文档库 最新最全的文档下载
当前位置:文档库 › ansys刚度质量矩阵导出

ansys刚度质量矩阵导出

ansys刚度质量矩阵导出
ansys刚度质量矩阵导出

可以使用/DEBUG命令来得到。详细步骤参见下面的宏文件

finish

/clear

PI=3.1415926

w1=3

w2=10

w3=6

w4=1.2

r=.8

t=0.08

/PREP7

!*

ET,1,SHELL63

R,1,t

ET,2,MASS21

R,2,500,500,500,2000,2000,2000,

!*

UIMP,1,EX, , ,2e11

UIMP,1,NUXY, , ,0.3,

UIMP,1,DAMP, , ,0.2,

UIMP,1,DENS, , ,7800,

BLC4,0,0,w2,w1

ESIZE,1.5,0,

AMESH,all

NSEL,S,LOC,X,0.0

D,all, , , , , ,ALL, , , , ,

allsel,all

SFA,all,1,PRES,12

FINISH

/OUTPUT,cp,out,, ! 将输出信息送到cp.out文件

/debug,-1,,,1 ! 指定输出单元矩阵

/SOLU

SOLVE

finish

/OUTPUT, TERM ! 将输出信息送到output windows中

! 这时用编辑器打开cp.out文件,可以看到按单元写出的质量、刚度等矩阵方法2

/prep7

k,1

k,2,3000

l,1,2

et,1,beam3

mp,ex,1,2e5

mp,prxy,1,0.3

r,1,5000,2e7,200

lesize,all,,,10

lmesh,all

finish

!----以上正常建立模型,不必施加约束和荷载

/solu

antype,7 !substructuring分析类型

seopt,matname,1 !设置文件名称和刚度矩阵类型(刚度,质量,阻尼等) nsel,all !选择所有节点

m,all,all !定义所有节点自由度为主自由度

solve !求解

selist,matname,3 !列出整体刚度矩阵

结构力学思考题答案

1、结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 2、什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 3、采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。 有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点: (l) 与广义坐标法相似,有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。 (2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。 4、直接动力平衡法中常用的有哪些具体方法?它们所建立的方程各代表什么条件? 答:常用方法有两种:刚度法和柔度法。刚度法方程代表的是体系在满足变形协调条件下所应满足的动平衡条件;而柔度法方程则代表体系在满足动平衡条件下所应满足的变形协调条件。 5、刚度法与柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便? 答:刚度法与柔度法建立的运动方程在所反映的各量值之间的关系上是完全一致的。由于刚度矩阵与柔度矩阵互逆,刚度法建立的运动方程可转化为柔度法建立的方程。一般来,对于单自由度体系,求[δ]和求[k]的难易程度是相同的,因为它们互为倒数,都可以用同一方法求得,不同的是一个已知力求位移,一个已知位移求力。对于多自由度体系,若是静定结构,一般情况下求柔度系数容易些,但对于超静定结构就要根据具体情况而定。若仅从建立运动方程来看,当刚度系数容易求时用刚度法,柔度系数容易求时用柔度法。 6、计重力与不计重力所得到的运动方程是一样的吗? 答:如果计与不计重力时都相对于无位移的位置来建立运动方程,则两者是不一样的。但如果计重力时相对静力平衡位置来建立运动方程,不计重力仍相对于无位移位置来建立,

ansys质量矩阵刚度矩阵提取

ansys质量矩阵刚度矩阵提取 看了这么久了都没人回,查了一些质料终于找到答案了,,下面提供三种方法:方便与其他程序进行接口编程1. Which matrix you would like? element stiffness matrix or full stiffness matrix? element stiffness is within file.emat. full stiffness matrix is within file.full A simple way to dump the matrix is as follow: ------------------- /aux2 fileaux2,file,emat form,long dump,all ------------------- 2. 可以使用/DEBUG命令来得到。详细步骤参见下面的宏文件 finish /clear PI=3.1415926 w1=3 w2=10 w3=6 w4=1.2 r=.8 t=0.08 /PREP7 !* ET,1,SHELL63 R,1,t ET,2,MASS21 R,2,500,500,500,2000,2000,2000,

!* UIMP,1,EX, , ,2e11 UIMP,1,NUXY, , ,0.3, UIMP,1,DAMP, , ,0.2, UIMP,1,DENS, , ,7800, BLC4,0,0,w2,w1 ESIZE,1.5,0, AMESH,all NSEL,S,LOC,X,0.0 D,all, , , , , ,ALL, , , , , allsel,all SFA,all,1,PRES,12 FINISH /OUTPUT,cp,out,, ! 将输出信息送到cp.out文件 /debug,-1,,,1 ! 指定输出单元矩阵 /SOLU SOLVE finish /OUTPUT, TERM ! 将输出信息送到output windows中 ! 这时用编辑器打开cp.out文件,可以看到按单元写出的质量、刚度等矩阵 3. 其原理很简单,即使用ansys的超单元即可解决问题。定义超单元,然后列出超单元的刚度矩阵即可。 面是一个小例题,自可明白。 /prep7 k,1 k,2,3000 l,1,2 et,1,beam3 mp,ex,1,2e5 mp,prxy,1,0.3 mp,dens,1,2e3 r,1,5000,2e7,200 lesize,all,,,10 lmesh,all

常用单元的刚度矩阵

r u r r u r =-+= πππεθ22)(2 由于各点在圆周方向上无位移,因而剪应变θr v 和r v θ均为 零。将应变写成向量的形式,则{}?? ?? ? ?????? ?????? ???????+??????=??????????????=r w z u z w r u r u rz z r γεεεεθ 根据上式,可推导出几何方程{}[]{})(e B ?ε= 其中几何矩阵[]????????? ?????????? ??= ij ji ki ik jk kj ji ik kj k j i ij kj jk z r z r z r r r r r z r N r z r N r z r N z z z B 000 0),(0),(0),(00021 3.弹性方程和弹性矩阵[D] 依照广义虎克定律,同样可以写出在轴对称中应力和应变之间的弹性方程,其形式为 [])(1 θσσσε+-= z r r u E [])(1 z r u E σσσεθθ+-= [])(1 θσσσε+-=r z z u E rz rz E r τμ)1(2+= 所以弹性方程为{}[]{}εσD = 式中应力矩阵{}{}T rz z r τσσσσθ=

弹性矩阵[]? ? ??????? ???? ?-----+=221000010101)21)(1(μμμμμμμμμμ μμE D 4.单元刚度矩阵[])(e k 与平面问题相同,仍用虚功原理来建立单元刚度矩阵,其积分式为 [][][][]dV B D B k V T e ?=)( 在柱面坐标系中,drdz dV π2= 将drdz dV π2=代入[][][][]dV B D B k V T e ?=)(,则[][][][]rdrdz B D B k T e ??=π2)( 即为轴对称问题求单元刚度矩阵的积分式。 与弹性力学平面问题的三角形单元不同,在轴对称问题中,几何矩阵[B]有的元素(如r z r N i ),(等)是坐标r 、z 的函 数,不是常量。因此,乘积[][][]B D B T 不能简单地从式 [][][][]rdrdz B D B k T e ??=π2)(的积分号中提出。如果对该乘积逐项求 积分,将是一个繁重的工作。一般采用近似的方法:用三角形形心的坐标值代替几何矩阵[B]的r 和z 的值。用[]B 表示在形心),(z r 处计算出的矩阵[B]。其中 3 ) (,3 ) (k j i k j i z z z z r r r r ++= ++= 只要单元尺寸不太大,经过这样处理引起的误差也不大。被积函数又成为常数,可以提出到积分号外面:

提取刚度矩阵

============为什么折腾这个文档======== 我有一个计算线性动力学方程组的瞬态、谐响应和静力学的python程序,现希望开发一个将ANSYS组集好的总体矩阵导入该PYTHON程序中的接口。 该问题可分解为: [STEP1] [ANSYS]->[包含矩阵信息的文件] [STEP2] [包含矩阵信息的文件]->[python通用数据对象] [STEP3] [python通用数据对象]->[程序特定数据对象]->[进行计算] 因此检索了一些帖子,基本上完成了这项工作,本文是对[STEP1]和[STEP2]的整理,并且利用[STEP3]对结果进行了验证 ============主要内容================== 1,了解从ANSYS中提取总体矩阵和载荷向量的方法; 2,了解提取出来的矩阵是怎样表示的; 3,说明在Python中,如何读取这样的矩阵; 4,构造一个简单的算例,说明整个【建模】-【提取】-【读取】过程及其正确性; =========站内检索综述==================== 检索词:提取矩阵 得到21个结果,代表性的帖子有下面这9个: 编号[1] 标题:ansys中怎样提取质量,刚度,阻尼矩阵? 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:pengweicai给出了一段网上最常见的提取代码,该程序以fortran 写成,可以利用.full文件以及一些列约定将ANSYS中的总体矩阵读入FORTRAN中。 编号[2] 标题:如何得知HBMAT命令提取的质量、刚度矩阵对应的自由度? 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:提出了使用HBMAT命令提取稀疏矩阵时常见的问题:我们如何知道提取出来的信息是怎么储存的呢? 编号[3] 标题:[分享]ANSYS中整体、单元刚度和质量矩阵的提取 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:在该帖子的7楼,其实已经给出了帖子[2]中问题的解答,即HBMAT 中提取出来的矩阵是Harwell-Boeing格式的,并且给出了该格式的细节,可惜是英文的,没引起多少关注。 编号[4] 标题:帮我看看提取的刚度与质量矩阵 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:这个帖子所示的矩阵并非是使用HBMAT命令提出出来的,而应该是SELIST命令列举出来的未压缩的矩阵,后续楼层的回帖给了大家一个提示,即有可能提取出来的矩阵是引入了边界条件的(即删除了被约束的行和列的)。 编号[5] 标题:提取刚度矩阵的问题 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:本帖作者的工作是基于单元刚度矩阵的,因此ANSYS中提取的单元刚度矩阵是否处于总体坐标系就成为问题。该问题并非本文内容,但仍值得关注。 编号[6] 标题:提取刚度矩阵丢失节点的问题 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:帖子[5]作者的又一帖,在这里帖子[5]的问题得到了欧阳中华老师的回答。 编号[7] 标题:提取刚度矩阵的ANSYS操作过程 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:实际上这就是使用HBMAT从ANSYS中提取总体矩阵的全过程!只是还有一些细节待确定。 编号[8] 标题:提取整体刚度矩阵、质量矩阵及阻尼矩阵的简单方法 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:给出了利用“不减缩的”子结构方法来得到总体矩阵的方法(这也是网络上常见的代码之一) 编号[9] 标题:质量矩阵、刚度矩阵如何提取? 地址:https://www.wendangku.net/doc/be14175230.html,/forum-vi ... fromuid-159019.html 要点:16443在5楼的回帖中给出了提取刚度矩阵的三种方法 =======站外检索略述======================== 百度检索:提取矩阵 比较好的帖子有: 编号[10] 来源:百度文库 标题:怎样从ansys中提取单元刚度矩阵与质量矩阵 地址:https://www.wendangku.net/doc/be14175230.html,/view/3cf5e567f5335a8102d220d9.html 要点:这应该就是16443在帖子[9]中回复的内容了,全面的总结了在帖子[3,4,5,9]中涉及的问题。 编号[11] 来源:中华钢结构标题:ansys刚度矩阵Harwell-Boeing格式的具体含义讨论 地址:https://www.wendangku.net/doc/be14175230.html,/forum/viewthread.php?tid=184007 要点:如题,后续楼层给出了一些将矩阵读入ANSYS的APDL(好不容易读出来,又读进去干嘛呢……) 编号[12] 来源:simwe 标题:关于ANSYS(质量、刚度、阻尼)矩阵Harwell-boeing格式数据的说明 地址:https://www.wendangku.net/doc/be14175230.html,/archiver/tid-924778.html 要点:比[11]更透彻的HB格式说明! ============================================================= =======1.从ANSYS中提取总体矩阵的方法================================= ============================================================= 1,用/DEBUG命令 2,子结构法

Ansys中节点力提取

Ansys中节点力提取几个问题的说明 对于ansys中节点力提取的命令,一般有如下命令可以用, *GET,Par, NODE, N, RF,FX(FY/FZ/MX/MY/MZ) 这组命令是我们最开始用的,用来提取节点反力,但是有个缺陷,节点反力只在有约束位置才能提取,如果在结构中任何一个节点处提取此节点所受合力,界面操作有两种方法。 Main Menu>General Postproc>Nodal Calcs>Total Force Sum Main Menu>General Postproc>Nodal Calcs>Sum @ Each Node 但是执行上面两个操作有个前提,需要选出对应的单元和节点,下面举例说明: 如下图:800臂架结构 由于要对连接架+塔帽进行单独的详细分析,需要提取旋转架与塔帽连接处铰点对塔帽的作用力。而且为了在详细模型中施加载荷的时候方便,提取结果的坐标系需要是X向沿着主臂的局部坐标系,见示图1。 运用Main Menu>General Postproc>Nodal Calcs>Total Force Sum 或者 Main Menu>General Postproc>Nodal Calcs>Sum @ Each Node这两个操作可以实现。 下面就这两个操作的的结果进行比较。就如上模型,研究塔帽和旋转架连接左侧铰耳处受力提取,见示图2。 将塔帽上与此铰点相连接的两个单元选出来,选择此节点,见示图3。 读取结果文件,设置结果坐标系为要求的局部坐标系(文件中为局部坐标系11)。

执行Main Menu>General Postproc>Nodal Calcs>Total Force Sum,选取Active Rsys,结果界面如下: 执行Main Menu>General Postproc>Nodal Calcs>Sum @ Each Node,结果界面如下: 从结果界面上可以看出,了;两个结果界面中显示的结果来看,“结果显示1”与“结果显示3”的结果数据相同,而“结果显示2”与其他两个在在力的显示数据上相同,而矩的显示数据上并不相同。之所以出现这种差别,原因在于在求矩的作用数据时,矩的作用中心不相同。“结果显示2”中所显示的数据其矩的作用中心为提取载荷点(1600078),而“结果数据1”和“结果数据3”中矩的作用中心为结果坐标系的原点。 要想使上述3个结果数据显示值相同,只需要将结果显示中矩的作用中心设置到提取点上就可以了。 通过Main Menu>General Postproc>Nodal Calcs>Summation Pt>At Node将矩的作用点设置到1600078,再执行命令Main Menu>General Postproc>Nodal Calcs>Total Force Sum,结果

结构力学概念题

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在: (1)在动力分析中要计入惯性力,静力分析中无惯性力; (2)在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量; (3)动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼?答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影

第4章 多自由度系统的振动题解

62 习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 2 2121111)(l g m l g m m k k + ++ =,2 221l g m k - =, 2 212l g m k - =,2 2222l g m k k + = 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ?? ? ? ??=m m M 0 0;?? ?? ? ???? ?- - =l mg l mg l mg l mg K 3 由频 02 =-M p K ,得 032 2 =????? ?? ?? ?-- --=mp l mg l mg l mg mp l mg B 0242 2 22 2 4 2=+ - ∴l g m p l g m p m l g p ) 22(1-= ∴ ,l g p ) 22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ? ?? ?-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ? ? ????-=112) 1(A ??????+=112) 2(A 题4-1图

63 4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 2 22 111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=???????????? --++????????????? ?000031222222122 1x a k a k a k a k b k x m a m θθ 由频率方程02=-M K p ,得 031 2 22222 212 22 1=---- +p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 434343432 1 1 1 11θθθ+-= 2 2434343432 2 2 1 1 1 22l l k l l k l l k I θθθθ--= 整理得到, 016 916 922 1 12 1 11=-+θθθl k l k I 题4-3图 题4-2图

提取单元刚度矩阵

单元刚度矩阵的提取 刚度矩阵在有限元求解过程中扮演者非常重要的角色,以最小位能原理求解过程为例最终越是转换为含有结构刚度矩阵的能量泛函的取值问题。有限元过程中涉及到三类刚度:单元刚度矩阵,组合结构刚度矩阵和最终求解刚度矩阵。 其中单元刚度矩阵:仅与单元的自身自由度有关,同一编号的单元矩阵的维数是固定。组合结构刚度:矩阵根据求解的初始变量个数决定刚度矩阵的维数,属于单元组装后的初始刚度,维数和整个单元初始变量个数相等。最终求解刚度矩阵:代入边界条件简化后的刚度。以《Finite Element Analysis-Theory and Application With ANSYS》中的梁单元例子为例,解释刚度提取过程: 此模型的单元刚度矩阵:(学则beam3梁单元后,该单元包含两节点,每个节点具有三个自由度,因此对应单元刚度矩阵为6*6的方阵)

组合结构刚度矩阵:(该结构含有三个节点,每个节点具有三个原始自由度,因此组合结构刚度矩阵具有9*9阶的形式) 最终求解刚度矩阵:(由于边界条件的存在,该结构中,1,3点的自由度不存在,求解参数中有六个参数已知,因此对最终求解刚度矩阵为三阶方阵) 通过最终的刚度矩阵组成的方程,求解出2节点的位移解,再以这些原始解得出应力,应变,支反力的其他的解。 ansys实现过程: 提取思路如下:通过/debug提取单元刚度矩阵,通过filname.full文件提取后两者的矩阵 ansys实现过程如下: finish /clear /filname,k,1 /prep7 N,1 N,2,120 N,3,120,-108 et,1,beam3 mp,ex,1,3.0e7 mp,prxy,1,0.3 R,1,7.65,204,10 E,1,2 E,2,3 /debug,-1,,,1,,,,,

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

基于matlab的有限元法分析平面应力应变问题刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) (K k I f) (k u) (k u A) (E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa,v=,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵

通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,,,0,,1) k1 = +006 * Columns 1 through 5 0 0 0 0 0 0 0 0 Column 6 >> NU= NU = >> t= t = >> k2=LinearTriangleElementStiffness(E,NU,t,0,0,,0,,,1)

ANSYS提取单元内力的方法

ANSYS提取单元或节点内力的方法 方法1:节点荷载(List Results→Nodal Loads) 方法2:节点合力计算(Nodal Cals→Sum @ Each Node) 方法3:单元解中的节点解(List Results→Element Solution→Structural Forces & Moments)方法4:支座反力(List Results→Reaction Solu) 方法5:单元表(List Results→Elem Table Data) 上述各方法提取的结果关系如下: (1)方法1和方法2提取的结果完全相同,但结果为0的项在方法1的结果列表中不显示,而方法2的结果列表则会全部显示。 (2)方法3提取的结果是每个单元各节点在该单元中的内力,针对同一节点,将其在各个单元中的内力求和,其累加结果与方法1和2得到的结果一致。 (3)方法4提取的结果只显示有施加位移约束的节点反力,其数值大小与方法1和2得到的结果相差一个正负号,即节点内力和节点反力刚好是一对作用力与反 作用力。 (4)方法5提取的结果是单元的内力,如果单元的形函数为线性(如BEAM188单元设置“KEYOPT(3)=0”),则ANSYS会取单元中点作为积分点并将其数值代 替单元内的线性变化,因此其输出结果的绝对值等于方法3中对应单元的各节 点相应内力绝对值的平均值;如果单元的形函数为非线性(如BEAM188单元 设置“KEYOPT(3)=2”),则单元各节点的内力不同,其结果与方法3得到的结 果一致。 (5)方法1~4提取的结果都是默认基于整体坐标系的,而方法5提取的结果是基于单元坐标系的,因此提取结果的方向和正负号需特别注意。有限元中力的方向 和结构力学中的方向是有区别的,不论是什么结果坐标系,力的正方向取为对 应结果坐标的正方向,弯矩则是对应坐标轴的顺时针为正。

工程力学 第17章 复合材料的力学行为 习题及解析

工程力学(静力学与材料力学)习题解答 第17章 复合材料的力学行为 17-1 图示结构中,两种材料的弹性模量分别为E a 和E b ,且已知E a >E b ,二杆的横截面面积均为bh ,长度为l ,两轮之间的间距为a ,试求: 1.二杆横截面上的正应力; 2.杆的总伸长量及复合弹性模量; 3.各轮所受的力。 知识点:静不定问题,复合弹性模量 难度:很难 解答: 解:1.P Nb Na F F F =+ (1) b a l l ?=? (2) bh E l F l a Na a =? (3) bh E l F l b b Nb = ? (4) 将(3)、(4)代入(2),得b Nb a Na E F E F = (5) (1)、(5)联立解得 P b a a Na F E E E F +=,P b a b Nb F E E E F += bh F E E E bh F P b a a Na a +==σ,bh F E E E bh F P b a b Nb b +==σ 2.由(3)式 bh E E l F bh E l F l )(b a P a Na a +== ? 设复合弹性模量E c ) 2(c P bh E l F l =?,由于a l l ?=?,比较两式得 2 b a c E E E += 3.由于F Na >F Nb ,所以,轮C 、轮G 脱离接触面,所以受力为零。 0)(=∑F k M ,02 2R Nb Na =--a F h F h F H ∴ b a b a P R 2E E E E a h F F H +-=,b a b a P R R 2E E E E a h F F F H D +-== 17-2 玻璃纤维/环氧树脂单层复合材料由2.5kg 纤维与5kg 树脂组成。已知玻璃纤维的弹性模量E f = 85GPa ,密度f ρ= 2500kg/m 3 ,环氧树脂的弹性模量E m = 5GPa ,密度m ρ= 1200kg/m 3。试求垂直于纤维方向和平行于纤维方向的弹性模量E y 和E x 。 知识点:单向铺层纤维增强复合材料,复合弹性模量 难度:一般 解答: 解:纤维和基体的总体积:00517.01200 5 25005.2=+= V m 3 纤维体积与复合材料总体积之比:1934.000517 .025005 .2f ==V 11.685 )1934.01(51934.085 5)1(f f m f f m =?-+??=-+= E V E V E E E y GPa G D R F D Na F Nb F C H R F H P F a K (a) 习题17-1图

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家托马斯·杨(Thomas

最新7.4-单元刚度矩阵组装及整体分析

7.4 单元刚度矩阵组装及整体分析 7.4.1 单刚组装形成总刚 根据全结构的平衡方程可知,总体刚度矩阵是由单元刚度矩阵集合而成的.如果一个结构的计算模型分成个单元,那么总体刚度矩阵可由各个单元的刚度矩阵组装而成,即 [K]是由每个单元的刚度矩阵的每个系数按其脚标编号“对号入座”叠加而成的.这种叠加要求在同一总体坐标系下进行.如果各单元的刚度矩阵是在单元局部坐标下建立的,就必须要把它们转换到统一的结构(总体)坐标系.将总体坐标轴分别用表示,对某单元有 式中,和分别是局部坐标系和总体坐标系下的单元结点位移向量;[T]为坐标转换阵,仅与两个坐标系的夹角有关,这样就有 是该单元在总体坐标系下的单元刚度矩阵.以后如不特别强调,总体坐标系下的各种物理参数 均不加顶上的横杠. 下面就通过简单的例子来说明如何形成总体刚度矩阵.设有一个简单的平面结构,选取6个结点,划分为4个单元.单元及结点编号如图3-27所示.每个结点有两个自由度.总体刚度矩阵的组装过程可分为 下面几步:

图7-27 (1)按单元局部编号顺序形成单元刚度矩阵.图7-27中所示的单元③,结点的局部编号顺序为.形成的单元刚度矩阵以子矩阵的形式给出是 (2)将单元结点的局部编号换成总体编号,相应的把单元刚度矩阵中的子矩阵的下标也换成总体编号.对下图3-27所示单元③的刚度矩阵转换成总体编号后为 (3)将转换后的单元刚度矩阵的各子矩阵,投放到总体刚度矩阵的对应位置上.单元③的各子矩阵投放后情况如下:

(4)将所有的单元都执行上述的1,2,3步,便可得到总体刚度矩阵,如式(3-9).其中右上角的上标表示第单元所累加上的子矩阵. (3-9)(5)从式(3-9)可看出,总体刚度矩阵中的子矩阵AB是单元刚度矩阵的子矩阵转换成总体编号后 具有相同的下标,的那些子矩阵的累加.总体刚度矩阵第行的非零子矩阵是由与结点相联系的那些单元的子矩阵向这行投放所构成的. 7.4.2 结点平衡方程 我们首先用结构力学方法建立结点平衡方程.连续介质用有限元法离散以后,取出其中任意一个结点,从环绕点各单元移置而来的结点载荷为 式中表示对环绕结点的所有单元求和,环绕结点的各单元施加于结点的结点力为

ansys动力学分析全套讲解

第一章模态分析 §模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS产品家族中的模态分析是一个线性分析。任何非线性特性,如塑性和接触(间隙)单元,即使定义了也将被忽略。ANSYS提供了七种模态提取方法,它们分别是子空间法、分块Lanczos法、PowerDynamics法、缩减法、非对称法、阻尼法和QR阻尼法。阻尼法和QR阻尼法允许在结构中存在阻尼。后面将详细介绍模态提取方法。 §模态分析中用到的命令 模态分析使用所有其它分析类型相同的命令来建模和进行分析。同样,无论进行何种类型的分析,均可从用户图形界面(GUI)上选择等效于命令的菜单选项来建模和求解问题。 后面的“模态分析实例(命令流或批处理方式)”将给出进行该实例模态分析时要输入的命令(手工或以批处理方式运行ANSYS时)。而“模态分析实例(GUI方式)” 则给出了以从ANSYS GUI中选择菜单选项方式进行同一实例分析的步骤。(要想了解如何使用命令和GUI选项建模,请参阅<>)。<>中有更详细的按字母顺序列出的ANSYS命令说明。 §模态提取方法 典型的无阻尼模态分析求解的基本方程是经典的特征值问题: 其中: =刚度矩阵, =第阶模态的振型向量(特征向量), =第阶模态的固有频率(是特征值), =质量矩阵。 有许多数值方法可用于求解上面的方程。ANSYS提供了7种方法模态提取方法,下面分别进行讨论。 1.分块Lanczos法 2.子空间(Subspace)法 Dynamics法

ansys质量矩阵刚度矩阵提取说课材料

a n s y s质量矩阵刚度 矩阵提取

ansys质量矩阵刚度矩阵提取 看了这么久了都没人回,查了一些质料终于找到答案了,,下面提供三种方法:方便与其他程序进行接口编程1. Which matrix you would like? element stiffness matrix or full stiffness matrix? element stiffness is within file.emat. full stiffness matrix is within file.full A simple way to dump the matrix is as follow: ------------------- /aux2 fileaux2,file,emat form,long dump,all ------------------- 2. 可以使用/DEBUG命令来得到。详细步骤参见下面的宏文件 finish /clear PI=3.1415926 w1=3 w2=10 w3=6 w4=1.2 r=.8 t=0.08 /PREP7 !* ET,1,SHELL63 R,1,t ET,2,MASS21 R,2,500,500,500,2000,2000,2000,

!* UIMP,1,EX, , ,2e11 UIMP,1,NUXY, , ,0.3, UIMP,1,DAMP, , ,0.2, UIMP,1,DENS, , ,7800, BLC4,0,0,w2,w1 ESIZE,1.5,0, AMESH,all NSEL,S,LOC,X,0.0 D,all, , , , , ,ALL, , , , , allsel,all SFA,all,1,PRES,12 FINISH /OUTPUT,cp,out,, ! 将输出信息送到cp.out文件 /debug,-1,,,1 ! 指定输出单元矩阵 /SOLU SOLVE finish /OUTPUT, TERM ! 将输出信息送到output windows中 ! 这时用编辑器打开cp.out文件,可以看到按单元写出的质量、刚度等矩阵 3. 其原理很简单,即使用ansys的超单元即可解决问题。定义超单元,然后列出超单元的刚度矩阵即可。 面是一个小例题,自可明白。 /prep7 k,1 k,2,3000 l,1,2 et,1,beam3 mp,ex,1,2e5 mp,prxy,1,0.3 mp,dens,1,2e3 r,1,5000,2e7,200 lesize,all,,,10 lmesh,all

第12章 模态分析21

第12章 模态分析 12.1 模态分析概述 模态分析是ANSYS 中分析结构自然频率和模态形状的方法;它假设:①结构刚度矩阵和质量矩阵不发生改变;②除非指定使用阻尼特征求解方法,否则不考虑阻尼效应;③结构中没有随时间变化的载荷。 在无阻尼系统中,结构振动方程如下 []{}[]{}{}0=+u K u M (12-1) 式中,[]M 为质量矩阵;[]K 为刚度矩阵;{}u 为节点加速度向量;{}u 节点位移向量。其中刚度矩阵可以包括预应力效应带来的附加刚度。对线性系统而言,自由振动满足下面方程 {}{}t u i i ω?cos = (12-2) 式中,{}i ?为第i 阶模态形状的特征向量; i ω第i 阶自然振动频率;t 时间。 将(12-2)代入方程(12-1),得到 [][]() {}{}02=+-i i K M ?ω (12-3) 从式(12-3)中得到结构的振动特征方程为 [][]02=+-K M i ω (12-4) 通过式(12-4)可以求出第i 阶自然振动频率i ω,进而代入(12-3)可以求出第i 阶模态形状的特征向量{}i ?。将{}i ?对质量矩阵[]M 进行归一化处理,使用命令MODOPT,,,,,,,OFF ,可以得到 {}[]{}1=i T i M ?? (12-5) 如果{}i ?,向自身做归一化处理,使用命令MODOPT ,,,,,,ON ,那么{}i ?中最大的向量坐标将归一化为1.0。 如果使用缩减模态提取方法,使用MODOPT,REDUC ,第i 阶模态形状的特征向量{}i ?可以通过使用MXPAND 命令进行扩展。

12.2模态分析过程 ANSYS的模态分析是线性分析的一种,对于任何非线性特性,如塑性和接触(间隙)单元,在模态分析中将被忽略。 模态分析过程由4个主要步骤组成,即前处理、加载与求解、扩展模态,以及查看结果和后处理。 12.2.1前处理 建模是指建立分析的有限元数学模型,包括建立几何模型和划分网格,模态分析的建模过程与一般的建模过程并没有实质性的区别,具体建模可以参见第三章。但根据模态分析的特点,需要注意以下几点: ?定义材料特性时,必须考虑质量的问题。如果最终得到的模型中没有任何质量, 那么质量矩阵将为[]0,而无法求解系统的固有频率。 ?模态分析只考虑材料的线性行为。材料可以为线性各向同性、正交各向异性、温 度无关和温度有关等类型,必须定义材料的杨氏模量和质量相关属性。对于可能 定义的非线性特性,ANSYS在求解时都将忽略。 模态分析只考虑网格单元的线性行为,对于非线性的单元类型将会被视为线性单元处理,例如在结构中定义了接触单元,在分析中将计算接触单元初始状态的刚度矩阵,而将此刚度矩阵应用到分析的其他任何时候。对于预应力分析,模态分析将接触单元的刚度矩阵取为静态预应力分析结束时的刚度矩阵。 如果定义特殊的阻尼单元类型(如COMBIN14, COMBIN37等),必须按单元的要求定义需要的实常数。 12.2.2加载与求解 在这个步骤中要定义分析类型和分析选项,施加载荷,指定加载阶段选项,并进行固频率的有限元求解。应在求解前设置模态扩展选项,或在得到初始解后,对模态进行扩展以供查看。1.设置分析类型 首先进入求解器,并使用ANTYPE命令或GUI交互的方式,定义求解类型为模态分析。具体操作方法如下。 命令方式: ANTXPE, 2 GUI方式: 选择Main Menu > Solution > Analysis Type > New Analysis命令,弹出New Analysis对话框,在对话框中选中Modal,单击OK按钮确认。 2.设置分析选项

相关文档