文档库 最新最全的文档下载
当前位置:文档库 › 高中物理变力做功问题精选文档

高中物理变力做功问题精选文档

高中物理变力做功问题精选文档
高中物理变力做功问题精选文档

高中物理变力做功问题

精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

高中物理变力做功问题

摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。本文举例说明了在高中阶段求变力做功的常用方法,比如用动能定理、功率的表达式

Pt W =、功能关系、平均值、s F -图像、微元累积法、转换参考系等来求变力做功。

关键词:功 変力 动能定理 功率 功能关系 平均值 图像 微元累积法 转换参考系

对于功的定义式W =αcos Fs ,其中的F 是恒力,适用于求恒力做功,其中的s 是力F 的作用点发生的位移,α是力F 与位移s 的夹角。在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。求变力做功的方法很多,比如用动能定理、功率的表达式Pt W =、功能关系、平均值、s F -图像、微元累积法、转换参考系等来求变力做功。

一、运用功的公式求变力做功

求某个过程中的変力做功,可以通过等效法把求该変力做功转换成求与该変力做功相同的恒力的功,此时可用功定义式W =αcos Fs 求恒力的功,从而可知该変力的功。等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。

例1:人在A 点拉着绳通过一定滑轮吊起质量m=50Kg 的物体,如图1所示,开始绳与水平方向夹角为

60,当人匀速提起重物由A 点沿水平方向运动m s

2=而到达B 点,此

时绳与水平方向成 30角,求人对绳的拉力做了多少功?

【解析】人对绳的拉力大小虽然始终等于物体的重力,但方向却时刻在变,而已知的位移s 方向一直水平,所以无法利用W =αcos Fs 直接求拉力的功.若转换一下研究对象则不难发现,人对绳的拉力的功与绳对物体的拉力的功是相同的,而绳对物体的拉力则是恒力,可利用W =αcos Fs 求了!

设滑轮距地面的高度为h ,则:(

)s h =-

60

cot 30cot

人由A 走到B 的过程中,重物上升的高度h ?等于滑轮右侧绳子增加的长度,即:

60

sin 30sin h

h h -=

?,人对绳子做的功为:()(

)

J J mgs h mg W 73213100013≈-=-=??=

二、运用动能定理求变力做功

动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。对于一个物体在某个过程中的初动能和末动能可求,该过程其它力做功可求,那么该过程中変力做功可求。运用动能定理求变力做功关键是了解哪些外力做功以及确定物体运动的初动能和末动能。

例2:如图2所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平

拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( )

A. θcos FL

B. θsin FL

C. ()θcos 1-FL

D. ()θcos 1-mgL

【解析】很多同学会错选B ,原因是没有分析运动过程,对W=FLcosθ来求功的适用范围搞错,恒力做功可以直接用这种方法求,但变力做功不能直接用此法正确的分析,小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功,小球上升过程中只有重力和拉力做功,而整个过程的动能改变为零,可用动能定理求解:

所以 ()θcos 1-=-=mgL W W G F ,故D 正确。

三、运用Pt W =求变力做功

涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P 恒定,随着机车或物体速度的改变,牵引力也改变,要求该过程中牵引力的功,可以通过Pt W =求変力做功。

例3:质量为5000Kg 的汽车,在平直公路上以60kW 的恒定功率从静止开始启动,速度达到24m/s 的最大

速度后,立即关闭发动机,汽车从启动到最后停下通过的总位移为1200m.运动过程中汽车所受的阻力不变.求汽车运动的时间.

【解析】牵引力是変力,该过程中保持功率P 恒定,牵引力的功可以通过Pt W =来求。汽车加速运动的时间为1t ,由动能定理得:0F -Pt f 1=?s

汽车达到最大速度时,牵引力和阻力大小相等,则m f m v F Fv P ?== 即m

f v P F =

可求得汽车加速运动的时间为s s v s P

s F t m f 5024

12001===

?=

关闭油门后,汽车在阻力作用下做匀减速直线运动至停止,由动量定理得:

可求得汽车匀减速运动的时间为s s P mv F mv t m f m 481000

602450002

2

2=??===

则汽车运动的时间为:t =t 1+t 2=50s +48s =98s

四、运用功能关系求变力做功

做功是能量转化的原因,做功是能量转化的量度,我们可以根据能量转化的情况来判断做功的情况,则给求変力做功提供了一条简便的途径。运用功能关系求変力做功,关键是分清研究过程中有多少种形式的能转化,即有什么能增加或减少,有多少个力做了功,列出这些量之间的关系。

例4:一个圆柱形的竖直井里存有一定量的水,井的侧面和底部是密闭的。在井中固定地插着一根两端开口的薄壁圆管,管和井共轴,管下端未触及井底。在圆管内有一不漏气的活塞,它可沿圆管上下滑动。如图3所示,现用卷扬机通过绳子对活塞施加一个向上的力F ,使活塞缓慢向上移动。已知圆管半径r=,井的半径R=2r ,水的密度ρ=×103kg/m 3 ,大气压P 0=×105Pa ,求活塞上升H=的过程中拉力所做的功(井和管

在水面上及水面下的部分都足够长,不计活塞质量,不计摩擦,重力加速度g=10m/s 2)。

【解析】大气压P 0能够支撑的水柱高度为 m g

p h 100

0==ρ

从开始提升到活塞至管内外水面高度差为10m 的过程中,活塞始终与水面接触,设活塞上升1h ,管外液面下降2h ,则有:210h h h +=

因液体体积不变,有:31

2

2212=-=r R r h h πππ 得 H m h h <==5.74

3

01

此过程拉力为変力,根据功能关系,对于水和活塞这个整体,其机械能的增量等于除重力以外其它力做功。根据题意,则拉力做功等于水的重力势能的增量,即:

活塞从1h 上升到H 的过程中,液面不变,拉力F 是恒力,02P r F π=,则做功为:

所求拉力所做的总功为:J W W W 4211065.1?=+=

五、运用F-S 图像中的面积求变力做功

某些求変力做功的问题,如果能够画出変力F 与位移S 的图像,则F-S 图像中与S 轴所围的面积表示该过程中変力F 做的功。运用F-S 图像中的面积求变力做功的关键是先表示出変力F 与位移S 的函数关系,再在画出F-S 图像。

例5:用铁锤将一铁钉击入木块,设阻力与钉子进入木板的深度成正比,每次击钉时锤子对钉子做的功相同,已知第一次击后钉子进入木板1cm ,则第二次击钉子进入木板的深度为多少?

1

2

kx kx

【解析】铁锤每次做功都是用来克服铁钉阻力做的功,但摩擦阻力不是恒力,其大小与深度成正比,F=kx ,以F 为纵坐标,F 方向上的位移x 为横坐标,作出F -x 图象,如图4,函数线与x 轴所夹阴影部分面积的值等于F 对铁钉做的功.由于两次做功相等,故有:S 1=S 2(面积) 即:

21kx 12=2

1

k(x 2+x 1)(x 2-x 1)

得 cm x 22=

所以第二次击钉子进入木板的深度为:

六、运用平均值求变力做功

求変力做功可通过s F W ?=求,但只有在変力F 与位移S 成正比例、或一次函数关系时,即成线性关系时,2

2

1F F F +=

才成立。用平均值求变力做功的关键是先判断変力F 与位移S 是否成线性关系,然后求出该过程初状态的力1F 和末状态的力2F 。

例6:如图5所示,在盛有水的圆柱形容器内竖直地浮着一块立方体木块,木块的边长为h ,其密度为水的密度ρ的一半,横截面积也为容器截面积的一半,水面高为2h ,现用力缓慢地把木块压到容器底上,设水不会溢出,求压力所做的功。

【解析】木块下降同时水面上升,因缓慢地把木块压到容器底上,所以压力总等于增加的浮力,压力是変力,当木块完全浸没在水中的下降过程压力是恒力。本题的解法很多,功能关系、F-S 图像法、平均值法等均可求変力做功,现用平均值法求。

木块从开始到完全浸没在水中,设木块下降1x ,水面上升2x 根据水的体积不变,则:

2212x h x h = 得21x x = 所以当木块下降

4

h

时,木块恰好完全浸没在水中,

所以42

2118

142

204

24gh h h

gh h F F h F W ρρ=+=+==

木块恰好完全浸没在水中经h h h h 45432=-=?到容器底部,压力为恒力2

2h gh F ρ=

所以4228

5

452gh h h gh h F W ρρ=?=?=

故压力所做的功为:4214

3

gh W W W ρ=

+=

七、运用微元法求变力做功

求変力做功还可以用微元累积法,把整个过程分成极短的很多段,在极短的每一段里,力可以看成是恒力,则可用功的公式求每一段元功,再求每一小段上做的元功的代数和。由此可知,求摩擦力和阻力做功,我们可以用力乘以路程来计算。用微元累积法的关键是如何选择恰当的微元,如何对微元作恰当的物理和数学处理,微元累积法对数学知识的要求比较高。

例7:如图6所示,质量为m 的小车以恒定速率v 沿半径为R 的竖直圆轨道运动,已知小车与竖直圆轨道间的摩擦因数为μ,试求小车从轨道最低点运动到最高点的过程中,克服摩擦力做的功。

【解析】小车沿竖直圆轨道从最低点匀速率运动到最高点的过程中,由于轨道支持力是変力,故而摩擦力为一変力,本题可以用微元法来求。

如图7,将小车运动的半个圆周均匀细分成n (∞→n )等分,在每段长

n

R

π的圆弧上运动

时,可认为轨道对小车的支持力i N 不变、因而小车所受的摩擦力i f 不变,摩擦力的功可以用s F W ?=计算。

当小车运动到如图所示的A 处圆弧时,有

则 )sin (2

θμmg R

v m f iA +=

当小车运动到如图所示的与A 关于x 轴对称的B 处圆弧

时,有

则 )sin (2

θμmg R

v m f iB

-=

由此,小车关于水平直径对称的轨道两元段上摩擦力元功之和为:

于是可知,小车沿半圆周从轨道最低点运动到最高点的过程中,摩擦力做的总功为:

八、转换参考系求变力做功

在有些物理问题中,要用功能原理,其中求做功时要涉及到变力做功,但若通过转换参照系,可化求变力做功为恒力做功,而大大简化解题过程。

例8:宇宙中某一惯性参照系中,有两个质点A 和B ,质量分别为m 和M ,相距L ,开始时A 静

止,B 具有A 、B 连线延伸方向的初速度v ,由于受外力F 的作用,B 做匀速运动。 (1)

(2) 试求A 、B 间距离最大时的F 值; (3)

(4) 试求从开始到A 、B 最远时力F 做的功;

【解析】此题中A 在万有引力作用下做变加速运动,要用功能原理来解。若用微元法求变力做功,

会因数学知识的限制而不易找出F 作用的位移和A 、B 间的距离的对应关系而很难求解。而本题可通过变换参照系,在同样满足机械能守恒的条件下,避开求变力做功,从而简化了解题过程。

⑴将原来的惯性参照系记为S ,相对B 静止的参照系记为S’,在S’系中,B 没有位移,所以力F 做功为零,计算得以简化。在S’系中,A 开始以v 背离B 运动,最后在万有引力的作用下减速到零,此时A 、B 间的距离最大,记为L m 。在S’系中,据机械能守恒,有

所以 2

22Lv

GM LGM

L m -=

此时A 、B 的万有引力为 2

2

24)2(GML

Lv GM m F -=

⑵回到S 系中,当A 、B 的间距达到Lm 时,A 、B 都以v 速度,根据功能原理,F 力所做的功

由⑴中知 22

1)11(

mv L L GMm m =- 因此 2

mv W =

五种方法搞定变力做功问题

五种方法搞定变力做功 一.微元法思想。 当物体在变力作用下做曲线运动时,我们无法直接使用θcos s F w ?=来求解,但是可以 将曲线分成无限个微小段,每一小段可认为恒力做功,总功即为各个小段做功的代数和。 例1. 用水平拉力,拉着滑块沿半径为R 的水平圆轨道运动一周,如图1所示,已知物块的 质量为m ,物块与轨道间的动摩擦因数为μ。求此过程中摩擦力所做的功。 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大 小不变,方向时刻变化,是变力,不能直接用求解; 但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直 线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做 的功,然后再累加起来,便可求得结果 图1 把圆轨道分成无穷多个微元段,摩擦力在每一 段上可认为是恒力,则每一段上摩擦力做的功分别 为 , ,…,,摩擦力在一周内所做的功 二、平均值法 当力的大小随位移成线性关系时,可先求出力对位移的平均值2 21F F F +=,再由αc o s L F W =计算变力做功。如:弹簧的弹力做功问题。 例2静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运 动(如图2甲所示),拉力F 随物块所在位置坐标x 的变化关系(如图乙所示),图线为半圆.则 小物块运动到x 0处时的动能为 ( ) A .0 B .02 1x F m C .04x F m π D .204 x π 【精析】由于W =Fx ,所以F-x 图象与x 轴所夹的面积表示功,由图象知半圆形的面积为 04m F x π.C 答案正确. 图2

三.功能关系法。 功能关系求变力做功是非常方便的,但是必须知道这个过程中能量的转化关系。 例3 如图所示,用竖直向下的恒力F 通过跨过光滑定滑轮的细线拉动光滑水平面上的物体, 物体沿水平面移动过程中经过A 、B 、C 三点,设AB =BC ,物体经 过A 、B 、C 三点时的动能分别为E KA ,E KB ,E KC ,则它们间的关系 一定是: A .E K B -E KA =E K C -E KB B .E KB -E KA E KC -E KB D . E KC <2E KB 【精析】此题中物块受到的拉力是大小恒定,但与竖直方向的夹角逐渐增大,属于变力,求拉力做功可将此变力做功转化为恒力做功问题.设滑块在A 、B 、C 三点时到滑轮的距离分别为L 1、L 2、L 3,则W 1=F (L 1-L 2),W 2=F (L 2-L 3),要比较W 1和W 2的大小,只需比较(L 1-L 2)和(L 2-L 3)的大小.由于从L 1到L 3的过程中,绳与竖直方向的夹角逐渐变大,所以可以把夹角推到两个极端情况.L 1与杆的夹角很小,推到接近于0°时,则L 1-L 2≈AB ,L 3与杆的夹角较大,推到接近90°时,则L 2-L 3≈0,由此可知,L 1-L 2> L 2-L 3,故W 1> W 2.再由动能定理可判断C 、D 正确.答案CD. 四.应用公式Pt W =求解。 当机车以恒定功率工作时,在时间内,牵引力做的功Pt W =。 例 4.质量为m 的机车,以恒定功率从静止开始启动,所受阻力是车重的k 倍,机车经过时间t 速度达到最大值m v 。求机车在这段时间内牵引力所做的功。 解析:机车以恒定功率启动,从静止开始到最大速度的过程中,所受阻力不变,但牵引力是变力,因此,机车的牵引力做功不能直接用公式αcos FS W =来求解,但可用公式Pt W =来计算。 根据题意,机车所受阻力kmg f =。且当机车速度达到最大值时,f F =牵。 所以机车的功率为:max max max kmgv fv v F P ===牵。 根据Pt W =,机车在这段时间内牵引力所做的功为: t kmgv Pt W m ==牵。 五.S F -图象法。 在S F -图像中,图线与坐标轴围成的面积在数值上表示力F 在相应的位移上对物体做的功。这一点对变力做功问题也同样适用。 例5.如图4所示,一个劲度系数为的轻弹簧,一端固定在墙壁上,在另一端沿弹簧的轴 图4

人教版高中物理相互作用好题难题教学内容

2017年04月30日高中物理相互作用组卷 一.选择题(共14小题) 1.把一个薄板状物体悬挂起来,静止时如图所示,则对于此薄板状物体所受重力的理解,下列说法正确的是() A.重力就是地球对物体的引力 B.重力大小和物体运动状态有关 C.重力的方向总是指向地心的 D.薄板的重心一定在直线AB上 2.下列关于常见力的说法中正确的是() A.弹力、重力、支持力、摩擦力都是按照性质命名的 B.有规则形状的物体,其重心就在物体的几何中心 C.两接触面间有摩擦力存在,则一定有弹力存在 D.物体之间接触就一定产生弹力 3.下列说法中,正确的是() A.有受力物体,就必定有施力物体 B.力只能产生在相互接触的物体之间 C.施力物体施力在先,受力物体受力在后 D.力是一个物体就能产生的,而并不需要其他物体的存在 4.如图所示,一被吊着的空心的均匀球壳内装满了细沙,底部有一阀门,打开阀门让细沙慢慢流出的过程中,球壳与球壳内剩余细沙组成的系统的重心将会() A.一直下降B.一直不变C.先下降后上升D.先上升后下降 5.弹簧秤的秤钩上挂一个重2N的物体,当弹簧秤与所挂物体一起匀加速竖直上升时,弹簧秤示数可能出现下列哪个图所示情况?()

A.B.C.D. 6.如图所示,一轻弹簧竖直固定在地面上,一物体从弹簧上方某高处自由下落,并落在弹簧上,弹簧在压缩过程中始终遵守胡克定律.从球接触弹簧开始,直到把弹簧压缩到最短为止,小球的加速度大小() A.一直变大B.一直变小C.先变大后变小D.先变小后变大 7.如图所示,某同学在擦黑板.已知黑板擦对黑板的压力为8N,与黑板间的动摩擦因数为0.4,则黑板擦与黑板间的滑动摩擦力为() A.2N B.3.2N C.20N D.32N 8.已知一些材料间动摩擦因数如下: 材料钢﹣钢木﹣木木﹣金属木﹣冰 动摩擦因数0.250.300.200.03 质量为1kg的物块放置于水平面上,现用弹簧秤沿水平方向匀速拉动此物块时, 读得弹簧秤的示数为3N,则关于两接触面的材料可能是(取g=10m/s2)()A.钢﹣钢B.木﹣木C.木﹣金属D.木﹣冰 9.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m2=2kg,A、B间动摩擦因数μ=0.2,如图.现用一水平向右的拉力F作用于物体A上,g=10m/s2,则下列说法中正确的是() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止

高中物理专题练习《摩擦力做功》

一物体以某一初速度沿糙粗斜面向上滑,达到最高点后又滑回出发点,则下列说法中正确的是( ) A .上滑过程中重力的冲量值比下滑过程中重力的冲量值小 B .上滑过程中重力做功值比下滑过程中重力做功值小 C .上滑过程中摩擦力的冲量值比下滑过程中摩擦力的冲量值大 D .上滑过程中摩擦力做功值比下滑过程中摩擦力做功值大 答案:A 来源: 题型:单选题,难度:理解 如图所示,一物块(可视为质点)以 7 m / s 的初速度从半 圆面的A 点滑下,运动到B 点时的速度大小仍为 7 m / s 。若该物块以 6 m / s 的初速度仍由A 点滑下,则运动到B 点时的速度大小 为( ) A.大于6m/s B.等于6m/s C.小于6m/s D.无法确定 答案:A 来源: 题型:单选题,难度:理解 如图,一物块以s m /1的初速度沿曲面由A 处下滑,到达较低的B 点时速度恰好也是s m /1,如果此物块以s m /2的初速度仍由A 处下滑,则它达到B 点时的速度 ( ) A 、等于s m /2 B 、小于s m /2 C 、大于s m /2 D 、以上三种情况都有可能

答案:B 来源: 题型:单选题,难度:识记 如图所示在北戴河旅游景点之一的南戴河滑沙场有两个坡度不同的滑道AB 和AB / (都可看作斜面)。甲、乙两名旅游者分乘两个滑沙撬从插有红旗的A 点由静止出发同时沿AB 和AB / 滑下,最后都停在水平沙面BC 上.设滑沙撬 和沙面间的动摩擦因数处处相同,滑沙者保持一定 姿势坐在滑沙撬上不动。下列说法中正确的是 A.甲在B 点的速率等于乙在B / 点的速率 B.甲的滑行总路程比乙短 C.甲全部滑行过程的水平位移一定比乙全部滑行过程的水平位移大 D.甲、乙停止滑行后回头看A 处的红旗时视线的仰角一定相同 答案:D 来源:2004年高考江苏 题型:单选题,难度:应用 如图6甲所示,一质量为m 的滑块以初速度v 0自固定于地面的斜面底端A 开始冲上斜面,到达某一高度后返回A ,斜面与滑块之间有摩擦,图6乙中分别表示它在斜面上运动的速度V 、加速度a 、势能E P 和机械能E 随时间的变化图线,可能正确的是 A B B / C

新教材高中物理 科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 新人教版必修第二册

科学思维系列(一)——求解变力做功的几种方法及摩擦力做功的情况 功的计算,在中学物理中占有十分重要的地位.功的计算公式W =Fl cos α只适用于恒力做功的情况,对于变力做功,则没有一个固定公式可用,但可以通过多种方法来求变力做功,如等效法、微元法、图象法等. 一、求解变力做功的几种方法 法1.用公式W =F - l cos α求变力做功 如果物体受到的力是均匀变化的,则可以利用物体受到的平均力的大小F -=F 1+F 2 2来计 算变力做功,其中F 1为物体初状态时受到的力,F 2为物体末状态时受到的力. 【典例1】 用铁锤把小铁钉钉入木板,设木板对铁钉的阻力与铁钉进入木板的深度成正比.已知铁锤第一次使铁钉进入木板的深度为d ,接着敲第二锤,如果铁锤第二次敲铁钉时对铁钉做的功与第一次相同,那么,第二次使铁钉进入木板的深度为( ) A .(3-1)d B .(2-1)d C. 5-1d 2 D. 22 d 【解析】 根据题意可得W =F -1d =kd 2d ,W =F - 2d ′=kd +k d +d ′2 d ′,联立解得d ′ =(2-1)d (d ′=-(2+1)d 不符合实际,舍去),故选项B 正确. 【答案】 B 法2.用图象法求变力做功 在F - x 图象中,图线与x 轴所围的“面积”的代数和表示F 做的功.“面积”有正负,在x 轴上方的“面积”为正,在x 轴下方的“面积”为负.如图甲、乙所示,这与运动学中由v - t 图象求位移的原理相同. 【典例2】 用质量为5 kg 的均匀铁索,

从10 m 深的井中吊起一质量为20 kg 的物体,此过程中人的拉力随物体上升的高度变化如图所示,在这个过程中人至少要做多少功?(g 取10 m/s 2 ) 【解析】 方法一 提升物体过程中拉力对位移的平均值: F -=250+2002 N =225 N 故该过程中拉力做功:W =F - h =2 250 J. 方法二 由F - h 图线与位移轴所围面积的物理意义,得拉力做功:W =250+200 2×10 J =2 250 J. 【答案】 2 250 J 法3.用微元法求变力做功 圆周运动中,若质点所受力F 的方向始终与速度的方向相同,要求F 做的功,可将圆周分成许多极短的小圆弧,每段小圆弧都可以看成一段极短的直线,力F 对质点做的功等于它在每一小段上做功的代数和,这样变力(方向时刻变化)做功的问题就转化为多段上的恒力做功的问题了. 【典例3】 如图所示,质量为m 的质点在力F 的作用下,沿水平面上半径为R 的光滑圆槽运动一周.若F 的大小不变,方向始终与圆槽相切(与速度的方向相同),求力F 对质点做的功. 【解析】 质点在运动的过程中,F 的方向始终与速度的方向相同,若将圆周分成许多极短的小圆弧Δl 1、Δl 2、Δl 3、…、Δl n ,则每段小圆弧都可以看成一段极短的直线,所以质点运动一周,力F 对质点做的功等于它在每一小段上做功的代数和,即W =W 1+W 2+…+W n =F (Δl 1+Δl 2+…+Δl n )=2πRF . 【答案】 2πRF . 变式训练1 如图所示,放在水平地面上的木块与一劲度系数k =200 N/m 的轻质弹簧相连,现用手水平拉弹簧,拉力的作用点移动x 1=0.2 m ,木块开始运动,继续拉弹簧,木块

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读 一:专题训练题 1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板 将物体托住,并使弹簧处于自然长度。如图7所示。现让木板由静止开始以加速度a(a <g = 匀加速向下移动。求经过多长时间木板开始与物体分离。 分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。据牛顿第二定律有: mg-kx-N=ma 得N=mg-kx-ma 当N=0时,物体与平板分离,所以此时k a g m x )(-= 因为221at x =,所以ka a g m t )(2-=。 2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静 止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。现在给P 施加一个竖直向上的力F , 使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒 力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。 .分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离 开秤盘。此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于 原长。在0_____0.2s 这段时间内P 向上运动的距离: x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m t x a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有 F min =ma=240N. 当P 与盘分离时拉力F 最大,F max =m(a+g)=360N. 3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的 物体A 、B 。物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面 物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个 过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求: (1)此过程中所加外力F 的最大值和最小值。 (2)此过程中外力F 所做的功。 解:(1)A 原来静止时:kx 1=mg ① 当物体A 开始做匀加速运动时,拉力F 最小,设为F 1,对物体A 有: F 1+kx 1-mg =ma ② 当物体B 刚要离开地面时,拉力F 最大,设为F 2,对物体A 有: F 2-kx 2-mg =ma ③ 对物体B 有:kx 2=mg ④ 对物体A 有:x 1+x 2=22 1at ⑤ 由①、④两式解得 a =3.75m/s 2 ,分别由②、③得F 1=45N ,F 2=285N F 图8 A B F 图 9 图7

高中物理求电场力做功的四种方法学法指导

高中物理求电场力做功的四种方法 徐高本 一、利用功的定义式W =FS 来求。 例1. 两带电小球,电荷量分别为+q 和q -,固定在一长度为l 的绝缘细杆的两端,置于电场强度为E 的匀强电场中,杆与场强方向平行,其位置如图1所示。若此杆绕过O 点垂直于杆的轴线顺时针转过90°,则在此转动过程中,电场力做的功为( ) A. 零 B. qE l C. 2qE l D. πqE l +q -q O 图1 解析:+q 受到的电场力水平向右,q -受到的电场力水平向左。设+q 离O 点距离为x ,则q -离O 点的距离为x l -。在杆顺时针转过90°的过程中,电场力对两球做的功分别为 )(21x l qE W qEx W -== 所以总功为qEl x l qE qEx W W W =-+=+=)(21 故选项B 正确。 二、利用电场力做功等于电荷电势能增量的负值即ε?-=W 来求。 例2. 一平行板电容器的电容为C ,两板间的距离为d ,上板带正电,电荷量为Q ,下板带负电,电荷量也为Q ,它们产生的电场在无穷远处的电势为零。两个带异号电荷的小球用一绝缘刚性杆相连,小球的电荷量分别为+q 和q -,杆长为)(d l l <。现将它们从无穷远处移到电容器的两板之间,处于图2所示的静止状态(杆与板面垂直)。在此过程中,电场力对两个小球所做总功的大小等于多少?(设两球移动过程中极板上电荷分布情况不变)。 图2 +Q -Q -q +q 解析:当小球从无穷远处移至图示位置时,设+q 处的电势为q -,1?处的电势为2?,则具有的电势能分别为 00211<-=>=?ε?εq q 对+q :电势能增加了1?q ,所以电场力做负功11?q W -=;对q -:电势能减少了2?q ,所以电场力做正功22?q W =。电场力做的总功 )(2121??--=+=q W W W 因两板间的场强 ) (Cd Q d U E ==

【电路】高中物理电路经典例题

?在许多精密的仪器中,如果需要较精确地调节某一电阻两端的电压,常常采用如图所示的电路.通过两只滑动变阻器R1和R2对一阻值为500 Ω 左右的电阻R0两端电压进行粗调和微调.已知两个滑动变阻器的最大阻值分别为200 Ω和10 Ω.关于滑动变阻器R1、R2的连接关系和各自所起的作用,下列说法正确的是( B A.取R1=200 Ω,R2=10 Ω,调节R1起粗调作用 B.取R1=10 Ω,R2=200 Ω,调节R2起微调作用 C.取R1=200 Ω,R2=10 Ω,调节R2起粗调作用 D.取R1=10 Ω,R2=200 Ω,调节R1起微调作用 滑动变阻器的分压接法实际上是变阻器的一部分与另一部分在跟接在分压电路中的电阻并联之后的分压,如果并联的电阻较大,则并联后的总电阻接近变阻器“另一部分”的电阻值,基本上可以看成变阻器上两部分电阻的分压.由此可以确定R1应该是阻值较小的电阻,R2是阻值较大的电阻,且与R1的一部分并联后对改变电阻的影响较小,故起微调作用,因此选项B是正确的. 如图所示,把两相同的电灯分别拉成甲、乙两种电路,甲电路所加的电压为8V, 乙电路所加的电压为14V。调节变阻器R 1和R 2 使两灯都正常发光,此时变阻器 消耗的电功率分别为P 甲和P 乙 ,下列关系中正确的是( a ) A.P 甲> P 乙 B.P 甲<P 乙 C.P 甲 = P 乙 D.无法确 定 ?一盏电灯直接接在电压恒定的电源上,其功率是100 W.若将这盏灯先接一段很长的导线后,再接在同一电源上,此时导线上损失的电功率是9 W,那么此电灯的实际功率将( ) A.等于91 W B.小于91 W C.大于91 W D.条件不足,无法确定

高二物理电场力做功和电势能

电场力做功和电势能、电势和电势差 审稿:李井军责编:郭金娟 目标认知 学习目标 1.类比重力场理解电场力的功、电势能的变化、电势能的确定方法、电势的定义以及电势差的意义;理解电势对静电场能的性质的描写和电势的叠加原理。 2.明确场强和电势的区别与联系以及对应的电场线和等势面之间的区别和联系。 学习重点 1.用电势及等势面描写认识静电场分布。 2.熟练地进行电场力、电场力功的计算。 学习难点 电势这一概念建立过程的逻辑关系以及正、负两种电荷所导致的具体问题的复杂性。 知识要点梳理 知识点一:电势与等势面 要点诠释: 1.电场力的功与电势能 (1)电场力做功的特点 在电场中将电荷q从A点移动到B点,电场力做功与路径无关,只与A、B两点的位置有关。 (2)静电场中的功能关系 静电力对电荷做了功,电势能就发生变化,静电力对电荷做了多少功,就有多少电势能转化为其他形式的能,电荷克服静电力做了多少功,就有多少其他形式的能转化为电势能,也就是说,静电力做的功是电势能转化为其他形式的能的量度,静电力做的功等于电势能的减少量,即W AB=E pA-E pB。 即静电力做正功,电荷电势能一定减少,静电力做负功,电荷电势能一定增加。 (3)电势能的特点和大小的确定 ①零势点及选取 和计算重力势能一样,电势能的计算必须取参考点,也就是说,电势能的数值是相对于参考位置来说的。所谓参考位置,就是电势能为零的位置,参考位置的选取是人为的,通常取无限远处或大地为参考点。 ②电势能的计算 设电荷的电场中某点A的电势能为Ep A,移到参考点O电场力做功为W AO,即W AO=E pA-E pO,规定O为参考点

变力做功的计算

变力做功的计算 Prepared on 22 November 2020

变力做功的计算 公式适用于恒力功的计算,对于变力做功的计算,一般有以下几种方法。 一、微元法 对于变力做功,不能直接用进行计算,但是我们可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。这种处理问题的方法称为微元法,这种方法具有普遍的适用性。但在高中阶段主要用于解决大小不变、方向总与运动方向相同或相反的变力的做功问题。 例1. 用水平拉力,拉着滑块沿半径为R的水平圆轨道运动一周,如图1所示,已知物块的质量为m,物块与轨道间的动摩擦因数为。求此过程中摩擦力所做的功。 图1 思路点拨:由题可知,物块受的摩擦力在整个运动过程中大小不变,方向时刻变化,是变力,不能直接用求解;但是我们可以把圆周分成无数小微元段,如图2所示,每一小段可近似成直线,从而摩擦力在每一小段上的方向可认为不变,求出每一小段上摩擦力做的功,然后再累加起来,便可求得结果。 图2

正确解答:把圆轨道分成无穷多个微元段,摩擦力在每一段上可认为是恒力,则每一段上摩擦力做的功分别为, ,…,,摩擦力在一周内所做的功 。 误点警示:对于此题,若不加分析死套功的公式,误认为位移s=0,得到W=0,这是错误的。必须注意本题中的F是变力。 小结点评:对于变力做功,一般不能用功的公式直接进行计算,但有时可以根据变力的特点变通使用功的公式。如力的大小不变而方向总与运动方向相同或相反时,可用计算该力的功,但式子中的s不是物体运动的位移,而是物体运动的路程。 [发散演习] 如图3所示,某个力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向任何时刻与作用点处的切线方向保持一致。则转动半圆,这个力F做功多少 图3 答案:。 二、图象法

高中物理中的变力做功

高中物理中的变力做功 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FLcosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用。在新课标中,更体现学生在知识与技能、过程与方法、情感态度与价值观三方面的全面发展。下面对变力做功问题进行归纳总结如下: 1、等效替代法 [要点]:用恒力替代变力 例1:人在A点拉着绳通过一定滑轮吊起质量m=50 kg的物体,如图,开始绳与水平方向夹角为60°,当人匀速提起重物由A点沿水平方向运动L=2 m到B 点,此时绳与水平方向成30°角,求人对绳的拉力做了多少功?(g取10 m/s2) 2、微元法 [要点]:当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2:某力F=10N作用于半径R=1m的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为: 例4:用铁锤将一铁钉钉入木块,设木块对铁钉的阻力与铁钉进入木板内的深度成正比.在铁锤击第一次后,把铁钉击入木块内1cm.则击打第二次后,能击入多少深度?(设铁锤每次做功相等) [解析] 设f=kx,在f—x图像中,图像与横轴围成的面积表示f所做的功。 6、用机械能守恒定律 [要点]:如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。如果求弹力这个变力做的功,可用机械能守恒定律来求解。 例6:如图所示,质量m=2kg的物体,从光滑斜面的顶端A点以V0=5m/s 的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5m,求弹簧的弹力对物体所做的功。(g取10 m/s2) 8.功率法 [要点] 用W=Pt,求恒定功率下变力的功.(如汽车以恒定的率启动时牵引力

求变力做功的几种方法

求变力做功的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

求变力做功的几种方法 功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下: 一、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。 例1、如图1,定滑轮至滑块的高度为h, 已知细绳的拉力为F牛(恒定),滑块沿水平面 由A点前进s米至B点,滑块在初、末位置时 细绳与水平方向夹角分别为α和β。求滑块由A 点运动到B点过程中,绳的拉力对滑块所做的 功。 分析:设绳对物体的拉力为T,显然人对绳 的拉力F等于T。T在对物体做功的过程中大小 虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向 都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为: 二、微元法 当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。 例2 、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为: A 0焦耳 B 20π焦耳 C 10焦耳 D 20焦耳 分析:把圆周分成无限个小元段,每个小元段可 认为与力在同一直线上,故ΔW=FΔS,则转一周中各个 小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故 B正确。

高中物理静电场题经典例题

高中物理静电场练习题 1、如图所示,中央有正对小孔的水平放置的平行板电容器与电源连接,电源电压为U 。将一带电小球从两小孔的正上方P 点处由静止释放,小球恰好能够达到B 板的小孔b 点处,然后又按原路返回。那 么,为了使小球能从B 板 的小孔b 处出射,下列可行的办法是( ) A.将A 板上移一段距离 B.将A 板下移一段距离 C.将B 板上移一段距离 D.将B 板下移一段距离 2、如图所示,A 、B 、C 、D 、E 、F 为匀强电场中一个正六边形的六个顶点,已知A 、B 、C 三点的电势 分别为1V 、6V 和9V 。则D 、E 、F 三 点的电势分别为( ) A 、+7V 、+2V 和+1V B 、+7V 、+2V 和1V ¥ C 、-7V 、-2V 和+1V D 、+7V 、-2V 和1V 3、质量为m 、带电量为-q 的粒子(不计重力),在匀强电场中的A 点以初速度υ0沿垂直与场强E 的方向射入到电场中,已知粒子到达B 点时的速度大小为2υ0,A 、B 间距为d ,如图所示。 则(1)A 、B 两点间的电势差为( ) A 、q m U AB 232υ-= B 、q m U AB 232 υ= C 、q m U AB 22υ-= D 、q m U AB 22 υ= (2)匀强电场的场强大小和方向( ) A 、qd m E 2 21υ= 方向水平向左 B 、qd m E 2 21υ= 方向水平向右 C 、qd m E 2212 υ= 方向水平向左 D 、qd m E 2212 υ= 方向水平向右 4、一个点电荷从竟电场中的A 点移到电场中的B 点,其电势能变化为零,则( ) A 、A 、B 两点处的场强一定相等 B 、该电荷一定能够沿着某一等势面移动 C 、A 、B 两点的电势一定相等 D 、作用于该电荷上的电场力始终与其运动方向垂直 5、在静电场中( ) A.电场强度处处为零的区域内,电势也一定处处为零 . B.电场强度处处相等的区域内,电势也一定处处相等 C.电场强度的方向总是跟等势面垂直 D.沿着电场线的方向电势是不断降低的 6、一个初动能为E K 的带电粒子,沿着与电场线垂直的方向射入两平行金属板间的匀强电场中,飞出时该粒子的动能为2E K ,如果粒子射入时的初速度变为原来的2倍,那么当它飞出电场时动能为( ) A B a P · m 、q 。 >U + - ~ A E B 。

高中物理变力做功问题

高中物理变力做功问题 摘要:在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。本文举例说明了在高中阶段求变力做功的常用方法,比如用动能定理、功率的表达式Pt W =、功能关系、平均值、s F -图像、微元累积法、转换参考系等来求变力做功。 关键词:功 変力 动能定理 功率 功能关系 平均值 图像 微元累积法 转换参考系 对于功的定义式W =αcos Fs ,其中的F 是恒力,适用于求恒力做功,其中的s 是力F 的作用点发生的位移,α是力F 与位移s 的夹角。在高中阶段求变力做功问题,既是学生学习和掌握的难点,也是教师教学的难点。求变力做功的方法很多,比如用动能定理、功率的表达式Pt W =、功能关系、平均值、s F -图像、微 元累积法、转换参考系等来求变力做功。 一、运用功的公式求变力做功 求某个过程中的変力做功,可以通过等效法把求该変力做功转换成求与该変力做功相同的恒力的功,此时可用功定义式W =αcos Fs 求恒力的功,从而可知该変力的功。等效转换的关键是分析清楚该変力做功到底与哪个恒力的功是相同的。 例1:人在A 点拉着绳通过一定滑轮吊起质量m=50Kg 的物体,如图1所示,开始绳与水平方向夹角为ο60,当人匀速提起重物由A 点沿水平方向运动m s 2=而到达B 点,此时绳与水平方向成ο30角,求人对绳的拉力做了多少功? 【解析】人对绳的拉力大小虽然始终等于物体的重力,但方向却时刻在变,而已知的位移s 方向一直水平,所以无法利用W =αcos Fs 直接求拉力的功.若转换一下研究对象则不难发现,人对绳的拉力的功与绳对物体的拉 力的功是相同的,而绳对物体的拉力则是恒力,可利用W =αcos Fs 求了! 设滑轮距地面的高度为h ,则:( )s h =-ο ο60 cot 30cot 人由A 走到B 的过程中,重物上升的高度h ?等于滑轮右侧绳子增加的长度,即:ο ο60 sin 30sin h h h -= ?,人对绳子做的功为:( )( ) J J mgs h mg W 732131000 13≈-=-=??= 二、运用动能定理求变力做功 动能定理的表述:合外力对物体做功等于物体的动能的改变,或外力对物体做功的代数和等于物体动能的改变。对于一个物体在某个过程中的初动能和末动能可求,该过程其它力做功可求,那么该过程中変力做功可求。运用动能定理求变力做功关键是了解哪些外力做功以及确定物体运动的初动能和末动能。 例2:如图2所示,原来质量为m 的小球用长L 的细线悬挂而静止在竖直位置.用水平拉力F 将小球缓慢地拉到细线与竖直方向成θ角的位置的过程中,拉力F 做功为( ) A. θcos FL B. θsin FL C. ()θcos 1-FL D. ()θcos 1-mgL 【解析】很多同学会错选B ,原因是没有分析运动过程,对W=FLcosθ来求功的适用 范围搞错,恒力做功可以直接用这种方法求,但变力做功不能直接用此法正确的分析,小球的运动过程是缓慢的,因而任一时刻都可看作是平衡状态,因此F 的大小不断变大,F 做的功是变力功,小球上升过程中只有重力和拉力做功,而整个过程的动能改变为零,可用动能定理求解: 所以 ()θcos 1-=-=mgL W W G F ,故D 正确。 三、运用Pt W =求变力做功 涉及到机车的启动、吊车吊物体等问题,如果在某个过程中保持功率P 恒定,随着机车或物体速度的改变,牵引力也改变,要求该过程中牵引力的功,可以通过Pt W =求変力做功。 G ο 60ο 30图1 图2

高中物理力学经典例题集锦

高中物理典型例题集锦 力学部分 1、如图9-1所示,质量为M=3kg的木板静止在光滑水平面上,板的右端放一质量为m=1kg 的小铁块,现给铁块一个水平向左速度V0=4m/s,铁块在木板上滑行,与固定在木板左端的水平轻弹簧相碰后又返回,且恰好停在木板右端,求铁块与弹簧相碰过程中,弹性势能的最大值E P。 分析与解:在铁块运动的整个过程中,系统的动量守恒,因此弹簧压缩最大时和铁块停在木板右端时系统的共同速度(铁块与木板的速度相同)可用动量守恒定律求出。在铁块相对于木板往返运动过程中,系统总机械能损失等于摩擦力和相对运动距离的乘积,可利用能量关系分别对两过程列方程解出结果。 设弹簧压缩量最大时和铁块停在木板右端时系统速度分别为V和V’,由动量守恒得:mV0=(M+m)V=(M+m)V’ 所以,V=V’=mV0/(M+m)=1X4/(3+1)=1m/s 铁块刚在木板上运动时系统总动能为:EK=mV02==8J 弹簧压缩量最大时和铁块最后停在木板右端时,系统总动能都为: E K’=(M+m)V2=(3+1)X1=2J 铁块在相对于木板往返运过程中,克服摩擦力f所做的功为: W f=f2L=E K-E K’=8-2=6J 铁块由开始运动到弹簧压缩量最大的过程中,系统机械能损失为:fs=3J 由能量关系得出弹性势能最大值为:E P=E K-E K‘-fs=8-2-3=3J 说明:由于木板在水平光滑平面上运动,整个系统动量守恒,题中所求的是弹簧的最大弹性势能,解题时必须要用到能量关系。在解本题时要注意两个方面:①是要知道只有当铁块和木板相对静止时(即速度相同时),弹簧的弹性势能才最大;弹性势能量大时,铁块和木板的速度都不为零;铁块停在木板右端时,系统速度也不为零。 ②是系统机械能损失并不等于铁块克服摩擦力所做的功,而等于铁块克服摩擦力所做的功和摩擦力对木板所做功的差值,故在计算中用摩擦力乘上铁块在木板上相对滑动的距离。 2、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A

高中物理电场知识点与题型归纳(精编)

高中物理电场总结 一. 教学内容:电场考点例析 电场是电学的基础知识,是承前启后的一章。通过这一章的学习要系统地把力学的“三大 方法”复习一遍,同时又要掌握新的概念和规律。这一章为历年高考的重点之一,特别是在力电综合试题中巧妙地把电场概念与牛顿定律、功能关系、动量等力学知识有机地结合起来,从求解过程中可以考查学生对力学、电学有关知识点的理解和熟练程度。只要同学们在复习本章时牢牢抓住“力和能两条主线”,实现知识的系统化,找出它们的有机联系,做到融会贯通,在高考得到本章相应试题的分数是不困难的。 二. 夯实基础知识 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比, 跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k 为静电力常量, k =9.0×10 9 N m 2/c 2 成立条件:① 真空中(空气中也近似成立),② 点电荷。即带电体的形状和大小对相互 作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r 都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r )。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E 是描述电场的力的性质 的物理量。 (1)定义: 放入电场中某点的电荷所受的电场力F 跟它的电荷量q 的比值,叫做该 点的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q 为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是: ,其中Q 是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是: ,其中d 是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ① 电势定义为φ= ,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高 。 ② 电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地 电势为零。 ③ 当存在几个“场源”时,某处合电场的电势为各“场源”在此处电场的电势的代数和 。 ④ 电势差,A 、B 间电势差U AB =ΦA -ΦB ;B 、A 间电势差U BA =ΦB -ΦA ,显然U AB =- U BA ,电势差的值与零电势的选取无关。 q E P

考物理复习二轮专题《求变力做功的几种方法》.doc

考物理复习二轮专题《求变力做功的几种方法》 一、知识讲解 功的计算在中学物理中占有十分重要的地位, 中学阶段所学的功的计算公式 W=FScosa 只能用于恒力做功情况, 对于变力做功的计算则没有一个固定公式可用, 当 F 为变力时, 用 动能定理 W= E k 或功能关系求功,高中阶段往往考虑用这种方法求功。这种方法的依据是: 做功的过程就是能量转化的过程, 功是能的转化的量度。 如果知道某一过程中能量转化的数 值,那么也就知道了该过程中对应的功的数值。 下面是对这种方法的归纳与总结下面对变力 做功问题进行归纳总结如下: 1、等值法 等值法即若某一变力的功和某一恒力的功相等,则可以通过计算该恒力的功,求出该变力的功。 而恒力做功又可以用 W=FScosa 计算,从而 使问题变得简单。 例 1、如图,定滑轮至滑块的高度为 h ,已知细绳的拉力为 F (恒定),滑块沿水平面由 A 点前进 S 至 B 点,滑块在初、末位置时细绳与水平方向夹角 分别为α和β。求滑块由 A 点运动到 B 点过程中,绳的拉力对滑块所做的功。 分析与解:设绳对物体的拉力为T ,显然人对 绳的拉力 F 等于 T 。T 在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该 问题是变力做功的问题。 但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下, 人对绳做 的功就等于绳的拉力对物体做的功。 而拉力 F 的大小和方向都不变, 所以 F 做的功可以用公 式 W=FScosa 直接计算。 由图 1 可知,在绳与水平面的夹角由α变到β的过程中 , 拉力 F 的作 用点的位移大小为: S S 1 h h S 2 sin sin W T W F F . S Fh ( 1 1 ) sin sin 2、微元法 当物体在变力的作用下作曲线运动时, 若力的方向与物体运动的切线方向之间的夹角 不变, 且力与位移的方向同步变化, 可用微元法将曲线分成无限个小元段, 每一小元段可认 为恒力做功,总功即为各个小元段做功的代数和。 例 2 、如图所示,某力 F=10N 作用于半径 R=1m 的转盘的边缘上,力 F 的大小保持不变,但方向始终保持与作用点的切线方向一 致,则转动一周这个力 F 做的总功应为: A 、 0J B 、 20π J C 、10J D 、20J. 分析与解:把圆周分成无限个小元段,每个小元段可认为 与力在同一直线上,故 W=F S ,则转一周中各个小元段做功的代数和为 W=F × 2π R=10× 2 π J=20 π J ,故 B 正确。 3、平均力法

高中物理必修一难题经典.doc

xxxXXXXX学校XXXX年学年度第二学期第二次月考 XXX年级xx班级 姓名:_______________班级:_______________考号:_______________ 题号一、计算 题 二、选择 题 三、填空 题 四、多项 选择 总分 得分 一、计算题 (每空?分,共?分) 1、下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。某地有一倾角为θ=37°(sin 37 °=)的山坡C,上面 有一质量为m的石板B,其上下表面与斜坡平行;B上有一碎石堆A(含有大量泥土),A和B均处于静止状态,如图5所示。假设某次暴雨中,A浸透雨水后总质量也为m(可视为质量不变的滑块),在极短时间内,A、B间的动摩擦因数 μ1减小为,B、C间的动摩擦因数μ2减小为0.5,A、B开始运动,此时刻为计时起点;在第2 s末,B的上表面突 然变为光滑,μ2保持不变。已知A开始运动时,A离B下边缘的距离l=27 m,C足够长,设最大静摩擦力等于滑动摩擦力。取重力加速度大小g=10 m/s2。求: (1)在0~2 s时间内A和B加速度的大小; (2)A在B上总的运动时间。 2、质量为m的物块用压缩的轻质弹簧卡在竖直放置在矩形匣子中,如图所示,在匣子的顶部和底部都装有压力传感器,当匣子随升降机以a=2.0m/s2的加速度竖直向上做匀减速运动时,匣子顶部的压力传感器显示的压力为6.0N,底部的压力传感器显示的压力为10.0N(g=10m/s2) (1)当匣子顶部压力传感器的示数是底部传感器示数的一半时,试确定升降机的运动情况。 评卷人得分

(2)要使匣子顶部压力传感器的示数为零,升降机 沿竖直方向的运动情况可能是怎么样的? 3、如图10所示,位于竖直侧面的物体A的质量m A=0.5kg,放在水平面上的物体B的质量m B=1.0 kg,物体B与桌面间的动摩擦因数μ=0.2,轻绳和滑轮间的摩擦不计,且轻绳的OB部分水平,OA部分竖直,取g=10 m/s2. 问:(1)若用水平力F向左拉物体B,使物体B以加速度a=2m/s2向左做匀加速直线运动,所需水平力是多大? (2)若用与水平方向成37°角斜向左上的外力F′拉物体B,使物体B以加速度a=2m/s2向左做匀加速直线运动,则所需外力F′是多大?此过程物体B对水平面的压力是多大?(sin37°=0.6,cos37°=0.8) 4、如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s速度运动,运动方向如图所示.一个质量为m的物体(物体可以视为质点),从h=3.2m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其速率变化.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s2,则: (1)物体由静止沿斜面下滑到斜面末端需要多长时间; (2)物体在传送带上向左运动的最远距离(传送带足够长);

相关文档
相关文档 最新文档