clone ,an im 2proved ev olutionary alg orithm —quantum clonal ev olutionary strategies (QCES )was proposed in this paper.By adopting the high 2effec 2tive parallelism of QE A and replacing clone operator by mutation and selection of the classical ev olutionary alg orithms (CE A ),it has better diversity and the converging speed than CE A and av oided prematurity.The convergence of the QCES is proved and its superiori 2ty is shown by experiments in this paper. K ey words : clone operator ;ev olutionary alg orithm ;quantum clonal ev olutionary strategies 1 引言 计算是人类思维能力的最重要的方面之一,计算能力的提高与人类文明进步息息相关.从古老的算盘到现代的超级计算机,人类的计算技术实现了革命性的突破.综观当今,计算机的广泛应用已经并且仍在继续改变着我们的世界.一方面,人们为计算机的神奇能力所倾倒.另一方面,人们也为它无力完全满足实际的需要而烦恼.因此,加速计算机的运算速度以提高计算机的运算能力成为计算机科学的中心任务之一. 如何加快计算机的运算能力呢?这一问题大体可以从两个方面着手解决.一是制造更为先进的计算机硬件,另一则是设计恰当的计算机运算流程,后者可以称之为“算法”.一类模拟生物进化过程与机制来求解问题的自组织、自适应人工智能技术即进化计算(包括用于机器学习问题的遗传算法,优化模型系统的进化规划和用于数值优化问题的进化策略)的出现为我们寻找快速算法提供了新思路.进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术.我们所熟悉的 遗传算法(G enetic alg orithms )[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程.理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点.因此,为克服上述缺点关键是构造性能良好的进化算法. 在改进的进化算法中,有些是将传统寻优算法与遗传算法相结合提出了混合遗传算法[2,3],有些则另辟蹊径提出了新颖的学习算法———量子进化算法[4]和免疫进化算法[5],量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit ),例如一个n 位二进制的串在量子体系中就可同时表示2n 个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[6].正是量子的 收稿日期:2003209210;修回日期:2003212210 基金项目:国家自然科学基金(N o.60133010);国家高技术研究发展计划(863计划)(N o.2002AA135080)   第12A 期2003年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.31 N o.12A Dec. 2003

量子信息与量子计算课程论文

半导体量子点的电子自旋相干和自旋操控 摘要:现在各国科学家都在努力希望实现量子计算机,而量子计算机需要一些重要的量子性质,其一是“量子相干性”。该文介绍了量子相干性,并简略介绍了半导体量子点中的电子的自旋相干性,简要探讨半导体量子点的电子自旋操控的方法 关键词:量子点自旋相干自旋调控 一﹑量子相干性 量子相干性,或者说“态之间的关联性”。其一是爱因斯坦和其合作者在1935年根据假想实验作出的一个预言。这个假想实验时这样的:高能加速器中,由能量生成的一个电子和一个正电子朝着相反的方向飞行,在没有人观测时,两者都处于向右和向左自旋的叠加态而进行观测时,如果观测到电子处于向右自旋的状态,那么正电子就一定处于向左自旋的状态。这是因为,正电子和电子本是通过能量无中生有而来,必须遵守守恒定律。这也就是说,“电子向右自旋”和“正电子向左自旋”的状态是相关联的,称作“量子相干性”。这种相干性只有用量子理论才能说明。 要在量子计算机中实现高效率的并行运算,就要用到量子相干性。彼此有关的量子比特串列,会作为一个整体动作。因此,只要对一个量子比特进行处理,影响就会立即传送到串列中多余的量子比特。这一特点,正是量子计算机能够进行高速运算的关键。 二﹑半导体量子点中的电子的自旋相干性

半导体中的电子电荷相干态已经由超快脉冲激光光谱进行了广 泛的研究。强的激光脉冲在半导体中产生了大量的电子和空穴,它们的动力学过程大致可分成3 个阶段: (1) 无碰撞或相干阶段。在这个阶段内,电子和空穴与光场之间产生了一个相干的耦合振荡,导致 了材料极化强度的振荡,类似于二能级系统的拉比跳跃。 (2) 位相弛豫阶段。在这个阶段内,电子和空穴都失去了它们的位相相干性,类 似于二能级系统的退相弛豫。 (3) 准热平衡阶段。由于电子- 声子相互作用,电子和空穴将能量传递给声子(晶格) ,它们分别弛豫到导 带和价带的顶部,形成准平衡状态。利用不同延迟时间的泵- 探束瞬态吸收光谱可以测量半导体中的退相弛豫时间。图1 是GaAs 三个激发载流子浓度下瞬态差分透射系数ΔT作为延迟时间的函数。 由图1 可见,有两个衰减过程;一个是快过程,另一个是慢过程。前者对应于位相弛豫,后者对应于准热平衡弛豫。实验测得GaAs中 的位相弛豫时间分别为30 ,19 ,13fs ,对应于由小到大三个载流子 浓度。这个位相弛豫时间是较小的,主要是由电子的谷间散射引起的。

量子克隆遗传算法

https://www.wendangku.net/doc/bb1229250.html, 量子克隆遗传算法1 李阳阳1,焦李成1 1西安电子科技大学电子工程学院,西安(710071) E-mail: lyy_111@https://www.wendangku.net/doc/bb1229250.html, 摘要:遗传算法是解决优化问题的一种有效方法。但在实际应用中也存在着收敛速度慢,早熟等问题,使得其结果极不稳定。本文将遗传算法和量子理论相结合并利用免疫系统中所特有的克隆算子,针对0/1背包问题,提出了一种改进的进化算法——量子克隆遗传算法(QCA)。它能有效的避免早熟,且具有收敛速度快的特点。 关键词:遗传算法量子克隆遗传算法 0/1背包 中图分类号:TN957 1.引言 进化计算是一种仿生计算,依照达尔文的自然选择和孟德尔的遗传变异理论,生物的进化是通过繁殖、变异、竞争、选择来实现的,进化算法就是建立在上述生物模型基础上的随机搜索技术。我们所熟悉的遗传算法(Genetic Algorithms)[1],它通过模拟达尔文的“优胜劣汰,适者生存”的原理鼓励好的个体,通过模拟孟德尔的遗传变异理论在进化过程中保持好的个体,同时寻找更好的个体,由此来模仿一切生命与智能的产生与进化过程[2][3]。理论上已经证明:进化算法能从概率的意义上以随机的方式寻求到问题的最优解;但在实际应用当中随着问题的复杂和海量的数据量,也出现了一些不尽人意的情况,主要表现在:计算后期解的多样性差即易造成早熟,收敛速度慢等缺点。因此,为克服上述缺点关键是构造性能良好的进化算法。 量子力学是20世纪物理学最惊心动魄的发现之一,量子计算是物理理论与计算机的成功结合,在量子体系中,一位的信息位不在是经典的1比特,而是由两个本征态的任意叠加态所构成即称之为量子比特位(qubit),例如一个n位二进制的串在量子体系中就可同时表示n 2个信息,而量子计算机对每个叠加分量(本征态)实现的变换相当于一种经典计算,所有这些经典计算同时完成,并按一定的概率振幅叠加起来,给出量子计算的结果,这种计算称之为量子并行计算[4]。正是量子的并行性使得原来传统计算机无法解决的复杂问题以惊人的速度得以解决,但在量子计算机尚未构成的情况下,为了充分利用量子计算的高效并行性,本文借用了量子计算中的量子编码,继承了免疫克隆策略[5]中的克隆算子将二者相结合,提出了量子克隆遗传算法,并将其应用于0/1被包问题上,与传统进化算法相比较,它具有收敛速度快、寻优能力强的特点。 1本课题得到高等学校博士学科点专项科研基金(项目编号:20030701013)资助。 - 1 -

《关于量子通信》非连续文本阅读练习及答案

阅读下面的文字,完成7~9题。 材料一: 日前,中国科学院在京召开新闻发布会对外宣布,“墨子号”量子科学实验卫星提前并圆满实现全部既定科学目标,为我国在未来继续引领世界量子通信研究奠定了坚实的基础。 通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存着着被破译的可能性,随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。中国科学技术大学潘建伟教授说:“通过量子通信可以解决这个问题,把量子物理与信息技术相结合,用一种革命性的方式对信息进行编码、存储、传输和操纵,从而在确保信息安全、提高运算速度、提升测量精度等方面突破经典信息技术的瓶颈。” 量子通信主要研究内容包括量子密钥分发和量子隐形传态。量于密钥分发通过量子 态的传输,使遥远两地的用户可以共享无条件安全的密钥,利用该密钥对信息进行一次 一密的严格加密。这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式,量子通信的另一重要内客量子隐形传态,是利用量子纠缠特性,将物质的未知量子 态精确传递到遥远地点,而不用传递物质本身,通过隐形传输实现信息传递。(摘 编自吴月辉《“墨子号”,抢占量子科技创新制高点),《人民日报》2017年8月10日) 材料二: 潘建伟的导师安东·蔡林格说,潘建伟的团队在量子互联网的发展方面冲到了领先地位。量子互联网是由卫星和地面设备构成的能够在全球范围分享量子信息的网络。这将使不可破解的全球加密通信成为可能,同时也使我们可以开展一些新的控制远距离量子联系的实验。目前,潘建伟的团队计划发射第二颗卫星,他们还在中国的天宫二号空间站上进行着一项太空量子实验。潘建伟说,未来五年“还会取得很多精彩的成果,一个新的时代已经到来”。 潘建伟是一个有着无穷热情的乐观主义者。他低调地表达了自己的信心,称中国政府将会支持下一个宏伟计划——一项投资20亿美元的量子通信、量子计量和量子计算的五年计划,与此形成对照的是欧洲2016年宣布的旗舰项目,投资额为12亿美元。 (摘编自伊丽莎白·吉布尼《一位把量子通信带到太空又带回地球的物理学家》,《自然》2017年12月) 材料三: 日本《读卖新闻》5月2日报道:中国实验设施瞄准一流(记者:莳田一彦,船越翔)在中国南部广东省东莞市郊外的丘陵地带,中国刚刚建成了大型实施设施“中国散裂中子

量子计算和量子信息(量子计算部分,Nielsen等着)6

6.1 当x=0时有(2|0><0|-I )|x>=|0> 当x>0时有(2|0><0|-I )|x>=-|x> 所以2|0><0|-I I 即为相移算子 6.2 |φ><φ|=1/N Σ i =0 N?1Σ j =0 N?1|i><φ|-I )Σ k =0N?1 a k |k>=2/N Σi =0 N?1Σ j =0 N?1|i>-Σk =0 N?1a k |k> 而|i>,|j>,|k>都经过标准归一化,所以当|j>=|k>时,有|j>!=|k> 时,有|j>-Σ k =0 N?1a k |k>=Σ k =0 N?1[-a k +]|k> 其中=Σ k =0 N?1a k N 6.3 (此处为验证Grover 迭代能写成以下矩阵形式) |φ>=cos(θ/2)|α>+sin(θ/2)|β>写成向量形式为[cos(θ/2) sin(θ/2)]T 所以G|φ>= cos θ?sin θsin θ cos θ cos(θ/2)sin(θ/2) = cos(3θ/2) sin(3θ/2) =cos(3θ/2)|α>+sin(3θ/2)|β> 所以Grover 迭代能写成G= cos θ ?sin θsin θ cos θ 6.4 按照书上只有一解的过程,对于多解只能测量出所有解的和 6.5 6.6 (⊙为张量积符号 X 为PauliX 门, Z 为PauliZ 门) 框中的门可以表示为 (X ⊙X)(I ⊙H )(|0><0|⊙I+|1><1|⊙X )(I ⊙H)(X ⊙X) =X|0><0|X ⊙XHHX+X|1><1|X ⊙XHXHX(HXH=Z) =|1><1|⊙I +|0><0|⊙(-Z) =(I -|0><0|)⊙I +|0><0|⊙(I-2|0><0|)

连续变量量子纠缠的产生和条件克隆

连续变量量子纠缠的产生和条件克隆 【摘要】:量子纠缠作为量子物理世界中的独特资源,它的出现改变了我们信息处理的方式,可以保证我们信息通讯的绝对安全和提供更为强大的计算能力,从而被广泛应用到量子密钥术、可控量子密集编码、量子离物传态和量子计算等量子信息科学中。另外,空间上的多模纠缠还可以用于提高图像成像质量;不同频率之间的多组份纠缠可以用于不同波长的光学系统的联接和作为连接量子存储的原子能级和通讯窗口的桥梁。因此量子纠缠的产生和研究已成为量子信息科学中最重要的工作之一。本文主要研究了以下关于连续变量量子纠缠的相关内容:1.为了产生高质量的纠缠源,首要条件是获得低噪声的激光光源。我们采用两种不同的方法对光纤激光器的噪声进行了抑制:前置电光反馈和模清洁器,抑制后光纤激光器的噪声在3MHz以后达到散粒噪声极限,最大噪声抑制高达27dB。2.在一个参量放大器中同时产生了两对高阶模纠缠态(HG01和HG10),其中HG01模的纠缠方差为3.42,HG10模的纠缠方差为3.34。并表明此纠缠态为同时具有轨道角动量纠缠和自旋角动量纠缠的超纠缠态,这种超纠缠态可以用于量子密集编码中,以提高量子信道容量。在此基础上,给出了一种产生高阶模四组份cluster纠缠的产生方案,并在实验上获得了四组份cluster纠缠。3.介绍和研究了OPO、SHG中量子多色三组份纠缠的产生情况。对倍频过程中额外噪声产生的原因进行了分析,为下一步实验工作指明了方向。本节中,从理论上给出了一种产生三组份纠缠的新方案,指

出产生量子多色三组份纠缠的最佳过程并不是在单纯的OPO过程,也不是在SHG过程中,而是一种SHG和OPO的中间过程OPDA。对于OPDA过程,给出了实验方案和一些实验结果,通过此过程中产生了5dB的1080nm两组份纠缠光。此量子多色纠缠可以用于不同波长的光学系统的联接和作为连接量子存储的原子能级和通讯窗口的桥梁。 4.首次将条件制备技术应用到了量子克隆过程中,提出了一种连续变量量子纠缠态的条件克隆方案。本克隆方案中仅用到线性元件,例如;光分束器、平衡零拍探测和条件测量,具有可控性和易操作的优点。通过我们的方案,克隆后的输出态可以保持良好的纠缠特性和保真度,纠缠态的条件克隆可广泛应用于量子信息领域中,例如量子计算过程中的纠错,量子密钥分发过程中的量子窃听。本文的创新之处:1.实验上采用两种不同的方法对光纤激光器的噪声进行了抑制。2.实验上产生了同时具有自旋角动量纠缠和轨道角动量纠缠的连续变量超纠缠态和高阶模四组份cluster纠缠。3.实验上分析了Ⅱ类非线性过程额外噪声的来源,理论上给出了通过Ⅱ类非线性过程产生三色纠缠的最佳条件及实验方案。4.提出了一种有效且可行的连续变量纠缠态的条件克隆方案。【关键词】:量子信息光纤激光器噪声抑制光电反馈模清洁器纠缠超纠缠态cluster纠缠态拉盖尔高斯模厄米高斯模参量振荡倍频条件克隆 【学位授予单位】:山西大学 【学位级别】:博士

量子信息小论文

量子信息 量子信息是量子力学与信息科学的巧妙结合。而量子信息的内容主要包括量子计算机与量子通讯两个部分。下图[1]生动地展示了量子信息与量子力学、信息科学间的错综复杂又富有逻辑的关系。 图1 量子力学与信息科学间的联系 量子计算机(quantum computer)是一种使用量子逻辑进行通用计算的设备。不同于电子计算机(传统电脑),量子计算用来存储数据的对象是量子比特(quantum qubit),它使用量子算法来进行数据操作。实际上,现在的计算机技术已经接近量子极限,量子计算机是一个新的发展方向。量子计算机具有巨大的信息携载量,在量子机和经典机中n个比特都可以表示2"个数。但在某一时刻,经典计算机只能表示其中的一个,而量子计算机可以同时表示所有的数的线性叠加。量子物理资源只需要经典计算机的对数多,即若经典机的需要为N,量子机的需要为log&N;经典平行计算时,每个计算机都在作不同的计算,而量子计算机的一个相同操作完成了不同的计算任务。以上两点便是量子计算机最大的特点。 早在1969年,史蒂芬·威斯纳最早提出“基于量子力学的计算设备”。而关于“基于量子力学的信息处理”的最早文章则是由亚历山大·豪勒夫(1973)、帕帕拉维斯基(1975)、罗马·印戈登(1976)和尤里·马尼(1980)发表。史蒂芬·威斯纳的文章发表于1983年。1980年代一系列的研究使得量子计算机的理论变得丰富起来。1982年,理查德·费曼(Feynman)在一个著名的演讲中提出利用量子体系实现通用计算的想法[3]。紧接着1985年大卫·杜斯(Deutsch)提出了量子图灵机模型[4]。人们研究量子计算机最初很

量子通信中的信息安全技术及比较

量子通信中的信息安全技术及比较 量子通信是近二十年发展起来的新型交叉学 科,是量子论和信息论相结合的新的研究领域。它主要是利用量子纠缠效应进行信息传 递,其研究主要涉及量子密码通信、量子远程传态和量子密集编码等等。而量子通信安全性是将保密通信建立在量子客观规律基础上的,是一个具有重要意义的研究课 题。 随着对数学难题求解的经典算法和量子算法的深入研 究,基于数学上计算复杂性的经典 安全通信面临着严峻的挑战。而经典计算机技术的飞速发展和量子计算机的实验进 展,导致 破译数学密码的难度逐渐降 低。与量子通信安全性相比,目前经典密码体制面临三个方面 的 威胁。首先,经典密码体制安全性是建立在没有严格证明的数学难题之 上。数学难题的突破必将给经典密码算法带来毁灭性打 击。其次,计算机科学的飞速发展导致其计算能力的快速 提高,始终冲击着经典密码。再次,量子计算理论的发展使得数学难题具有量子可解性。 在 1994年Shor提出了多项式时间内求解大数因子和离散对数的量子算法使得目前常用的基于 大数分解困难性提出的RSA公钥密码体制和ELGamal公钥密码体制受到极大威 胁。1998年, Grove提出了量子搜索算法,即在N个记录的无序数据库中搜索记录的时间复杂度为 对N开 平方根,可以提高量子计算机利用蛮力攻击方法破解经典密码的效率,使得经典密码体制 受 到威胁。仅仅因为量子计算机的应用仍处于初级阶 段,量子计算理论成果目前还没有影响经典密码体制系统的使用。但以量子力学为基础发展的安全通信是不可能被攻破的,它以量子力学为基础,利用系统所具有的量子性质,使得“一次一密”密码真正能应用于实际。量子 密码学的安全性是由“海森堡测不准原理”,或量子相干性以及“单量子不可克隆定理” 来 保证的,具有可证明的无条件安全性和对窃取者的可检测 性,完全可以对抗以量子计算机为 工具的密码破译。从而保证了密码本的绝对安全,也保证了加密信息的绝对安 全,故以量子 为载体的通信,具有以往经典通信所没有的安全优 势。 谈到量子安全通信就不得不介绍一下量子密码学。量子密码学的思想最早是由美 国人 S.Wiesner在1969年提出。后来 IBM的S.H.Bennett和Montreal大学的G.Brassard在此基础 上提出了量子密码学的概念,并于1984年提出了第一个量子密钥分发协议,简称议。1991年Ekert依据量子缠绕态而提出了一种基于EPR关联光子对的E91协议,BB84 1992 协 年 Bennet t 又进一步提出 了 B92量子密码协议。 一、量子密码保密通信的物理原理: 1、互补性以及测不准原理:在量子力学中具有互补性的两组物理量是指在进行观测时,对

量子信息与量子计算

关于量子信息与量子计算 量子计算是一种依照量子力学理论进行的新型计算,量子计算的基础原理以及重要量子算法为在计算速度上超越图灵机模型提供了可能。 量子计算(quantum computation) 的概念最早由IBM的科学家R. Landauer及C. Bennett于70年代提出,对于普通计算机运行时芯片会发热,极大地影响了芯片的集成度,科学家们想找到能有更高运算速度的计算机。 到了1994年,贝尔实验室的应用数学家P. Shor指出,相对于传统电子计算器,利用量子计算可以在更短的时间内将一个很大的整数分解成质因子的乘积。这个结论开启量子计算的一个新阶段:有别于传统计算法则的量子算法确实有其实用性,绝非科学家口袋中的戏法。自此之后,新的量子算法陆续的被提出来,而物理学家接下来所面临的重要的课题之一,就是如何去建造一部真正的量子计算器,来执行这些量子算法。许多量子系统都曾被点名作为量子计算器的基础架构,例如光子的偏振(photon polarization)、空腔量子电动力学、离子阱以及核磁共振(nuclear magnetic resonance, NMR)等等。以目前的技术来看,这其中以离子阱与核磁共振最具可行性。事实上,核磁共振已经在这场竞赛中先驰得点:以I. Chuang为首的IBM研究团队在2002年的春天,成功地在一个人工合成的分子中(内含7个量子位)利用NMR完成N =15的因子分解。 到底是什么导致量子如此高的计算能力呢?答案是量子的重叠与牵连原理的巨大作用。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数。量子位是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示, 它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中, 信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态, “ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或“ 1” 态.任何两态的量子系统都可用来实现量子位, 例如氢原子中的电子的基态( ground state)和第 1 激发态( first excited state)、质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、圆偏振光的左旋和右旋等。 一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态( eigenstate ) ( 即基本的量子态)构成基本态空间可用Hilbert 空间( 线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算, Dirac提出用符号x〉来表示量子态, x〉是一个列向量,称为ket ;它的共轭转置( conjugate transpose) 用〈x 表示,〈x 是一个行向量, 称为bra.一个量子位的叠加态可用二维Hilbert 空间( 即二维复向量空间)的单位向量〉来描述 无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。遗憾的是,在实际系统中量子相干性很难保持。在量子计算机中,量子比特不是一个孤立的系统,它会与外部环境发生相互作用,导致量子相干性的衰减,即消相干。因此,要使量子计算成为现实,一个核心问题就是克服消相

量子计算和量子逻辑门

1 引言 量子信息是量子物理与信息科学相融合的新兴交叉学科,它诞生于上个世纪80年代,在90年代中期引起国际学术界的巨大兴趣,受到西方各国的高度重视,得到迅速发展,迄今方兴未艾! 量子计算是量子信息的一个重要分支,近年来得到了人们广泛的关注。量子计算机是实现量子计算(quantum computation)的机器。量子计算和量子计算机概念起源于著名物理学家Richard Feynman,是他在1982年研究用经典计算机模拟量子力学系统时提出的。1985年,量子图灵机(Turing)的模型被David Deutsch提出,通过它的性质的研究,预言了量子计算机的潜在能力。由于量子计算机依赖于量子力学规律处理信息,所以它有着经典计算机永远不可逾越的巨大优势。量子计算机不但可以提供更多的比特以及更高的时钟速度,它还提供了一种基于量子原理的算法的全新计算方法[1]。量子计算机中的信息是用量子逻辑门来进行处理的。量子逻辑门是实现量子计算的基础。为了实现量子计算,也就是说构建量子计算机,必须选择与设计合适的物理体系并控制它以实现量子逻辑门。目前,已经有许多作为执行这些量子计算系统的逻辑门的方案被提出,而且其中许多方案已经实现。例如,离子阱[2]、腔量子电动力学[3]、核磁共振[4]、量子点[5]和基于Josephson结的超导体方案[6]等。 基于Alan Turing理论发展起来的现代计算机科学在近几十年中取得惊人的发展,计算机硬件能力在20世纪60年代后的几十年时间里以近似Moore定律成长。随着电路集成度的提高,进一步提高芯片集成度已极为困难。当集成电路的线宽在011μm以下时,电子的波动性质便明显地显现出来。这种波动性就是量子效应。为此,多数观察家预期Moore定律将在21世纪前二十年内结束,人们在考虑替代当前计算机的新途径。物理学方面,自Max Planck在1900年提出量子假说以来,量子力学给人类生活带来翻天

量子计算发展白皮书(2019年)

量子计算发展白皮书(2019年) 赛迪智库电子信息研究所 2019年9月

前言 量子信息技术可以突破现有信息技术的物理极限,在信息处理速度、信息容量、信息安全性、信息检测精度等方面均能够发挥极大作用,进而显著提升人类获取、传输和处理信息的能力,为未来信息社会的演进和发展提供强劲动力。当前,人类对量子信息技术的研究与应用主要包括量子计算、量子通信和量子测量等。其中,量子计算是一种基于量子力学的、颠覆式的计算模式,具有远超经典计算的强大计算能力,将在化学反应计算、材料设计、药物合成、密码破译、大数据分析和机器学习、军事气象等领域产生颠覆性影响。 近年来,一些国家以及企业纷纷加码布局量子计算,在相关领域的技术研究和应用不断提速。在此形势下,赛迪智库电子信息研究所编写了《量子计算发展白皮书(2019年)》,阐述了量子计算的基本内涵,系统梳理量子计算的技术路线及发展路线图,介绍了国内外发展态势,并提出了我国量子计算发展面临的挑战及相关对策建议。 如有商榷之处,欢迎大家批评指正。

目录 一、量子计算发展综述 (1) (一)量子计算的内涵 (1) (二)量子计算的发展背景与历程 (5) (三)量子计算的应用展望 (7) 二、量子计算技术与发展路线图 (9) (一)量子计算关键技术 (9) (二)量子计算的发展路线图 (16) 三、国际量子计算发展现状 (19) (一)主要国家的战略规划 (19) (二)量子计算的技术与产业进展 (22) 四、我国量子计算发展现状 (29) (一)我国的量子计算国家战略 (29) (二)我国量子计算的进展 (29) 五、我国量子计算发展面临的问题与挑战 (31) (一)关键技术研发仍属起步阶段,与国际水平存在差距 (31) (二)市场尚在培育阶段,技术和应用场景不成熟 (31) (三)国内企业参与度较低,缺乏全面战略布局 (32) (四)人才体系单一、集中,尚未形成全面培养体系 (32) 六、对策建议 (34) (一)加强前沿科技领域产业化布局 (34) (二)加大对关键核心领域的研发支持 (34) (三)完善对专业人才梯队建设的全面布局 (34) (四)积极构建量子计算应用生态体系 (35)

什么是量子通信技术

什么是量子通信技术? 它的过去,现在,未来如何? 量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通讯是近二十年发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,近来这门学科已逐步从理论走向实验,并向实用化发展。高效安全的信息传输日益受到人们的关注。基于量子力学的基本原理,并因此成为国际上量子物理和信息科学的研究热点。主要包括量子通信和量子计算2个领域。量子通信主要研究量子密码、量子隐形传态、远距离量子通信的技术等等;量子计算主要研究量子计算机和适合于量子计算机的量子算法。 量子通信具有高效率和绝对安全等特点,是此刻国际量子物理和信息科学的研究热点。追溯量子通信的起源,还得从爱因斯坦的"幽灵"--量子纠缠的实证说起。 由于人们对纠缠态粒子之间的相互影响一直有所怀疑,几十年来,物理学家一直试图验证这种神奇特性是否真实。 1982年,法国物理学家艾伦·爱斯派克特(Alain Aspect)和他的小组成功地完成了一项实验,证实了微观粒子"量子纠缠"(quantum entanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。量子纠缠证实了爱因斯坦的幽灵--超距作用(spooky action in a distance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。

量子计算发展现状的研究与应用

量子计算发展现状的研究与应用 (关亚琴11201131399276 西南大学) 摘要:本文对量子计算的最新研究方向进行了介绍,简述了量子计算和量子信息技术的重要应用领域。分析了量子计算机与经典计算机相比所具有的优点和目前制约量子计算机应用发展的主要因素,强调发展大规模的量子计算和实现强关联多系统的量子模拟,是当前量子计算的主流。文章主体部分主要介绍了量子计算机硬件研究方面的进展。最后展望了量子计算的未来发展趋势。 关键字:量子计算量子计算机量子算法

目录 1引言 (3) 2量子计算的研究进程 (4) 3量子计算机的优势 (5) 4量子计算的应用 (5) 4.1 保密通信 (5) 4.2 量子算法 (5) 4.3 量子计算机技术发展 (6) 4.4 量子计算机的优点 (6) 4.4.1 存储量大、速度高 (6) 4.4.2 可以实现量子平行态 (6) 4.5 量子计算机发展现状和未来趋势 (6) 4.5.1 量子计算机实现的技术障碍 (6) 4.5.2 量子计算机的现状 (7) 4.5.3 量子计算机的未来 (7) 5制约量子计算机发展的因素 (7) 6结语 (7) 7参考文献: (8)

1引言 众所周知,信息科学在推动人类社会文明进步和提高人类生活方面发挥着重大作用,然而,在人类迈入二十一世纪的今天,信息科学也面临着新的挑战。经典计算机随着电子元器件发展空间接近于极限值,其运算速度也将接近于极限值。另外,计算机能否实现不可破译?不可窃听的保密通信?这些问题都是近年来数学家和电子技术方面的专家们关注的主要课题。如今,随着量子理论和信息科学的相结合,为这些问题的解开辟了新的方向,从而也使得量子计算机成为了当今科研方面研究的热题。

量子通信基本原理及其发展

量子通信基本原理及其发展 量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通信是20世纪80年代开始发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等,21世纪初,这门学科已逐步从理论走向实验,并向实用化发展。 量子通信又称量子隐形传送(QuantumTeleportation),“teleportation”一词是指一种无影无踪的传送过程。量子通信是由量子态携带信息的通信方式,它利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。 按照常理,信息的传播需要载体,而量子通信是不需要载体的信息传递。从物理学角度,可以这样来想象隐形传送的过程:先提取原物的所有信息,然后将这些信息传送到接收地点,接收者依据这些信息,选取与构成原物完全相同的基本单元(如:原子),制造出原物完美的复制品。 量子隐形传送所传输的是量子信息,它是量子通信最基本的过程。人们基于这个过程提出了实现量子因特网的构想。量子因特网是用量子通道来联络许多量子处理器,它可以同时实现量子信息的传输和处理。相比于经典因特网,量子因特网具有安全保密特性,可实现多端的分布计算,有效地降低通信复杂度等一系列优点。 量子通信是经典信息论和量子力学相结合的一门新兴交叉学科,与成熟的通信技术相比,量子通信具有巨大的优越性,具有保密性强、大容量、远距离传输等特点,是21世纪国际量子物理和信息科学的研究热点。 2 研究历史 1982年,法国物理学家艾伦·爱斯派克特(AlainAspect)和他的小组成功地完成了一项实验,证实了微观粒子“量子纠缠”(quantumentanglement)的现象确实存在,这一结论对西方科学的主流世界观产生了重大的冲击。从笛卡儿、伽利略、牛顿以来,西方科学界主流思想认为,宇宙的组成部份相互独立,它们之间的相互作用受到时空的限制(即是局域化的)。量子纠缠证实了爱因斯坦的幽灵——超距作用(spookyactioninadistance)的存在,它证实了任何两种物质之间,不管距离多远,都有可能相互影响,不受四维时空的约束,是非局域的(nonlocal),宇宙在冥冥之中存在深层次的内在联系。 在量子纠缠理论的基础上,1993年,美国科学家C.H.Bennett提出了量子通信(QuantumTeleportation)的概念。量子通信概念的提出,使爱因斯坦的“幽灵(Spooky)”——量子纠缠效益开始真正发挥其真正的威力。1993年,在贝内特提出量子 通信概念以后,6位来自不同国家的科学家,基于量子纠缠理论,提出了利用经典与量子相结合的方法实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。 1997年,在奥地利留学的中国青年学者潘建伟与荷兰学者波密斯特等人合作,首次实 现了未知量子态的远程传输。这是国际上首次在实验上成功地将一个量子态从甲地的光子传送到乙地的光子上。实验中传输的只是表达量子信息的“状态”,作为信息载体的光子本身并不被传输。 为提高通信质量,科学家们还在减少干扰源方面努力。2006年,欧洲科学家让光子在 自由空间而不是光纤中完成了一次量子通信过程。通信在相距144公里的西班牙加纳利群岛

量子通信问与答

量子通信问与答 打个电话,会不会被窃听?通过网络传送一份保密文件,途中被他人窃取咋办……现代社会,信息安全面临的问题越来越多。 有没有一种不可破译的保密方式,能让传送的信息绝对安全可靠?近些年来,量子通信技术的飞跃发展正让梦想成为现实。 一问:什么是量子? 量子是光子、质子、中子、电子、介子等基本粒子的统称,是能量的最基本携带者 量子是物理世界里最小的、不可分割的基本单元,是能量的最基本携带者。它是光子、质子、中子、电子、介子等基本粒子的统称。可以说,整个世界都是由量子组成的。比如,日常生活中的光,就由大量光量子组成。 量子有不同于宏观物理世界的奇妙现象,其中最为著名的就是量子叠加和量子纠缠。 “量子世界跟宏观世界最大的区别,就是量子有多个可能状态的叠加态。”中科院量子信息与量子科技创新研究院、中国科学技术大学上海研究院副研究员B说,“这种现象在宏观世界里是存在不了也无法维持的。在宏观的经典世界里,1就是1,2就是2。而在微观的量子世界中,一个状态可以存在于1和2之间,它既不是1,也不是2,但它既是1,又是2。” “打个比方吧,这就好比孙悟空的分身术。一个孙悟空可以同时出现在多个地方,孙悟空的各个分身就像是他的叠加态。”中科院院士、中国科学技术大学教授A 解释道,“在日常生活中,一个人不可能同时出现在两个地方。但在量子世界里,作为一个微观的客体,它能够同时出现在许多地方。” 而所谓量子纠缠,也是量子叠加的一种表现,是指两个处在纠缠态的量子一旦分开,不论分开多远,如果对其中的一个粒子测量,另一个粒子就会立即发生变化,且是不需要时间的变化。 “这两个纠缠在一起的量子就好比是一对有心电感应的双胞胎,不管两人距离多远,千公里量级或者更远,只要当其中一个人的状态发生变化时,另一个人的状态也会跟着发生一样的变化。爱因斯坦称之为‘幽灵般的超距作用’。”A说,“量子纠缠所体现的这种非定域性是量子力学最神奇的现象之一。”

量子光学与量子信息

量子光学与量子信息 摘要:本文简要介绍量子光学及量子信息学科的研究内容及发展概况,侧重概述该领域的重要实验研究成果及应用前景。 关键词:量子光学量子信息应用前景 Quantum Optics and Quantum Information Abstract:This paper describes research in quantum optics and quantum information science and development overview, focusing on an overview of important experimental research and application prospects in this field. Key words:Quantum Optics Quantum Information Application Prospect 量子光学与量子信息是20世纪末期兴起的最具生命力的新兴学科,它们以不可替代的实验手段验证那些尚存争议的量子力学基本原理,从深层次上推动着物理学的发展。另一方面,将基本理论与操纵单量子的独特实验方法应用于信息处理,又开拓出实用性极强的量子信息新领领域。域。正由于此,这两门学科不仅吸引着世界众多理论与实验物理学家为之努力,得以日新月异地迅猛发展,而且它在通讯、信息处理及计算机科学中所显示出的令人震撼的具大潜力与优势,也引起各国金融界、工业界及政府部门的广泛关注。我国在国家科技部、教育部及国家自然科学基金委等部门的支持下,也开展了这一领域的研究,形成了一支以中青年为主的科研队伍,在理论与实验两方面都做出了一些重要的、具有创新性的贡献,获得国际同行的认可和好评。当前,量子光学与量子信息学科正处于取得重大突破的前夜,许多问题尚待探索,是极具挑战性的前沿科学研究。 1 量子光学 早在1900和1905年,普朗克和爱因斯坦就提出了光量子假说,并成功解释了黑体辐射谱分布与光电效应,确定了光具有波粒二象性的基本物理思想。然而,长期以来由于经典电磁辐射理论能完满地解释绝大多数物理光学实验现象,光的量子理论并未得到系统发展。直到20世70年代以后,随着激光与光电子技术的进步,一系列用经典理论无法解释的非经典光学效应逐步被实验观测,才形成了以量子化光场为基础的量子光学学科领域。 以光量子或称光子为基本能量单元的量子化光场遵循量子电动力学基本规律,严格地说只有用QED理论,才能解释迄今为止所观察到的所有光学现象。量子光学用量子电动力学理论研究光场的量子性和相干性,以及光与原子相互作用的量子力学效应。当前,量子光学中应用性较强的重要研究领域有:光场的量子噪声,光场与物质相互作用中的动量传递等。 1.1 光场的量子噪声 光场的量子噪声在光子学及其诸多的应用研究中占有重要的地位。量子噪声与光放大、光探测等物理过程紧密相关。若在光场的每一个模式中的光子数很大,则完全可用光的经典理论来描述,反之,若每一个模式中有一个或少数的光子时,就必须考虑量子噪声的影响。为了克服或消除量子噪声的影响,人们卓有成效地进行了诸多方面的研究。 (1)光场压缩态的产生和应用 随着认识的深人,人们已经发现有三类光:一是混沌光,它是自发辐射过程产生的光子构成的,给出的是最大噪声的光场;二是相干光即激光,具有很低的总噪声,并称之为真空噪声;三是由非线性过程产生的非经典光,如压缩光、光子数态光等。 由于压缩态中可以使光场的某个正交分量具有比相干态更小的量子噪声,因此,在光通信、高精度测量等诸多应用中可突破散粒噪声极限,具有极为重要的实际意义。 自1985年首次在实验中获得压缩光场的近十多年来,世界各国的有关实验室在光场压缩态的获得和探测等方面进行了卓有成效的研究工作,已实现了正交相位压缩、强度差压缩、

相关文档