文档库 最新最全的文档下载
当前位置:文档库 › 振动台模型试验的完整数据

振动台模型试验的完整数据

振动台模型试验的完整数据
振动台模型试验的完整数据

国家自然科学基金重点项目资助(No. 50338040, 50025821)

同济大学土木工程防灾国家重点实验室振动台试验室研究报告(A20030609-405)

12层钢筋混凝土标准框架

振动台模型试验的完整数据

Benchmark Test of a 12-story Reinforced Concrete Frame Model on Shaking Table

报告编制:吕西林李培振陈跃庆

同济大学

土木工程防灾国家重点实验室振动台试验室

2004年1月

目录

1 试验概况 (1)

2 试验设计 (1)

2.1试验装置 (1)

2.2模型的相似设计 (1)

2.3模型的设计与制作 (1)

2.4材料性能指标 (4)

2.5测点布置 (4)

2.6加速度输入波 (5)

2.7试验加载制度 (9)

3 试验现象 (9)

4 试验数据文件 (12)

4.1 AutoCAD文件 (12)

4.2输入地震波数据文件 (12)

4.3测点记录数据文件 (12)

4.4传递函数数据文件 (12)

12层钢筋混凝土框架结构

振动台模型试验

1 试验概况

试验编号:S10H

模型比:1/10

模型描述:单跨12层钢筋混凝土框架结构

激励波形:El Centro波、Kobe波、上海人工波、上海基岩波

工况数:62

试验日期:2003.6.16

试验地点:同济大学土木工程防灾国家重点实验室振动台试验室

2 试验设计

2.1 试验装置

地震模拟振动台主要性能参数:

台面尺寸 4.0m×4.0m

最大承载模型重25t

振动方向X、Y、Z三向六自由度

台面最大加速度X向1.2g;Y向0.8g;Z向0.7g

频率范围0.1Hz~50Hz

2.2 模型的相似设计

表1中列出了模型各物理量的相似关系式和相似系数。

2.3 模型的设计与制作

模型比为1/10,梁、柱、板的尺寸由实际高层框架结构的尺寸按相似关系折算。原型和模型概况见表2,模型尺寸和配筋图见图1。

模型材料采用微粒混凝土和镀锌铁丝。微粒混凝土是一种模型混凝土,它以较大粒径的砂砾为粗骨料,以较小粒径的砂砾为细骨料。微粒混凝土的施工方法、振捣方式、养护条件以及材料性能都与普通混凝土十分相似,在动力特性上与原型混凝土有良好的相似关系,而且通过调整配合比,可满足降低弹性模量的要求。

考虑计入隔墙、楼面装修的重量和50%活载,在板上配质量块配重。在标准层上布置

每层19.4 kg配重,在屋面层上布置19.7 kg配重。

表1试验模型的动力相似关系

表2 原型和模型概况

2.4 材料性能指标

在浇筑模型的同时预留了试样,混凝土材性试验结果见表3,钢筋材性试验结果见表4。

表3 混凝土材性试验结果

注:(1)立方体抗压强度试件尺寸为70.7mm×70.7mm×70.7mm;

(2)弹性模量试件尺寸为100 mm×100 mm×300mm;

(3)试样组号0F对应浇筑模型底座的微粒混凝土,不计入弹性模量平均值;

(4)混凝土材性试验日期为2003年6月2日。

表4 钢筋的材性试验结果

2.5 测点布置

试验中采用加速度计、应变传感器量测模型结构的动力响应。加速度计的方向有X、Y、Z三个方向。

试验测点布置见图2。测点传感器接线对应表见表5。

2.6 加速度输入波

试验选用地震波形有El Centro波、Kobe波、上海人工波及上海基岩波,试验中的某些工况同时输入X、Y双向或X、Y、Z三向El Centro波或Kobe波。图3~图6分别为El Centro 波、Kobe波、上海人工波和上海基岩波的加速度时程曲线及傅氏谱。

El Centro波是1940年5月18日美国IMPERIAL山谷地震(M7.1)在El Centro台站记录的加速度时程,它是广泛应用于结构试验及地震反应分析的经典地震记录。其主要强震部分持续时间为26秒左右,记录全部波形长为54秒,原始记录离散加速度时间间隔为0.02秒,N-S分量、E-W分量和U-D分量加速度峰值分别为341.7gal、210.1gal和206.3gal。

表5 S10H测点传感器接线对应表

试验中选用N-S分量作为X向输入。其时程曲线和傅氏谱如图3所示(图中峰值缩比为0.1g)。

Kobe波是1995年1月17日日本阪神地震(M7.2)中,神户海洋气象台在震中附近的加速度时程记录。这次地震是典型的城市直下型地震,记录所在的神户海洋气象台的震中距为0.4km。主要强震部分的持续时间为7秒左右,记录全部波形长约40秒,原始记录离散加速度时间间隔为0.02秒,N-S分量、E-W分量和U-D分量加速度峰值分别为818.02gal、617.29gal和332.24gal。试验中选用N-S分量作为X向输入。其时程曲线和傅氏谱如图4所示(图中峰值缩比为0.1g)。

上海人工波(Shw2)的主要强震部分持续时间为50秒左右,全部波形长为78秒,加速度波形离散时间间隔为0.02秒。其时程曲线和傅氏谱如图5所示(图中峰值缩比为0.1g)。

上海基岩波(Shj)的主要强震部分持续时间为30秒左右,全部波形长为64秒,加速度波形离散时间间隔为0.02秒。其时程曲线和傅氏谱如图6所示(图中峰值缩比为0.1g)。

(a)X方向(N-S分量)

(b)Y方向(E-W分量)

(c)Z方向(U-D分量)

图3 El Centro波时程及其傅氏谱

(a )X 方向(N-S 分量)

(b )Y 方向(E-W 分量)

(c )Z 方向(U-D 分量)

图4 Kobe 波时程及其傅氏谱

图5 上海人工波(Shw2)时程及其傅氏谱

2.7 试验加载制度

试验中,台面输入加速度峰值按小量级分级递增,按相似关系调整加速度峰值和时间间隔。加载制度见表6。每次改变加速度输入大小时都输入小振幅的白噪声激励,观察模型系统动力特性的变化。

3 试验现象

试验时安装在振动台上的模型如图5所示。 试验中,在前7个工况下(相当于原型体系承受七度多遇地震),在S10H 结构上没有发现任何裂缝。在第9工况SH2后(相当于原型体系承受七度地震),在4层平行于X 振动方向的框架梁的梁端首先出现细微的自上而下和自下而上发展的垂直裂缝,缝宽小于0.05mm 。在第16工况后,平行于X 振动方向的4~6层框架梁的梁端均有垂直裂缝,缝宽约0.08mm ,各柱中未观察到裂缝;平行于Y 振动方向的框架梁柱中也未发现裂缝。在第18工况SH3后,平行于X 振动方向的3~6层框架梁的梁端垂直裂缝贯通,最大缝宽在第4层处,约0.15mm 。在第21工况双向EY3后,平行于Y 振动方向的框架中,于第4~6层梁的梁端先出现垂直裂缝,缝宽约0.08mm 。之后,随着输入激励加大,梁端裂缝增大,开裂的梁的

位置向上层、向下层发展。经62个工况后,北侧和南侧的平行于X 振动方向的框架上,1~10层的梁端或柱端均有裂缝,其中2~8层梁端裂缝贯通,3~6层最严重,拉出或压碎,缝宽达4mm ,形成塑性铰;西侧和东侧的平行于Y 振动方向的框架上,1~9层的梁端或柱端均有裂缝,其中3~6层最严重,梁柱节点裂通甚至拉出或压碎,缝宽达3mm ,形成塑性铰。在最上部2~3层基本没有裂缝。试验结束时,模型已成为不稳定的机动结构。试验后S10H 框架结构的裂缝图如图6所示。

图6 上海基岩波(Shj )时程及其傅氏谱

图7 S10H 试验

表6 S10H试验加载制度

注:EL——El Centro波(X单向);EY——El Centro波(X、Y双向);EZ——El Centro波(X、Y、Z三向);

KB——Kobe波(X单向);KY——Kobe波(X、Y双向);KZ——Kobe波(X、Y、Z三向);

SH——上海人工波(X单向);SJ——上海基岩波(X单向);X∶Y∶Z=1∶0.85∶0.5

图8 S10H试验后框架结构裂缝图

4 试验数据文件

4.1 AutoCAD 文件

模型尺寸和配筋图:S10H_Modal.dwg 试验测点布置见图:S10H_Sensor.dwg

4.2 输入地震波数据文件

文件名:El Centro 波:elx.txt ely.txt elz.txt Kobe 波:kbx.txt kby.txt kbz.txt 上海人工波:shw2.txt 上海基岩波:shjibo.txt 时间间隔:0.00392 秒

4.3

4.4

振动台常用公式

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

地震模拟振动台及模型试验研究进展_沈德建

第22卷第6期2006年12月 结 构 工 程 师S t r u c t u r a l E n g i n e e r s V o l .22,N o .6 D e c .2006 地震模拟振动台及模型试验研究进展 沈德建 1,2 吕西林 1 (1.同济大学结构工程与防灾研究所,上海200092;2.河海大学土木工程学院,南京210098) 提 要 在介绍振动台本身发展的基础上,分析了振动台试验研究内容的扩展、振动台模型试验动态相似关系研究进展、振动台试验方法的发展和振动台试验新的测量方法,提出了振动台模型试验中值得关 注的一些问题。 关键词 振动台,模型试验,动态相似关系,试验方法 R e s e a r c hA d v a n c e s o nS i m u l a t i n g E a r t h q u a k e S h a k i n g T a b l e s a n dMo d e l T e s t S H E ND e j i a n 1,2 L UX i l i n 1 (1.R e s e a r c hI n s t i t u t e o f S t r u c t u r a l E n g i n e e r i n g a n d D i s a s t e r R e d u c t i o n ,T o n g j i U n i v e r s i t y ,S h a n g h a i 200092,C h i n a ; 2.I n s t i t u t e o f C i v i l E n g i n e e r i n g ,H o h a i U n i v e r s i t y ,N a n j i n g 210098,C h i n a ) A b s t r a c t T h e d e v e l o p m e n t o f s h a k i n gt a b l e i s i n d u c e df i r s t i nt h i s p a p e r .T h e e x p a n s i o n o f t h e r e s e a r c h s c o p e o f s h a k i n g t a b l e s i s a n a l y z e d .T h e d y n a m i c s i m i l i t u d e r e l a t i o n s h i p f r o md i f f e r e n t a u t h o r s i s c o m p a r e d a n d r e m a r k e d .T h e d e v e l o p m e n t o f t e s t i n g m e t h o d o n s h a k i n g t a b l e s a n d n e w m e t h o d o n a n a l y z i n g t h e r e s u l t i s a l s o p r e s e n t e d .S o m e v a l u a b l e q u e s t i o n s o n s h a k i n g t a b l e t e s t a r e i n d u c e d a n d m a y b e p a i d g r e a t a t t e n t i o nb y r e -s e a r c h e r s .K e y w o r d s s h a k i n g t a b l e ,m o d e l t e s t ,d y n a m i c s i m i l i t u d e r e l a t i o n s h i p ,t e s t i n g m e t h o d 基金项目:国家自然科学基金重点项目(50338040) 1 概 述 结构振动台模型试验是研究结构地震破坏机理和破坏模式、评价结构整体抗震能力和衡量减震、隔震效果的重要手段和方法。然而,由于振动台本身承载能力、试验时间和经费等的限制,许多时候必须做缩尺模型试验,在坝工模型和高层、超高层建筑中更是如此。 一些新型结构形式,由于其超出了设计规范的要求,往往需要通过实验对其抗震性能做合理的评估。超高层建筑和超大跨度建筑,在理论分析还不完善的情况下,试验,特别是振动台模型试验,是分析其抗震能力的一种有效手段。 线弹性的缩尺模型相似关系已得到了较好的解决,但是许多复杂结构的相似关系、非线性动态 相似关系虽然进行了一些研究,但是还未能得到 较好的解决。一些劲性钢筋混凝土结构、钢管混凝土结构和其他一些新型结构的动态相似关系的 研究还不够深入,有些甚至才刚刚起步。 振动台试验较好地体现了模型的抗震性能,可我们更关心的是由模型的试验结果推算的原型结构的抗震性能,但在这方面尚未形成非常一致的结论,还存在一定的误差,因而精度还有待于进一步的提高。本文介绍国内外振动台模型试验的研究进展。 2 研究的最新进展 2.1 振动台本身的发展 作为美国N E E S 计划的一部分,加州大学圣地亚哥分校(U C S D )于2004年安装M T S 公司制

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

SSI体系阻尼特性振动台模型试验研究_张之颖

第43卷第2期2010年2月 土 木 工 程 学 报 C H I N AC I V I LE N G I N E E R I N G J O U R N A L V o l .43F e b . N o .2 2010 基金项目:土木工程防灾国家重点实验室重点基金项目(2006-A -02)作者简介:张之颖,博士,副教授收稿日期:2008-09-11 S S I 体系阻尼特性振动台模型试验研究 张之颖1  赵钟斗2  吕西林3  楼梦麟 3 (1.西安交通大学,陕西西安710049;2.韩国仁荷大学,仁川402751; 3.同济大学土木工程防灾国家重点实验室,上海200092) 摘要:土与结构由于材性上的差异,其相互作用体系通常被认为是非经典阻尼体系。在振动台模型试验的基础上,研究软弱地基基础上的土-结构相互作用体系的阻尼特性问题。在递增的振动台模拟地震作用下,通过对模型体系不同部位测点的传递函数、自振频率、模态阻尼比等实测数据的对比,考察S S I 体系合成模态、合成模态阻尼比的存在性及其动力非线性产生后的变化规律。结果表明,土-结构相互作用体系具有十分明显的经典阻尼特性,在S S I 体系抗震设计方法中可以按经典阻尼体系考虑。 关键词:土-结构相互作用;经典阻尼;振动台试验;合成模态中图分类号:T U 435 T U 447 文献标识码:A 文章编号:1000-131X(2010)02-0100-05 S h a k i n g t a b l e t e s t s o f t h e d a m p i n g b e h a v i o r o f S S I s y s t e m s Z h a n g Z h i y i n g 1  C h o C h o n g d u 2  L ǜX i l i n 3  L o u M e n g l i n 3 (1.X i ′a n J i a o t o n g U n i v e r s i t y ,X i ′a n 710049,C h i n a ;2.I n h a U n i v e r s i t y ,I n c h e o n 402751,K o r e a ; 3.S t a t e K e y L a b o r a t o r y f o r D i s a s t e r R e d u c t i o n i n C i v i l E n g i n e e r i n g ,T o n g j i U n i v e r s i t y ,S h a n g h a i 200092,C h i n a )A b s t r a c t :As y s t e m i n v o l v i n g s o i l -s t r u c t u r ei n t e r a c t i o ni s o f t e nc o n s i d e r e da s an o n -c l a s s i c a l d a m p i n gs y s t e m d u et o d i s t i n c t i v e d i f f e r e n c e s b e t w e e nt h em a t e r i a l p r o p e r t i e s o f s o i l a n ds t r u c t u r e .A ne x p e r i m e n t a l i n v e s t i g a t i o nb a s e do n s h a k i n gt a b l et e s t i sc o n d u c t e dt oe x p l o r et h ea c t u a l d a m p i n gb e h a v i o ro f s o f ts o i l -s t r u c t u r ei n t e r a c t i o n s y s t e m .M e a s u r e m e n t s o f t h e t r a n s f e r f u n c t i o n s ,t h e n a t u r a l f r e q u e n c i e s a n dt h e m o d a l d a m p i n gr a t i o s o f d i f f e r e n t p a r t s o f t h e s y s t e mr e v e a l t h e e x i s t e n c e o f c o m p o s i t e m o d e a n d m o d a l d a m p i n g r a t i o a l o n g w i t h n o n l i n e a r d y n a m i c b e h a v i o r o f t h e s o i l -s t r u c t u r e s y s t e m u n d e r g r a d u a l l yi n c r e a s i n ge a r t h q u a k ea c t i o n .T h ee x p e r i m e n t a l r e s u l t si n d i c a t et h a t t h ec l a s s i c a l d a m p i n g b e h a v i o r i s p r o n o u n c e di ns o i l -s t r u c t u r e i n t e r a c t i o ns y s t e m a n ds e i s m i ca n a l y s i s c a nb e p e r f o r m e db y u s i n g c l a s s i c a l d a m p i n g t h e o r y .K e y w o r d s :s o i l -s t r u c t u r e i n t e r a c t i o n (S S I );c l a s s i c a l d a m p i n g ;s h a k i n g t a b l e t e s t ;c o m p o s i t e m o d e s E -m a i l :z h a n g z h y @m a i l .x j t u .e d u .c n 引 言 多自由度等效黏滞阻尼模型下的动力体系,有经典阻尼体系和非经典阻尼体系之分 [1-2] 。经典阻尼体 系具有一致均匀的阻尼特性,运动方程可在主模态空间解耦,体系具有经典正则模态,存在“振型”概念[3] , 其动力分析可采用传统的“振型分解法”;而非经典阻尼体系,由于体系内部阻尼特性存在较大差异,运动方程在主模态空间无法解耦,体系不具有经典正则模态,没有传统概念上的所谓“振型”,运动方程的求解 将十分困难 [4-5] 。 虽然完全符合经典阻尼特性的实际结构是极少的,一般动力体系都具有不同程度的非经典阻尼特 性,但由于经典阻尼特性能使体系动力分析得到极大 的简化,因此在实用上,在误差允许的条件下,实际工程结构常被近似为经典阻尼体系进行动力分析。 在土木工程中,当结构体系不考虑地基协同作用时,一般被公认可以近似为经典阻尼体系。但当考虑地基-结构相互作用(S o i l -S t r u c t u r eI n t e r a c t i o n ,简称 S S I )时,多数学者认为[6-9] ,由于体系组成材料的不同,各部分材料的耗能特性存在差异,因此,“考虑地基协同作用的体系”不能被近似为经典阻尼特性。现有的一些研究基本也是在此思想认识主导下进行的,而且在这一认识前提下的研究,亦多以公式推导和数值模拟分析为主,对S S I 体系实际阻尼机制的研究甚为欠 DOI :10.15951/j .t m gcxb .2010.02.013

振动加速度计算公式

1、振动方向:垂直(上下)/水平(左右) 2、最大试验负载:(50HZ、1~600HZ)100 kg. (1~5000HZ)50 kg. 3、调频功能(1~600HZ、1~5000HZ客户自定)在频率围任何频率必须在(最大加速度<20g 最大振幅<5mm); 4、扫频功能(1~600HZ、1~5000HZ客户自定):(上限频率/下限频率/时间围)可任意设定真正标准来回扫频; 5、可程式功能(1~600HZ、1~5000HZ客户自定):15段每段可任意设定(频率/时间)可循环. 6、倍频功能(1~600HZ):15段成倍数增加,①.低频到高频②.高频到低频③.低频到高频再到低频/可循环; 7、对数功能(1~600HZ、1~5000HZ客户自定):①.下频到上频②.上频到下频③.下频到上频再到下频--3种模式对数/可循环; 8、振动机功率:2.2 KW. 9、振幅可调围:0~5mm 10、最大加速度:20g (加速度与振幅换算1g=9.8m/s2) 11、振动波形:正弦波. 12、时间控制:任何时间可设(秒为单位) 13、电源电压(V):220±20% 14、最大电流:10 (A) 15、全功能电脑控制(另购):485通讯接口如要连接电脑做控制,储存,记录,打印之功能需另买介面卡程式电脑. 16、精密度:频率可显示到0.01Hz,精密度0.1Hz . 17、显示振幅加速度(另购):如需看出振幅、加速度、最大加速度、准确数字需另购测量仪. 18、最大加速度20g(单位为g). 最大加速度=0.002×f 2(频率HZ)×D(振幅p-pmm) 举例:10HZ最大加 Foxda振动仪HG-V4最小加速度=0.002×102×5=1G Foxda振动仪HG-V4最大加速度=0.002×2002×5=400G 在任何頻率下最加速度不可大于20G 19、最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×1002)=1mm 在任何频率下振幅不可大于5mm 20、加速度与振幅换算1g=9.8m/s2 21、频率越大振幅越小 四.符合标准: GB/2423;IEC68-2-6(FC);JJG189-97;GB/T13309-91.

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

振动试验常用公式

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2D ×10-3………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5)

式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 对数扫频: 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 扫描速率计算公式 R= T Lg f f Lg L H 2/……………………………公式(10)

振动台模型试验

01 建筑结构的整体模型模拟地震振动台试验研究,从模型的设计制作、确定试验方案、进行试验前的准备工作、到最后实施试验和对试验报告数据进行处理,整个过程历时较长、环节较多。显然,预先了解和把握振动台试验的总体过程,做到有目的、有计划、有方法,才能较顺利地完成该项工作。介绍将会按照以下顺序依此进行: 1 模型制作 2 试验方案 3 试验前的准备 4 实施试验 5 试验报告 6 试验备份 02 1 模型制作 振动台试验模型的制作,在获得足够的原型结构资料后,至少需要把握这样几个关键环节: (1)依据试验目的,选用试验材料; (2)熟读图纸,确定相似关系; (3)进行模型刚性底座的设计; (4)根据模型选用材料性能,计算模型相应的构件配筋; (5)绘制模型施工图; (6)进行模型的施工。 对上述各条的设计原则以及注意事项等,分述如下。 1.1 选用模型材料 模型试验首先应明确试验目的,然后根据原型结构特点选择模型的类型以及使用材料。比如,试验是为了验证新型结构设计方法和参数的正确性时,研究范围只局限在结构的弹性阶段,则可采用弹性模型。弹性模型的制作材料不必与原型结构材料完全相似,只需在满足结构刚度分布和质量分布相似的基础上,保证模型材料在试验过程中具有完全的弹性性质,有时用有机玻璃制作的高层或超高层模型就属于这一类。另一方面,如果试验的目的是探讨原型结构在不同水准地震作用下结构的抗震性能时,通常要采用强度模型。强度模型的准确与否取决于模型与原型材料在整个弹塑性性能方面的相似程度,微粒混凝土整体结构模型通常属于这一类。以上分析也显现了模型相似设计的重要性。 在强度模型中,对钢筋混凝土部分的模拟多由微粒混凝土、镀锌铁丝和镀锌丝网制成,其物理特性主要由微粒混凝土来决定,有时也采用细石混凝土直接模拟原型混凝土材料,水泥砂浆模型主要是用来模拟钢筋混凝土板壳等薄壁结构,石膏砂浆制作的模型,它的主要优点是固化快,但力学性能受湿度影响较大;模拟钢结构的材料可采用铜材、白铁皮,有时也直接利用钢材。总之,模型材料的选用要综合就近取材及经费等因素,同时要注意强度、弹性模量的换算等。 1.2 模型相似设计 把握大型模型振动台试验,最关键的是正确的确定模型结构与原型结构之间的相似关系。目前常用的相似关系确定方法有方程分析法和量纲分析法两种,它们之间的区别是显而易见的:当待求问题的函数方程式为已知时,各相似常数之间满足的相似条件可由方程式分析得出;量纲分析法的原理是著名的相似定理:相似物理现象的π数相等;个物理参数、个基本量纲可确定()个nkkn[$#8722]π数。当待考察问题的规律尚未完全掌握、没有明确的函数关系式时,多用到这种方法。高层建筑结构模拟地震振动台试验研究中包含诸多的物理量,各物理量之间无法写出明确的函数关系,故多采用量纲分析法。 量纲分析法从理论上来说,先要确定相似条件(π数),然后由可控相似常数,推导其余的相似常数,完成相似设计。在实际设计中,由于π数的取法有着一定的任意性,而且当参与物理过程的物理量较多时,可组成的数也很多,将线性方程组全部计算出来比较麻烦;另一方面,若要全部满足与这些π数相应的相

大学物理实验讲义实验波尔共振实验54

实验02 波尔共振实验 因受迫振动而导致的共振现象具有相当的重要性和普遍性。在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。共振现象既有破坏作用,也有许多实用价值。许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。 表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。 【实验目的】 1.研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。 2.研究不同阻尼力矩对受迫振动的影响,观察共振现象。 3.学习用频闪法测定运动物体的某些量,例相位差。 【仪器用具】 ZKY-BG波尔共振实验仪 【实验原理】 物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫

力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。 实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。 当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-)其运动方程为 t cos M dt d b k dt d J 022ω+θ-θ-=θ (1) 式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。 令 J k 20=ω,J b 2=β,J m m 0= 则式(1)变为 t cos m dt d 2dt d 2022ω=θω+θβ+θ (2) 当0t cos m =ω时,式(2)即为阻尼振动方程。

大学物理实验讲义实验07 波尔共振实验45854

实验02波尔共振实验 因受迫振动而导致的共振现象具有相当的重要性和普遍性。在声学、光学、电学、原子核物理及各种工程技术领域中,都会遇到各种各样的共振现象。共振现象既有破坏作用,也有许多实用价值。许多仪器和装置的原理也基于各种各样的共振现象,如超声发生器、无线电接收机、交流电的频率计等。在微观科学研究中共振现象也是一种重要的研究手段,例如利用核磁共振和顺磁共振研究物质结构等。 表征受迫振动的性质是受迫振动的振幅频率特性和相位频率特性(简称幅频和相频特性)。本实验中,用波尔共振仪定量测定机械受迫振动的幅频特性和相频特性,并利用频闪方法来测定动态物理量——相位差。 【实验目的】 1. 研究波尔共振仪中弹性摆轮受迫振动的幅频特性和相频特性。 2. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。 3. 学习用频闪法测定运动物体的某些量,例相位差。 【仪器用具】 ZKY-BG 波尔共振实验仪 【实验原理】 物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为强迫力。如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。当强迫力频率与系统的固有频率相同时产生共振,此时速度振幅最大,相位差为90°。 实验采用摆轮在弹性力矩作用下自由摆动,在电磁阻尼力矩作用下作受迫振动来研究受迫振动特性,可直观地显示机械振动中的一些物理现象。 当摆轮受到周期性强迫外力矩t cos M M 0ω=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ -)其运动方程为 t cos M dt d b k dt d J 022ω+θ-θ-=θ(1) 式中,J 为摆轮的转动惯量,θ-k 为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆 频率。 令J k 2 = ω,J b 2=β,J m m 0= 则式(1)变为 t cos m dt d 2dt d 2 02 2ω=θω+θβ+θ(2)

振动计算力学公式

振动台力学公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A= D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

振动台模型试验地完整

国家自然科学基金重点项目资助(No. 50338040, 50025821)同济大学土木工程防灾国家重点实验室振动台试验室研究报告(A20030609-405) 12层钢筋混凝土标准框架 振动台模型试验的完整数据 Benchmark Test of a 12-story Reinforced Concrete Frame Model on Shaking Table 报告编制:吕西林李培振陈跃庆

同济大学 土木工程防灾国家重点实验室振动台试验室 2004年1月

目录 1 试验概况 (1) 2 试验设计 (1) 2.1 试验装置 (1) 2.2 模型的相似设计 (1) 2.3 模型的设计与制作 (1) 2.4 材料性能指标 (4) 2.5 测点布置 (4) 2.6 加速度输入波 (5) 2.7 试验加载制度 (9) 3 试验现象 (9) 4 试验数据文件 (12) 4.1 AutoCAD文件 (12) 4.2 输入地震波数据文件 (12) 4.3 测点记录数据文件 (12) 4.4 传递函数数据文件 (12)

实用标准文案 12层钢筋混凝土框架结构 振动台模型试验 1 试验概况 试验编号:S10H 模型比:1/10 模型描述:单跨12层钢筋混凝土框架结构 激励波形:El Centro波、Kobe波、上海人工波、上海基岩波 工况数:62 试验日期:2003.6.16 试验地点:同济大学土木工程防灾国家重点实验室振动台试验室 2 试验设计 2.1 试验装置 地震模拟振动台主要性能参数: 台面尺寸 4.0m×4.0m 最大承载模型重25t 振动方向X、Y、Z三向六自由度 台面最大加速度X向1.2g;Y向0.8g;Z向0.7g 频率范围0.1Hz~50Hz 2.2 模型的相似设计 表1中列出了模型各物理量的相似关系式和相似系数。 2.3 模型的设计与制作 模型比为1/10,梁、柱、板的尺寸由实际高层框架结构的尺寸按相似关系折算。原型和模型概况见表2,模型尺寸和配筋图见图1。

振动试验常用公式

振动试验常用公式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f 250 2 式中:A 和D 与“”中同义,但A 的单位为g

1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s )

相关文档
相关文档 最新文档