文档库 最新最全的文档下载
当前位置:文档库 › ANSYS模态分析方法与步骤

ANSYS模态分析方法与步骤

模态分析方法与步骤

一、模态分析包括下列6种方法,使用何种模态提取方法主要取决于模型大小(相对于计算机的计算能力而言)和具体的应用场合。

1.缩减法(reduced):

该方法为一般结构最常用的方法之一。其原理是在原结构中选取某些重要的节点为自由度,称为主自由度(master degree of freedom),再用该主自由度来定义结构的质量矩阵及刚度矩阵并求出其频率及振动模态,进而将其结果扩展至全部结构。在解题过程中该方法速度较快,但其答案较不准确。

主自由度的选择依照所探讨的模态、结构负载的情况而定:

a. 主自由度的个数至少为所求频率个数的两倍。

b. 选择主自由度的方向为结构最可能振动的方向。

c. 主自由度节点位于较大质量或转动惯量处及刚性较低位置。

d. 如果弯曲模态为主要探讨模态,则可省略旋转自由度。

e. 主自由度的节点位于施力处或非零位移处。

f. 位移限制为零的位置不能选为主自由度节点,因为这种节点具有高刚性的特性。可以用M命令来定义主自由度。此外,也可由ANSYS自动选择自由度。

2. 子空间迭代法(subspace):

通常用于大型结构中,仅探讨前几个振动频率,所得到结果较准确,不需要定义主自由度,但需要较多的硬盘空间及CPU时间。求取的振动模态数应该小于模型全部自由度的一半。

3. 不对称法(unsymmetrical):

该方法用于质量矩阵或刚度矩阵为非对称时,例如转子系统。其特征值(eigenvalue)为复数,实数部分为自然频率;虚数部分为系统的稳定度,正值表示不稳定,负值表示稳定。

4. 阻尼法(damped):

该方法用于结构系统具有阻尼现象时,其特征值为复数,虚数部分为自然频率;实数部分为系统的稳定度,正值表示不稳定,负值表示稳定。

5. 分块兰索斯法(block lanczos):

该方法用于大型结构对称的质量及刚度矩阵,和次空间方法相似,但收敛性更快。

6. 快速动力法(power dynamics method):

该方法用于非常大的结构(自由度大于100,000)且仅需最小几个模态。该方法质量矩阵采用集中质量法。

二、模态分析中的四个主要步骤:

1. 模型建立:模态分析是线性分析,如果在分析中指定了非线性单元,程序在计算过程中将忽略其非线性行为,故模态分析尽可能选用线性单元。在材料特性中密度DENS一定要定义,以构建质量矩阵;另外必须指定弹性模量EX。材料的性质可以是线性的、非线性的、恒定的或与温度相关的,但非线性性质将被忽略。

2.选择分析类型和分析选项:进入/SOLU中定义模态分析,声明模态分析方法,结构外力负载(通常指结构约束条件,如果有结构外力,则是预应力问题),主自由度的选择(如选用降阶法)。求解,退出/SOLU。

3. 施加边界条件并求解:进入/SOLU,将所得结果扩展至全结构,求解,并保存至结果文件以便在后处理器中检查结果。

4. 进入/POST1检查结果。

也可以将求解与模态扩展合并在一起,定义完模态分析相关参数后,不求解,先定义模态扩展,然后再求解。

ANSYS模态分析教程及实例讲解

ANSYS模态分析教程及实例讲解 ANSYS是一款常用的有限元分析软件,可以用于执行结构分析、热分析、流体分析等多种工程分析。模态分析是其中的一项重要功能,用于计算和分析结构的固有振动特性,包括固有频率、振型和振动模态,可以帮助工程师了解和优化结构的动态响应。 以下是一份ANSYS模态分析教程及实例讲解,包含了基本步骤和常用命令,帮助读者快速上手模态分析。 1.创建模型:首先需要创建模型,在ANSYS界面中构建出待分析的结构模型,包括几何形状、材料属性和边界条件等。可以使用ANSYS的建模工具,也可以导入外部CAD模型。 2.网格划分:在模型创建完毕后,需要进行网格划分,将结构划分为小的单元,使用ANSYS的网格划分功能生成有限元网格。网格划分的细腻程度会影响分析结果的准确性和计算时间,需要根据分析需要进行合理选择。 3.设置材料属性:在模型和网格创建完毕后,需要设置材料属性,包括弹性模量、密度和材料类型等。可以通过ANSYS的材料库选择已有的材料属性,也可以自定义材料属性。 4.定义边界条件:在模型、网格和材料属性设置完毕后,需要定义结构的边界条件,包括约束和加载条件。约束条件是指结构受限的自由度,例如固定支撑或限制位移;加载条件是指施加到结构上的载荷,例如重力或外部力。

5.运行模态分析:完成前面几个步骤后,就可以执行模态分析了。在ANSYS中,可以使用MODAL命令来进行模态分析。MODAL命令需要指定求 解器和控制选项,例如求解的模态数量、频率范围和收敛准则等。 6.分析结果:模态分析完成后,ANSYS会输出结构的振动特性,包括 固有频率、振型和振动模态。可以使用POST命令查看和分析分析结果, 例如绘制振动模态或振动模态的频率响应。 下面是一个实际的案例,将使用ANSYS执行模态分析并分析分析结果。 案例:矩形板的模态分析 1.创建模型:在ANSYS界面中创建一个矩形板结构模型,包括矩形板 的几何形状和材料属性等。 2.网格划分:对矩形板进行网格划分,生成有限元网格。可以使用ANSYS的自动网格划分功能,也可以手动划分网格。 3.设置材料属性:定义矩形板的材料属性,包括弹性模量、密度和材 料类型等。可以根据具体情况选择合适的材料属性。 4.定义边界条件:定义矩形板的边界条件,包括约束和加载条件。例如,可以定义一个边界为固支,另一个边界施加一个加载。 5.运行模态分析:使用MODAL命令执行模态分析,指定求解器和控制 选项。例如,可以设置求解3个模态,计算频率范围在0-100Hz,收敛准 则为0.01 6.分析结果:模态分析完成后,使用POST命令进行结果分析。可以 绘制振动模态的振型图或频率响应图,分析结构的振动特性。

ANSYS模态分析

ANSYS模态分析 ANSYS模态分析是一种用于计算和研究结构的振动和模态的仿真方法。它可以帮助工程师和设计师了解结构在自由振动模态下的响应,从而优化 设计和改进结构的性能。本文将对ANSYS模态分析的原理和应用进行详细 介绍。 ANSYS模态分析基于动力学理论和有限元分析。在模态分析中,结构 被建模为一个连续的弹性体,通过求解结构的固有频率和模态形状来研究 其振动行为。固有频率是结构在没有外力作用下自由振动的频率,而模态 形状则是结构在每个固有频率下的振动形态。 模态分析可以帮助工程师了解结构在特定频率下的振动行为。通过分 析结构的固有频率,可以评估结构的动态稳定性。如果结构的固有频率与 外部激励频率非常接近,可能会导致共振现象,从而对结构造成破坏。此外,模态分析还可以帮助识别结构的振动模态,并评估可能的振动问题和 改进设计。 1.准备工作:首先,需要创建结构的几何模型,并进行必要的网格划分。在几何模型上设置适当的约束条件和边界条件。选择合适的材料属性 和材料模型。然后设置分析类型为模态分析。 2.计算固有频率:在模态分析中,需要计算结构的固有频率。通过求 解结构的特征值问题,可以得到结构的固有频率和模态形状。通常使用特 征值求解器来求解特征值问题。 3.分析结果:一旦得到结构的固有频率和模态形状,可以进行进一步 的分析和评估。在ANSYS中,可以通过模态形状的可视化来观察结构的振 动模态。此外,还可以对模态形状进行分析,如计算应力、变形和应变等。

ANSYS模态分析在许多领域都有广泛的应用。在航空航天工程中,模态分析可以用于评估飞机结构的稳定性和航空器的振动特性。在汽车工程中,可以使用模态分析来优化车身结构和减少共振噪音。在建筑工程中,可以使用模态分析来评估楼房结构的稳定性和地震响应。 总之,ANSYS模态分析是一种重要的结构动力学仿真方法,可以帮助工程师和设计师了解结构的振动特性和改善设计。通过模态分析,可以预测共振问题、优化结构设计、提高结构的稳定性和性能。希望本文对读者能够理解和应用ANSYS模态分析有所帮助。

ANSYS模态分析教程及实例讲解解析

ANSYS模态分析教程及实例讲解解析 ANSYS是一个广泛应用于工程领域的有限元分析软件,可以用于各种 结构的模态分析,包括机械结构、建筑结构、航空航天结构等。模态分析 是通过计算结构的固有频率和振动模态,用于评估结构的动力特性和振动 响应。以下是一个ANSYS模态分析的教程及实例讲解解析。 一、教程:ANSYS模态分析步骤 步骤1:建立模型 首先,需要使用设计软件绘制或导入一个几何模型。然后,在ANSYS 中选择适当的单元类型和材料属性,并创建适当的网格。确保模型的几何 形状和尺寸准确无误。 步骤2:约束条件 在进行模态分析之前,需要定义适当的约束条件。这些条件包括固定 支持的边界条件、约束点的约束类型、约束方向等。约束条件的选择应该 与实际情况相符。 步骤3:施加载荷 根据实际情况,在模型上施加适当的载荷。这些载荷可以是静态载荷、动态载荷或谐振载荷,具体取决于所要分析的问题。 步骤4:设置分析类型 在ANSYS中,可以选择多种不同的分析类型,包括静态分析、模态分析、动态响应分析等。在进行模态分析时,需要选择模态分析类型,并设 置相应的参数。

步骤5:运行分析 设置好分析类型和参数后,可以运行分析。ANSYS将计算结构的固有 频率和振动模态。运行时间取决于模型的大小和复杂性。 步骤6:结果分析 完成分析后,可以查看和分析计算结果。ANSYS将生成包括固有频率、振动模态形态、振动模态形状等在内的结果信息。可以使用不同的后处理 技术,如模态形态分析、频谱分析等,对结果进行更详细的分析。 二、实例讲解:ANSYS模态分析 以下是一个机械结构的ANSYS模态分析的实例讲解: 实例:机械结构的模态分析 1.建立模型:使用设计软件绘制机械结构模型,并导入ANSYS。 2.约束条件:根据实际情况,将结构的一些部分设置为固定支持的边 界条件。 3.施加载荷:根据实际应用,施加恰当的静态载荷。 4.设置分析类型:在ANSYS中选择模态分析类型,并设置相应的参数,如求解方法、迭代次数等。 5.运行分析:运行模态分析,ANSYS将计算结构的固有频率和振动模态。 6.结果分析:查看和分析计算结果,包括固有频率、振动模态形态、 振动模态形状等。使用后处理技术对结果进行更详细的分析。

ANSYS入门——模态分析步骤与实例详解

ANSYS入门——模态分析步骤与实例详解模态分析是ANSYS中的一项重要功能,它用于分析结构的模态特性, 如固有频率、模态形态、振型等。下面将详细介绍ANSYS中模态分析的步 骤与实例。 1.准备工作: 在进行模态分析前,首先需要完成模型的几何建模、模型的网格划分、边界条件的设定和材料属性的定义等准备工作。 2.设置分析类型: 在ANSYS中,可以使用分析类型工具条或命令行指令设置分析类型。 对于模态分析,可以选择"Modal"。 选中“Modal”选项后,会弹出新窗口,用于设置分析的参数。可以 设置计算的模态数目、输出结果的范围、频率的单位等。 3.定义约束条件: 在模态分析中,需要定义结构的约束条件,以模拟实际情况。常见的 约束条件有固定支撑、自由边界、对称几何等。可以使用ANSYS中的约束 条件工具条或命令行指令进行定义。 4.定义激励条件: 在模态分析中,可以定义激励条件,以模拟结构在特定频率下的振动 情况。常见的激励条件有振动源、压力载荷、重力载荷等。可以使用ANSYS中的激励条件工具条或命令行指令进行定义。 5.执行分析:

完成上述设置后,点击分析工具条中的“运行”按钮,开始执行模态 分析。ANSYS会根据所设定的参数进行计算,并输出相应的结果。 6.结果展示与分析: 模态分析完成后,可以查看分析结果并进行进一步的分析。ANSYS会 输出各模态下的固有频率、模态振型、模态质量、模态参与度等信息。 接下来,我们以一个简单的悬臂梁的模态分析为例进行详解。 1.准备工作: 在ANSYS中绘制悬臂梁的几何模型,并进行网格划分。设定材料属性、加载条件和边界条件。 2.设置分析类型: 在ANSYS主界面上选择“Workbench”,然后点击“Ana lysis Systems”工具条中的“Modal”选项。 3.定义约束条件: 设置悬臂端点的约束条件为固定支撑。可以使用ANSYS中的“Fixed Support”工具进行设置。 4.定义激励条件: 在此示例中,我们只进行自由振动分析,不设置激励条件。 5.执行分析: 点击工具条中的“Solve”按钮,开始进行模态分析。 6.结果展示与分析:

ANSYS动力学分析指南——模态分析

ANSYS动力学分析指南——模态分析 ANSYS动力学分析是一种用于评估和优化机械结构、系统或装置的动 态性能的分析方法。其中模态分析是其中一种常见的分析类型,通过模态 分析可以获取结构的固有频率、振型和模态质量等信息,从而更准确地评 估结构的动态响应。 下面是一个ANSYS动力学模态分析的步骤指南: 1.导入几何模型:首先,需要将几何模型导入到ANSYS中。可以使用ANSYS自带的几何建模工具创建模型,也可以从CAD软件中导入现有模型。在导入几何模型时,需要确保模型的几何尺寸和几何形状正确无误。 2.建立材料属性:为了进行动力学分析,在模型中必须定义材料的属性。这包括材料的密度、弹性模量、泊松比等。如果需要考虑材料的各向 异性,还需要定义合适的各向异性参数。 3.设置边界条件:为了模拟真实工程环境下的载荷作用,需要为模型 设置适当的边界条件。这包括固支约束、加载条件和约束条件等。在模型 中的各个节点上,需要确保边界条件的正确性和合理性。 4.选择求解器类型:ANSYS提供了多种求解器类型,可以根据实际需 求选择合适的求解器。在动力学模态分析中,通常使用的是频域求解器或 模型超级定法(Modal Superposition Method)求解器。 5.网格划分:在进行动力学模态分析之前,需要对模型进行网格划分。网格划分的目的是将连续的结构离散为有限的单元,从而对模型进行数值 求解。在网格划分时,需要根据模型的复杂程度和准确性要求进行适当的 划分。

6.设置求解参数:在进行动力学模态分析之前,需要设置一些求解参数。这包括求解器的收敛准则、求解的频率范围和预期的模态数量等。这些参数的设置可以影响到求解结果的准确性和计算效率。 7.进行模态分析:设置好求解参数后,可以进行动力学模态分析。在分析过程中,ANSYS会通过计算结构的固有频率和振型来评估结构的动态响应。如果需要获取更多的信息,可以通过后处理功能查看模态质量、模态阻尼和模态形状等结果。 8.结果评估和优化:在进行模态分析后,可以用结果来评估结构的动态性能。根据分析结果,可以识别结构中的动态特性和问题,并提出相应的改进措施。如果需要进行优化设计,可以采用参数化建模和参数敏感性分析方法来寻找最佳设计方案。 总结: 以上是ANSYS动力学模态分析的一个基本步骤指南。通过模态分析,可以更深入地了解结构的动态特性,为结构的设计和优化提供参考。需要注意的是,在进行分析前,需要对模型进行建模、设置材料属性和边界条件等预处理工作;在分析过程中,需要选择合适的求解器类型、进行网格划分,并设置适当的求解参数;在分析结果中,可以通过后处理功能获取各种模态信息,进一步进行结果评估和优化设计。

基于ANSYS的接触模态分析技术

基于ANSYS的接触模态分析技术

模态分析 定义:模态分析用于确定设计结构的振动特性(固有频率和振型),他们是承受动载荷的结构设计中的重要参数。同时,也是瞬态分析、谐响应分析,谱分析的的起点。 模态分析是一种线形分析,任何非线性均被忽略,可以进行有预应力的模态分析。 模态提取方法: 1.block lanczos(分块兰索斯法)适用于大型对称特征值求解问题 2.subspace(子空间法)适用于大型对称特征值求解问题 3.powerdynamics法,用于大模型。 4.reduced(缩减法)速度快,精度低 等等...... 模态分析的基本步骤 1.建模 2.加载及求解 3.扩展模态 4.结果后处理 (1)模型的建立 只有线性行为是有效的;必须指定ex和dens,非线性行为被忽略。 (2)加载及求解 1.指定分析类型为模态分析。restar是无效的,若施加不同的边界条件,须重做分析。 mode extraction method(模态提取方法) no.of modes to extract(模态提取阶数)该项对除缩减法以外的方法都是必须的。

no.of modes to expend(模态扩展数)次项只在采用缩减法,非对称法,阻尼法时要求设置。若要得到单元求解结果,则无论采用何种模态提取方法都需要打开“calculate elem results”项。 use lumped mass approx?(质量矩阵形成方式),一般采用默认,有梁或壳单元,采用集中质量矩阵会有很好的结果。 incl prestress effect?(预应力影响计算) 2.定义主自由度 当采用缩减法,提取模态时,要定义主自由度mdof,mdof选取的规则是:选取至少是感兴趣的模态阶数的倍数个mdof(个人认为相当于pkpm中的振型个数)。 3.模型上加载 在典型的模态分析中唯一有效的荷载是零位移约束,其他的荷载形式将被忽略。 4.指定荷载步选项 唯一可用的荷载步选项,为阻尼选项。 阻尼只在用damped法提取模态时有效。若果在模态分析后要进行单点响应谱分析,则在无阻尼模态分析中可以指定阻尼,虽不影响特征值的解,但它将被用于计算每个模态的有效阻尼比,此阻尼比将用于计算谱产生的响应。 5.求解 (3)模态扩展 “扩展模态”不仅适用reduce法提取的缩减振型,也适用其他方法得到的完整振型。要在后处理中观察振型,必须先扩展之。 具体操作如下: 1.打开expansion pass选项 solution/analysis type/expansion pass 2.指定模态扩展选项 solution/load step opts/expansionpass/single expand/expand modes

ANSYS模态分析

ANSYS模态分析 首先,我们来了解一下ANSYS模态分析的原理。模态分析的目标是找 到系统的固有振动特性,包括自然频率、振型和振幅。通过模态分析,可 以确定系统的临界频率,从而避免共振现象的发生。模态分析基于有限元法,将结构划分为多个有限元,然后在每个有限元上求解固有值问题。在 求解过程中,系统的刚度矩阵和质量矩阵起到了重要作用。通过求解固有 值问题,可以得到系统的自然频率和振型。 模态分析的步骤如下: 1.创建模型:首先,需要创建一个准确的模型,包括结构的几何形状、材料属性和支撑约束。 2.网格划分:接下来,将结构划分为多个有限元,对结构进行网格划分。划分的精度将直接影响到分析结果的准确性和计算的效率。 3.定义材料和边界条件:为模型中的每个有限元分配相应的材料属性,包括材料的弹性模量、泊松比和密度等。然后,定义边界条件,包括结构 的支撑约束和加载条件。 4.求解固有值问题:使用ANSYS软件中的模态分析模块进行求解。该 模块将自动构建刚度矩阵和质量矩阵,并求解固有值问题。求解后,可以 得到系统的自然频率和振型。 5.结果分析:最后,对模态分析的结果进行分析。通过观察振型,可 以了解结构的振动模式。通过自然频率,可以判断结构的稳定性。 ANSYS模态分析的应用非常广泛。在航空领域,它可以用于分析飞机 结构的自然频率和振型,以确保结构的稳定性和安全性。在汽车领域,它

可以用于分析汽车的悬挂系统、底盘和车身等结构的自然频率和振型。在 建筑领域,它可以用于分析建筑物的振动响应,以确保结构的稳定性和抗 震性能。 以下是一个实例,展示了ANSYS模态分析的具体应用: 考虑一个简单的悬臂梁结构,长度为L,截面为矩形,宽度为b,高 度为h。悬臂梁的一个端点固定,另一个端点受到一个集中力P的作用。 首先,在ANSYS中创建该悬臂梁的几何模型,并进行网格划分。然后,定义悬臂梁的材料属性,如弹性模量E和密度ρ。接下来,定义边界条件,包括悬臂梁的支撑约束和加载条件。然后,使用ANSYS的模态分析模 块进行求解。求解后,可以得到该悬臂梁的自然频率和振型。最后,通过 观察振型和自然频率,可以对悬臂梁的振动性能进行分析。 总之,ANSYS模态分析是一种重要的结构分析方法。通过该方法,可 以确定系统的自然频率和振型,从而确保结构的稳定性和安全性。它在航空、汽车、建筑等领域中有着广泛的应用。

ANSYS_各种类型分析方法与步骤

ANSYS_各种类型分析方法与步骤 ANSYS 各种类型分析方法与步骤 静力分析 轴对称问题有限元(设置) 选择单元Element Types-单击Options按钮,在―Element behavior‖选择―Axisymmetric‖-OK. 显示单元受力情况:Utility Menu>Select>Entities…选择―Elements‖点[Apply]弹出―Select elements‖对话框,选择[Box]. 得到三维应力图:Utility Menu>PlotCtrls>Style>Symmetry Expansion>2D Axi-Symmetric. !轴对称问题有限元可以采用三维空间单元模型求解。–轴对称模型中的载荷是3-D结构均布面力载荷的总量。 轴对称单元:PLANE25,SHELL61,PLANE75,PLANE78,FLUID81,PLANE83 杆梁问题有限元(设置) 主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。 可以选择打开截面功能:Utility Menu>PlotCtrls>Size and Shape 板壳问题的有限元(设置) 主要不同在于:框架为面;选择单元—Shell,设置实常数—输入厚度I.J.K.Lnodes的厚度。 结构振动问题有限元(设置) 对梁杆结构振动:主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。 1.模态分析设置:Main Menu>Solution>Analysis Type>New Analysis,设置模态分析。选择Modal. Main Menu>Solution>Analys is Type> Analysis Options选择Reduced,OK.弹出对话框,输入频率0和10000其他默认,OK。

(完整版)ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

ANSYS模态分析方法与步骤

模态分析方法与步骤 一、模态分析包括下列6种方法,使用何种模态提取方法主要取决于模型大小(相对于计算机的计算能力而言)和具体的应用场合。 1.缩减法(reduced): 该方法为一般结构最常用的方法之一。其原理是在原结构中选取某些重要的节点为自由度,称为主自由度(master degree of freedom),再用该主自由度来定义结构的质量矩阵及刚度矩阵并求出其频率及振动模态,进而将其结果扩展至全部结构。在解题过程中该方法速度较快,但其答案较不准确。 主自由度的选择依照所探讨的模态、结构负载的情况而定: a. 主自由度的个数至少为所求频率个数的两倍。 b. 选择主自由度的方向为结构最可能振动的方向。 c. 主自由度节点位于较大质量或转动惯量处及刚性较低位置。 d. 如果弯曲模态为主要探讨模态,则可省略旋转自由度。 e. 主自由度的节点位于施力处或非零位移处。 f. 位移限制为零的位置不能选为主自由度节点,因为这种节点具有高刚性的特性。可以用M命令来定义主自由度。此外,也可由ANSYS自动选择自由度。 2. 子空间迭代法(subspace): 通常用于大型结构中,仅探讨前几个振动频率,所得到结果较准确,不需要定义主自由度,但需要较多的硬盘空间及CPU时间。求取的振动模态数应该小于模型全部自由度的一半。 3. 不对称法(unsymmetrical): 该方法用于质量矩阵或刚度矩阵为非对称时,例如转子系统。其特征值(eigenvalue)为复数,实数部分为自然频率;虚数部分为系统的稳定度,正值表示不稳定,负值表示稳定。

4. 阻尼法(damped): 该方法用于结构系统具有阻尼现象时,其特征值为复数,虚数部分为自然频率;实数部分为系统的稳定度,正值表示不稳定,负值表示稳定。 5. 分块兰索斯法(block lanczos): 该方法用于大型结构对称的质量及刚度矩阵,和次空间方法相似,但收敛性更快。 6. 快速动力法(power dynamics method): 该方法用于非常大的结构(自由度大于100,000)且仅需最小几个模态。该方法质量矩阵采用集中质量法。 二、模态分析中的四个主要步骤: 1. 模型建立:模态分析是线性分析,如果在分析中指定了非线性单元,程序在计算过程中将忽略其非线性行为,故模态分析尽可能选用线性单元。在材料特性中密度DENS一定要定义,以构建质量矩阵;另外必须指定弹性模量EX。材料的性质可以是线性的、非线性的、恒定的或与温度相关的,但非线性性质将被忽略。 2.选择分析类型和分析选项:进入/SOLU中定义模态分析,声明模态分析方法,结构外力负载(通常指结构约束条件,如果有结构外力,则是预应力问题),主自由度的选择(如选用降阶法)。求解,退出/SOLU。 3. 施加边界条件并求解:进入/SOLU,将所得结果扩展至全结构,求解,并保存至结果文件以便在后处理器中检查结果。 4. 进入/POST1检查结果。 也可以将求解与模态扩展合并在一起,定义完模态分析相关参数后,不求解,先定义模态扩展,然后再求解。

ANSYS 各种类型分析方法与步骤

ANSYS 各种类型分析方法与步骤 静力分析 轴对称问题有限元(设置) 选择单元Element Types-单击Options按钮,在―Element behavior‖选择―Axisymmetric‖-OK. 显示单元受力情况:Utility Menu>Select>Entities…选择―Elements‖点[Apply]弹出―Select elements‖对话框,选择[Box]. 得到三维应力图:Utility Menu>PlotCtrls>Style>Symmetry Expansion>2D Axi-Symmetric. !轴对称问题有限元可以采用三维空间单元模型求解。–轴对称模型中的载荷是3-D结构均布面力载荷的总量。 轴对称单元:PLANE25,SHELL61,PLANE75,PLANE78,FLUID81,PLANE83 杆梁问题有限元(设置) 主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。 可以选择打开截面功能:Utility Menu>PlotCtrls>Size and Shape 板壳问题的有限元(设置) 主要不同在于:框架为面;选择单元—Shell,设置实常数—输入厚度I.J.K.Lnodes的厚度。 结构振动问题有限元(设置) 对梁杆结构振动:主要不同在于:框架为线;选择单元—Beam;设置实常数前三个。 1.模态分析设置:Main Menu>Solution>Analysis Type>New Analysis,设置模态分析。选择Modal. Main Menu>Solution>Analys is Type> Analysis Options选择Reduced,OK.弹出对话框,输入频率0和10000其他默认,OK。Main Menu>Solution>Master DOFs>Program Selected在主自由度―NTOT‖输入―420‖,即结点数的2倍。OK。 2.谐响应分析设置:Main Menu>Solution>Analys is Type>New Analys is,选择Harmonic,OK。Main Menu>Solution>Load Step Opts>Time/Frequenc>Freq and Substps在―HARFRQ‖输入―0‖、―100‖,在―NSUBST‖输入―100‖,在―KBC‖选择―Stepped‖,OK. 3.结果分析:①模态分析结果:Main Menu>General Postproc>Results Summary给出自振频率值。②谐响应分析结果:Main Menu>TimeHist Postpro>Define Variables,单击add选择―Nodal DOF Data‖,OK.弹出对话框,在图形选择分析的结点,OK.弹出对话框,选择方向,OK. Main Menu>TimeHist Postpro>Store Data,弹出对话框,在―Lab‖选择―Merge w/existing‖,OK. OK. Main Menu>TimeHist Postpro>Graph Variables,第二空中填2,OK. 温度场问题有限元(设置) 不同点: 1.分析模块Preference选择―Thermal‖. 2.选择单元:选择单元,对称的要在[Options]在―Element behavior‖选择―Axisymmetric‖。对不同的材料设置不同的材料属性,〉〉设置材料的热导率。 3.定义材料:Main Menu>Preprocessor>Meshing>Mesh Attributes>Defines>Picked Areas,定义材料。 4.施加约束载荷:Main Menu>Solution>Define

ansys模态-响应-分析步骤

模态分析步骤: 1、将模型导出为.cdb文件,并输入到ANSYS。 2、进行模态分析时,首先应定义分析类型为模态分析,GUI方式为Main Menu >Solution >Analysis Type >New Analysis如图1所示。 图1 定义分析类型为modal 3、设置模态分析求解选项,GUI方式为Main Menu >Solution >Analysis Type >Analysis Option,提取并扩展20阶模态,如图2所示。

图2 Modal Analysis对话框 4、设置B lock lanczos(分块蓝索斯)方法求解选项。 单击图2中的OK按钮,弹出Block Lanczos Method 对话框,将起始频率改为1,单击OK按钮,如图3所示。 图3 Block Lanczos Method对话框

5、求解并查看结果。 采用GUI方式提交求解:Main Menu >Solution>Solve>Current LS。(注意:下面的模态图下面标明是第。。阶模态振型) 谐响应分析的基本步骤: 1.将模型导出为.cdb文件,并输入到ANSYS中。 2.模态分析由于峰值响应发生在激励的频率和结构的固有频率相 等之时,所以在进行谐响应分析之前,应首先进行模态分析,以确定结构的固有频率,计算前20阶模态频率。 3.完成模态分析后,退出后处理器,GUI方式为Main Menu>Finish。 4.定义分析类型为谐响应分析,GUI方式为Main Menu>Solution >Analysis Type>New Analysis,如图4所示。 图4 定义分析类型为Harmonic 5、设置谐响应分析求解选项,GUI方式为Main Menu>Solution >Analysis Type>Analysis Options,保持默认选项,采用完全

ANSYS模态分析实例和详细过程

ANSYS模态分析实例和详细过程 ANSYS是一款被广泛应用于工程领域的有限元分析软件,可以进行多 种不同类型的分析,包括模态分析。模态分析是通过对结构进行振动分析,计算得到结构的固有频率、振型和阻尼比等参数,对结构的动力响应进行 预测和分析。本文将介绍ANSYS模态分析的实例和详细过程。 一、模态分析实例 假设我们有一个简单的悬臂梁结构,长度为L,横截面面积为A,杨 氏模量为E,密度为ρ。我们想要计算该梁结构的固有频率、振型和阻尼 比等参数,以评估其动力特性。 二、模态分析过程 1.准备工作 在进行模态分析之前,我们需要先准备好结构的有限元模型。假设我 们已经完成了悬臂梁结构的几何建模和网格划分,并且已经定义好了材料 属性和约束条件。 2.设置分析类型和求解器 打开ANSYS软件,并选择“Structural”工作台。在“Analysis Settings”对话框中,选择“Modal”作为分析类型。然后,在 “Analysis Type”对话框中选择“Modes”作为解决方案类型。 3.定义求解控制参数 在“Analysis Settings”对话框中,点击“Solution”选项卡。在 该选项卡中,我们可以定义求解控制参数,例如计算模态频率的数量、频 率范围和频率间隔等。

4.添加约束条件 在模态分析中,我们需要定义结构的边界条件。假设我们对悬臂梁的 一端施加固定边界条件,使其不能在该位置发生位移。我们可以在“Model”工作区中选择相应的表面,然后右键点击并选择“Fixed”。 5.添加载荷 在模态分析中,我们通常可以不添加外部载荷。因为模态分析着重于 结构的固有特性,而不是外部激励。 6.定义材料属性 在模态分析中,我们需要定义材料的弹性性质。假设我们已经在材料 库中定义了结构所使用的材料,并在“Model”工作区中选择了适当的材料。 7.运行分析 完成以上设置后,我们可以点击“Run”按钮开始运行分析。ANSYS 将计算结构的固有频率、振型和阻尼比等参数。 8.结果分析 一旦分析完成,我们可以查看和分析计算得到的结果。在模态分析中,我们通常关注的是固有频率、振型和阻尼比。我们可以在ANSYS的结果视 图中查看这些结果,并进行相应的分析和解释。 以上就是ANSYS模态分析的一个简单实例和详细过程。在实际应用中,模态分析可以帮助工程师更好地了解和评估结构的动力特性,以提高结构 的设计和性能。

ANSYS模态分析实例

ANSYS模态分析实例 ANSYS模态分析是一种用于计算和预测结构的固有频率和振动模态的方法。模态分析可用于确定结构的固有频率、振动模态形状和模态质量,并且在设计和优化过程中具有广泛的应用。下面将通过一个实例来介绍如何使用ANSYS进行模态分析。 假设我们有一个简单的悬挑梁结构,长度为L,截面积为A。我们的目标是计算该结构的固有频率和模态形状。 第一步是创建模型。使用ANSYS的建模工具,我们可以创建一个简单的悬挑梁结构。设置结构的几何尺寸和材料属性(如悬挑梁的长度、截面积以及材料的弹性模量等)。 第二步是设置边界条件。在模态分析中,我们需要定义结构的固定边界条件,以模拟实际应用中的约束情况。对于悬挑梁结构,我们可以指定其一个端点固定。 第三步是应用模态分析。在ANSYS中,我们可以选择适当的模态分析方法。常用的方法包括隐式和显式求解器。我们可以选择其中一种方法,并设置分析的参数,如求解器的精度和迭代次数等。 第四步是进行计算和分析。启动计算后,ANSYS将计算结构的固有频率和模态形状。计算结果将显示为结构的振动模态和对应的频率。通过分析不同的模态,我们可以了解结构的振动行为和不同模态之间的关系。 第五步是结果分析和优化。分析得到的结果后,我们可以对结构进行优化。通过调整结构的几何形状、截面积或材料属性等参数,我们可以改变结构的固有频率和模态形状,以满足特定应用需求。

总结: 以上是使用ANSYS进行模态分析的简要步骤。通过模态分析,我们可以了解结构的振动特性,并优化结构以避免共振和振动问题。ANSYS提供了强大的工具和功能,可帮助工程师进行模态分析和改进结构设计。在实际应用中,模态分析对于航空航天、建筑工程和汽车工程等领域都有重要的应用价值。

ANSYS模态分析实例和详细过程

ANSYS模态分析实例和详细过程 下面是一个ANSYS模态分析的实例和详细过程: 1.创建模型:使用ANSYS的几何建模工具,创建需要进行模态分析的 结构模型。模型可以包括不同的几何形状、材料属性和加载条件等。 2.定义材料属性:根据结构的材料特性,定义材料的弹性模量、泊松 比和密度等参数。这些参数将用于在分析中计算结构的响应。 3.网格划分:使用ANSYS的网格划分工具,将结构模型进行离散化处理,将其划分为小的单元网格,这些单元网格将用于进行数值计算。 4.定义加载条件:根据实际情况,定义结构的加载条件,包括外力、 支持条件和约束等。这些加载条件将作为分析的输入参数。 5.设置分析类型:在ANSYS的分析设置中,选择模态分析作为分析类型。定义分析的参数,包括求解方法、迭代步数和计算精度等。 6.进行求解:点击ANSYS的求解按钮,开始进行模态分析的求解过程。ANSYS将根据设定的求解参数,使用有限元法进行结构的动力学计算。 7.分析结果:模态分析完成后,ANSYS将生成一系列结果,包括结构 的固有频率、模态振型、模态质量和模态阻尼等。这些结果可以用于评估 结构的振动特性和动力响应。 8.结果后处理:使用ANSYS的后处理工具,将分析结果进行可视化处理,绘制出结构的模态振型图和模态频率响应图等。这些图形可以帮助工 程师更好地理解结构的动力学特性。 以上是一个简单的ANSYS模态分析的实例和详细过程。在实际应用中,根据具体情况可能需要进行更多的参数设置和后处理操作,以获取更准确

和全面的分析结果。同时,模态分析结果还可以用于其他工程分析,如结构的疲劳分析和振动控制等。

ansys模态分析详解

ANSYS动力学分析指南 作者: 安世亚太 第一章模态分析 §1.1模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、 PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §1.2模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)”则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §1.3模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法

ANSYS模态分析详

ANSYS模态分析详解 1. 简介 ANSYS是一款常用的工程仿真软件,其模态分析功能能够帮助工程师快速分析和优化结构的自振频率和振型,进而提高结构的可靠性和性能。本文将详细介绍ANSYS模态分析的原理、操作步骤和实际应用。 2. 模态分析原理 模态分析是一种通过分析结构的固有振动特性来研究结构的方法。在模态分析中,首先需要建立结构的有限元模型,然后通过求解结构的固有频率和振型,得到结构的模态数据,包括自振频率、自振模态和模态质量等。结构的固有频率和振型是结构设计和安全评估的重要依据。 3. 模态分析步骤 3.1. 几何建模 在进行模态分析之前,需要首先进行结构的几何建模。ANSYS提供了强大的几何建模工具,可以通过手工绘制、导

入CAD模型或直接建立几何实体进行建模。建模过程中需要注意几何的精确性和几何尺寸的准确性。 3.2. 材料属性设置 对于模态分析来说,材料的物理属性是非常重要的。在ANSYS中,可以通过定义材料属性来描述材料的力学性能,包括弹性模量、泊松比、密度等。合理的材料属性设置可以更准确地预测结构的固有频率。 3.3. 约束和加载条件设置 在模态分析中,需要设置结构的约束和加载条件。约束条件可以是支撑约束、固连约束或自由约束,加载条件可以是点载荷、面加载或体加载。通过合理的约束和加载条件设置,可以模拟实际工况下的结构响应。 3.4. 网格划分与单元属性设置 在进行模态分析之前,还需要对结构进行网格划分和单元属性设置。ANSYS提供了多种网格划分算法和单元类型,可以根据结构的几何形状和材料特性选择合适的划分算法和单元类型。合理的网格划分和单元属性设置可以提高计算的精度和效率。

ansys模态分析步骤

模态分析步骤 第1步:载入模型Plot>V olumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径Main Menu>Preference ,单击Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小〔太小的计算比拟复杂,不一定能产生好的效果,一般做两三组进行比拟〕,保存其他选项,单击Mesh出现Mesh

ANSYS基础教程,各类动力学分析的基本步骤

ANSYS基础教程,各类动力学分析的基本步骤 因各类动力分析在求解过程和求解选项上有较大的区别,所以这里将对其基本分析过程分别给予介绍。 模态分析的基本步骤 模态分析过程由四个主要步骤组成: 1.建模; 2.加载及求解; 3.扩展模态; 4.结果后处理。 模型的建立 建模过程和其它类型的分析类似,但应注意以下两点: 在模态分析中只有线性行为是有效的。如果指定了非线性单元,将作为线性的来对待。例如,如果模型中包含了接触单元,则系统取其初始状态的刚度值并且不再改变此值。 材料性质可以是线性的或非线性的、各向同性的或正交各向异性的、恒定的或和温度相关的。在模态分析中必须指定弹性模量EX(或某种形式的刚度)和密度DENS(或某种形式的质量),而非线性特性将被忽略。必须要对某些指定单元的实常数进行设置,如COMBIN7,COMBIN37,contal174,TARGEL170。 加载并求解

1.进入ANSYS求解器 命令:/SOLU GUI:Main Menu | Solution 2.指定分析类型和分析选项 (1)指定分析类型(ANTYPE) 选择新的分析类型为模态分析。在模态分析中Restart(重启动)是无效的。如果需要施加不同的边界条件,则须做一次新的分析。 命令:ANTYPE GUI:Main Menu | Solution | Analysis Type | New Analysis (2)指定分析选项 通过GUI路径:Main Menu | Solution | Analysis Type | Analysis Options打开模态分析(Modal Analysis)选项对话框,对话框中主要有选项组。 Modal Extraction Method (模态提取方法) 用来指定合适的模态提取方法; Number of Modes to Extract (模态提取阶数) 用来指定想要提取的模态阶数。该选项对除缩减法以外的所有模态提取方法都是必须设置的。在用非对称法和阻尼法时,应该要求提取比必要的阶数更多的模态以降低丢失模态的可能性。 Number of Modes to Expand (模态扩展数) 此选项只在采用缩减法、非对称法和阻尼法时要求设置。如果想得到单元求解结果,则不论采用何种模态提取方法都需要打开

相关文档