文档库 最新最全的文档下载
当前位置:文档库 › 高中数学必修五第三章不等式复习(知识点与例题)

高中数学必修五第三章不等式复习(知识点与例题)

高中数学必修五第三章不等式复习(知识点与例题)
高中数学必修五第三章不等式复习(知识点与例题)

一对一个性化辅导教案

题型1:简单的高次不等式的解法

例1:解下列不等式

(1)3

40x x ->; (2)2

2

(1)(56)0x x x --+<; (3)

221

021

x x x +-≥+

练习: 解不等式(1)23

2532

≥-+-x x x ; (2)0)4)(23()7()12(6

32>----x x x x

题型2:简单的无理不等式的解法

例1:解下列不等式 (1

)21x -> (2

)2x +<

题型3:指数、对数不等式

例1:若2

log 13

a

<,则a 的取值范围是( ) A .1a > B .3

20<

C .13

2<

D .3

20<

练习: 1、不等式2x x 43

2>-的解集是_____________。

2、不等式12

log (2)0x +≥的解集是_____________。

3、设()f x = 12

32,2,

log (1),2,

x e x x x -?的解集为( ) A .(1,2)(3,)?+∞ B

.)+∞

C.(1,2))?+∞ D .(1,2)

题型4:不等式恒成立问题

例1:若关于x 的不等式2

122

x x mx -+>的解集是{|02}x x <<,则m 的值是_____________。

练习:

一元二次不等式2

20ax bx ++>的解集是11(,)23

-,则a b +的值是( )

A .10

B . 10- C. 14 D .14-

例2:已知不等式2

(1)0x a x a -++<,

(1)若不等式的解集为(1,3),则实数a 的值是_____________。 (2)若不等式在(1,3)上有解,则实数a 的取值范围是_____________。 (3)若不等式在(1,3)上恒成立,则实数a 的取值范围是_____________。

例3:若一元二次不等式042

≤+-a x ax 的解集是R 则a 的取值范围是_____________。 练习:

已知关于x 的不等式()

()01242

2

≥-++-x a x a 的解集为空集,求a 的取值范围。

已知关于x 的一元二次不等式ax 2+(a-1)x+a-1<0的解集为R ,求a 的取值范围. 若函数f(x)=)8(62++-k kx kx 的定义域为R ,求实数k 的取值范围. 解关于x 的不等式:x 2-(2m+1)x+m 2+m<0. 例12 解关于x 的不等式:x 2+(1-a)x-a<0.

线性规划

例题选讲:

题型1:区域判断问题

例1:已知点00(,)P x y 和点A (1,2)在直线0823:=-+y x l 的异侧,则( ) A .02300>+y x B .<+0023y x 0

C .82300<+y x

D .82300>+y x

练习:

1、已知点(1,2)P -及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是__________。

2、原点和点(1,1)在直线0x y a +-=的两侧,则a 的取值范围_________。

题型3:画区域求最值问题

若变量,x y 满足约束条件211y x x y y ≤??

+≤??≥-?

,

(1)求2x y +的最大值; (2)求x y -的最小值; (3)求1

1

y x ++的取值范围; (4)求2

y x -的取值范围; (5)求22

x y +的最大值; (6

的最小值。

题型4:无穷最优解问题

2)

例1:已知x 、y 满足以下约束条件5503x y x y x +≥??

-+≥??≤?

,使ay x z +=(0a >)取得最小值的最优

解有无数个,则a 的值为( )

A 、3-

B 、3

C 、1

D 、1

练习:

给出平面区域(包括边界)如图所示,若使目标函数(0)z ax y a =+>取得最大多个,则a 的值为( ) ()

A 14 ()

B 35 ()

C 4 ()

D 53

题型5:整点解问题

例1:强食品安全管理,某市质监局拟招聘专业技术人员x 名,行政管理人员y 名,若x 、y 满足

4y x

y x ≤??

≤-+?

,33z x y =+的最大值为( ) A .4

B .12

C .18

D .24

练习:

1、某所学校计划招聘男教师x 名,女教师y 名, x 和y 须满足约束条件25,

2,6.x y x y x -≥??

-≤??

则该校招聘的教师

人数最多是( )

A .6

B .8

C .10

D .12

2、满足2x y +≤的点(,)x y 中整点(横纵坐标都是整数)有( )

A 、9个

B 、10个

C 、13个

D 、14个

题型6:线性规划中的参数问题

例1:已知0a >,,x y 满足约束条件13(3)x x y y a x ≥??

+≤??≥-?

,若2z x y =+的最小值为1,则a =( )

A .14

B .

12

C .1

D .2

练习:

1、设关于x ,y 的不等式组210,0,0x y x m y m -+>??

+?

表示的平面区域内存在点00(,)P x y ,满足0022x y -=,求得

m 的取值范围是( )

A .4,3??-∞ ???

B .1,3??-∞ ???

C .2,3??-∞- ???

D .5,3??-∞- ???

2、设不等式组0,02036x y x y x y -+-??

-+???

≤≥≥,

表示的平面区域为D ,若直线20kx y k -+=上存在区域D 上的点,则k 的

取值范围是________。

线性规划问题的推广-----利用几何意义解决最值问题

解题思路:

1、找出各方程、代数式的几何意义;

2、找出参数的几何意义;

3、画图求解。

例1:若直线1y kx =-()k R ∈与圆22

(1)1x y +-=有公共点,则k 的取值范围是___________。

练习:

1、点(,)P x y 在圆22

:(2)3C x y -+=上,则

y

x

的最大值为_______。 2、已知点)4,1(A ,)1,3(B ,点),(y x P 在线段AB 上,则1

+x y

的取值范围为________。

例2:若直线20x y b -+=与圆5)2()1(2

2=++-y x 有公共点,则b 的取值范围为_______。

练习:

1、已知x ,y 满足22

240x y x y +-+=,则2x y -的取值范围是__________。

2、若60125=+y x ,则2

2

)1(y x ++的最小值为________。

3、已知点),(y x P 为圆2)1()1(:2

2

=++-y x C 上任意一点,则2

2

)1()1(-++y x 的取值范围为____。

线性规划作业

1、已知1,10,220x x y x y ≥??

-+≤??--≤?

则22x y +的最小值是_______。

2、已知点(,)P x y 的坐标满足条件41x y y x x +≤??

≥??≥?

,点O 为坐标原点,那么||PO 的最小值等于_______,最大

值等于_____。

3、设x 、y 满足的约束条件??

?

??≤+≥≥12

340

y x x y x ,则132+-x y 的最大值为_______。

4、设1m >,在约束条件1y x y mx x y ≥??

≤??+≤?下,目标函数5z x y =+的最大值为4,则m 的值为______。

5、已知x 、y 满足以下约束条件5503x y x y x +≥??

-+≤??≤?

,使z x ay =-(0a >)取得最小值的最优解

有无数个,则a 的值为( )

A 、3-

B 、3

C 、1-

D 、1

6、若实数,x y 满足2045x y x y +-≥??

≤??≤?

则s y x =-的最小值为____________。

7、已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( ) A. 2- B. 1- C. 1 D. 4

8、设不等式组0,02036x y x y x y -+-??

-+???

≤≥≥,表示的平面区域为D ,若直线0kx y k -+=上存在区域D 上的点,则k 的

取值范围是____________。

基本不等式

1111n n

a a n

n a a ++≤≤≤++L L

例题选讲:

题型1:基本不等式应用条件的判断

例1: 已知a,b R ∈,下列不等式中不正确的是( ) (A )2ab b a 2

2

≥+ (B )

ab 2b

a ≥+ (C )4a 4a 2≥+ (D )4

b b

422≥+

练习:

在下列函数中最小值为2的函数是( )

()A 1y x x

=+

()B 33x x

y -=+ ()C 1lg (110)lg y x x x =+

<< ()D 1sin (0)sin 2

y x x x π=+<<

题型2

:+≥a b

例1:若0x >,则2

x x

+的最小值为 。 练习:

若0x >,求12

3y x x

=+的最小值。

例2:当x 时21>,求1

28-+x x 的最小值及对应的x 的值. 练习:

若3x >,求1

3

y x x =+-的最小值。

例3:设x 、y 为正数, 则14

()()x y x

y

++

的最小值为( ) A. 6 B.9 C.12 D.15

例4:当x>1时,不等式1

1

x a x +≥-恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .[2,+∞) C .[3,+∞)

D .(-∞,3]

例5:函数)0(4

)(≠+=x x

x x f 的值域是_____________。

题型3:2

a b ab 2??

+≤ ???

的应用

例1:若01x <<,求(1)y x x =-的最大值。

练习: 1、若1

02

x <<,求(12)y x x =-的最大值为________。

2、若0x >,则y x =________。

题型4:构造基本不等式解决最值问题

例1:求函数221

()x x f x x

-+=(0x >)的值域。

练习: 1、2()24

=-+x

f x x x (0x >)的值域是________。

2、)1(1

10

72->+++=

x x x x y 的最小值为_________。(分离法、换元法)

根式判别法

把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,判别式0φ?,从而求

得原函数的值域.对于形如,g fx ex c

bx ax y ++++=22其定义域为R ,且分子分母没有公因式的函

数常用此法。

例3求函数2

1

22-+-+=x x x x y 的值域

解:∵定义域为}21{-≠≠x x 且

∴()()012112=+--+-y x y x y 在定义域内有解 当01=-y 时:

即1=y 时,方程为01=-,这不成立,故0≠y . 当01≠-y 时,即1≠y 时:

()()()0121412

≥+----=?y y y

解得9

5

y 或1≥y ∴函数的值域为

[)+∞??? ?

?

∞-,195,Y

换元法

利用代数或三角换元,将所给函数转化为易求值域的函数,形如()

x f y 1

=

的函数,令()t x f =;形如d cx b ax y +±+=,其中a ,b ,c ,d 为常数,令t =d +cx ;形如22x a y -=的结构函数,令θcos a x =[]π,0∈x 或令θa x sin = ??

?

???-∈2,2ππθ

例5求函数21x x y --=

解:令cos =θa x ,??? ?

?

+=-=4cos 2sin cos πθθθy

πθ≤≤0

4

5≤4+≤4π

πθπ ∴

224cos 1≤

??? ?

?

+≤-πθ ∴12≤≤-y 即所求值域为

[]

1,2-

例2:已知0a >,0b >,若2ab =,则a b +的最小值为_______。 例3:已知,x y R +

∈,且41x y +=,则x y ?的最大值为_______。 例4:已知0a >,0b >,若2a b +=,则lg lg a b +的最大值为_______。

例5:求函数2

y =

的值域。

练习:

1、已知0,0x y >>,且3412x y +=。求lg lg x y +的最大值及相应的,x y 值。

2、已知0a >,0b >,若2ab =,则2a b +的最小值为_______。

3、已知0a >,0b >,若22a b +=,则ab 的最大值为_______。

4、若b a ,为实数,且2=+b a ,则b

a 33+的最小值是( )

(A )18 (B )6

(C )32 (D )432

题型5: “常量代换”(“1的活用”)在基本不等式中的应用

例1:已知正数x 、y 满足21x y +=,求11

x y

+的最小值。

练习:

1、已知0a >,0b >,若2a b +=,则11

a b

+的最小值为_______。

2、已知0a >,0b >,若22a b +=,则12

a b

+的最小值为_______。

例2:已知0a >,0b >,点(,)P a b 在直线220x y +-=上,则12

a b

+的最小值为_______。

2:已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

变式: (1)若+

∈R y x ,且12=+

y x ,求y

x

11+的最小值

(2)已知+

∈R y x b a ,,,且1=+y

b x a ,求y x +

的最小值

练习:

1、设0,0.a b >>11

33a

b

a b

+与的等比中项,则的最小值为( ) A . 8 B . 4 C. 1 D.

14

2、若直线)0,0(022>>=-+b a by ax ,始终平分圆08242

2

=---+y x y x 的周长,则12a b

+的最

小值为( ) A .1 B .5

C .24

D .223+

例3:已知0,0a b >>,且三点()()()1,1,,0,0,A B a C b 共线,则a b +的最小值为 。

题型6:)(222

2

b a b a ab +≤+≤的应用

1、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.

2、求函数15

()2

2

y x =<<的最大值。

【拓展提升】

1、已知x ,y 为正实数,且x 2+y 22

=1,求x 1+y 2 的最大值.

2:已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab

的最小值.

3、若)2

lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=

?=>>,则R Q P ,,的大小关系是 .

4、

基本不等式作业

1、下列结论正确的是 ( ) A.当0x >且1x ≠时,1lg lg x x +

2≥ B.0x >当2x x

≥ C .当2x ≥时,1x x +的最小值为2 D.02x <≤时,1

x x

-无最大值

2、设正数x 、y 满足220x y +=,则lg lg x y +的最大值是( )

()A 50 ()B 20 ()C 1lg 5+ ()D 1

3、已知a 、b 为正实数,且b

a b a 1

1,12+=+则的最小值为( ) A .24

B .6

C .3-22

D .3+22

4、已知正整数b a ,满足304=+b a ,使得b

a 1

1+取最小值时,则实数对(),b a 是( ) A .(5,10) B .(6,6) C .(10,5)

D .(7,2)

5、函数1

1

y x x =+

+(1)x >-的最小值是___________。

6、 已知两个正实数x y 、满足关系式440x y +=, 则lg lg x y +的最大值是___________。

7、已知1

02

x <<,则(12)x x -的最大值是___________。 8、若0x <,则9

()4f x x x

=+的最大值为___________。

必修五-不等式知识点总结[1]

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方.

高中数学必修五知识点详细解答附答案

姓名____________ 20XX 年____月_____日 第___次课 正、余弦定理 一。知识回顾:在初中我们知道:(1)在三角形中,大边对大角、大角对大边的边角关系; (2)在直角三角形中,sinA= a c ,sinB= b c ?c=sin a A ,c=sin b B ? sin a A =sin b B ,又Q sinC=1?sin a A =sin b B =sin c C 二。学习提纲: <一>.正弦定理: (1)概念:在一个三角形中,各边与它所对应角的正弦比相等,即: sin a A =sin b B =sin c C (2)证明: j r C ①几何证明法:(略,同学们自己证明) ②向量证明: 证明:(如图)当?ABC 为锐角三角形时, A B 过A 作单位向量j r ⊥AB u u u r ,则j r 与AB u u u r 的夹角为2π,j r 与BC uuu r 的夹角为2π-B ,j r 与CA u u u r 的夹角为2π +A ; 设AB=a,BC=c,AC=b. Q AB u u u r +BC uuu r +CA u u u r =0r ,∴j r g (AB u u u r +BC uuu r +CA u u u r )=j r g 0r ∴j r g AB u u u r +j r g BC uuu r +j r g CA u u u r =0 ∴|j r |g |AB u u u r |g cos 2π+|j r |g |BC uuu r |g cos(2π-B )+|j r |g |CA u u u r |g cos 2 π +A )=0 ∴asinB=bsinA,即:sin a A =sin b B 同理可得:sin b B =sin c C ,故:sin a A =sin b B =sin c C 当?ABC 为钝角三角形或直角三角形时,同样可证明得到:sin a A =sin b B =sin c C (3)正弦定理的变形: ①asinB=bsinA; csinB=bsinC; asinC=csinA; ②a :b:c=sinA:sinB:sinC ③ sin a A =sin b B =sin c C =2R (R 为?ABC 外接圆的半径) ?a=2RsinA; b=2RsinB; c=2RsinC ? sinA=2a R sinB=2b R sinC=2c R (二)余弦定理: (1)概念:三角形中任何一边的平方等于其他两边的平方的和减去这两边与他们的夹角的余弦的积的两倍,即: 2 a =2 b +2 c -2bccosA; 2 b =2 a +2 c -2accosB; 2 c =2 a +2 b -2abcosC 变形:2 sin A=2 sin B+2 sin C-2sinBsinCcosA 2 sin B=2 sin A+2 sin C-2sinAsinCcosB 2 sin C=2 sin A+2 sin B-2sinAsinBcosC 求角:cosA=2222bc b c a +- , cosB=2222c a c b a +-, cosC=222b 2a c ab +- 变形:cosA=222sin sin sin 2sin sin A B C A B +-,cosB=222sin sin sin 2sin sin A C B A C +-,cosC=222sin sin sin 2sin sin A B C A B +- (2)勾股定理:2 c =2a +2b 推广:A 为锐角→222a b c <+;A 为直角→222a b c =+;A 为钝角→222 a b c >+ (3)三角形的面积公式: ①ABC S ?=12ah ②ABC S ?=12absinC=12bcsinA=1 2 acsinB ③ABC S ?(p=12(a+b+c) ④ABC S ?=4abc R (4)对于任意的三角形,都有:sinA>0

高中数学必修5第三章不等式练习题

高中数学必修5第三章不等式题组训练 [基础训练A 组] 一、选择题(六个小题,每题5分,共30分) 1.若02522>-+-x x ,则221442 -++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x + 1 1+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 4 3≤x ≤2} B .{x| 4 3≤x <2} C .{x|x >2或x ≤4 3} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A . b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2 +y 2 =1,则(1-xy) (1+xy)有 ( ) A .最小值21和最大值1 B .最大值1和最小值 4 3 C .最小值 4 3而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组?? ?->-≥3 2x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式 0212 <-+x x 的解集是__________________。 4.当=x ___________时,函数)2(2 2x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,12 2 N n n n n n n g n n ∈= -- =-+?,用不等号 连结起来为____________.

高中数学必修五第二章数列学案 等差数列的前n项和(2)

§2.3 等差数列的前n 项和(2) 主备人: 王 浩 审核人: 马 琦 学习目标 1. 进一步熟练掌握等差数列的通项公式和前n 项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题; 3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值. 学习过程 一、复习回顾 1:等差数列{n a }中, 4a =-15, 公差d =3,求5S . 2:等差数列{n a }中,已知31a =,511a =,求和8S . 二、新课导学 ※ 探究一:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? ※探究二:记等差数列{}n a 的偶数项和为S 偶,奇数项和为S 奇.当项数为2n 时,则有 S S nd -=奇偶 ;当项数为21n -时,则有n S S a -=奇偶 。 ※探究三:当等差数列{}n a 的项数为21n -时,有12-n S = 。 ※ 典型例题 例1、已知数列{}n a 的前n 项为212 n S n n =+,求这个数列的通项公式. 这个数列是等差数列

吗?如果是,它的首项与公差分别是什么? 变式:已知数列{}n a 的前n 项为212 343n S n n =++,求这个数列的通项公式. 小结:数列通项n a 和前n 项和n S 关系为 n a =11(1) (2)n n S n S S n -=??-≥?,由此可由n S 求n a . 例2、等差数列{}m a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且 2133n a a -=-,求该数列的公差d 。 变式:已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且745 3 n n A n B n +=+,求n n a b 。 例2、已知等差数列24 54377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值. 变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高一数学必修5第三章知识点

第三章:不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<;②,a b b c a c >>?>;③a b a c b c >?+>+; ④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+; ⑥0,0a b c d ac bd >>>>?>;⑦()0,1n n a b a b n n >>?>∈N >; ⑧)0,1a b n n >>?>∈N >. 3、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式. 4、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系: 判别式24b ac ? =- 0?> 0?= 0?< 二次函数 2y ax bx c =++ ()0a >的图象 一元二次方程2 0ax bx c ++= ()0a >的根 有两个相异实数根 1,22b x a -= ()12x x < 有两个相等实数根 122b x x a ==- 没有实数根 一元二次不等式的解集 20ax bx c ++> ()0a > {} 1 2 x x x x x <>或 2b x x a ??≠-???? R 20ax bx c ++< ()0a > {}1 2x x x x << ? ? 5、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式. 6、二元一次不等式组:由几个二元一次不等式组成的不等式组. 7、二元一次不等式(组)的解集:满足二元一次不等式组的x 和y 的取值构成有序数对(),x y ,所有这样的有序数对(),x y 构成的集合. 8、在平面直角坐标系中,已知直线0x y C A +B +=,坐标平面内的点()00,x y P . ①若0B >,000x y C A +B +>,则点()00,x y P 在直线0x y C A +B +=的上方.

高中数学必修五第二章《数列》知识点归纳

数列知识点总结 一、等差数列与等比数列 等差数列 等比数列 定义 1+n a -n a =d n n a a 1 +=q(q ≠0) 通项公式 n a =1a +(n-1)d n a =1a 1-n q (q ≠0) 递推公式 n a =1-n a +d, n a =m a +(n-m)d n a =1-n a q n a =m a m n q - 中项 A=2b a + 推广:A=2a k n k n a +-+(n,k ∈N + ;n>k>0) ab G =2。推广:G=k n k n a a +-±(n,k ∈N + ;n>k>0) 。任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中 项一定有两个 前n 项和 n S =2 n (1a +n a ) n S =n 1a + 2 ) 1(n -n d n S = q q a n --11() 1 n S =q q a a n --11 性质 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为 a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) (6)d= n m a n m --a (m ≠n) (7)d>0递增数列d<0递减数列d=0常数数列 (1)若m n p q +=+,则 m n p q a a a a =·· (2)232n n n n n S S S S S --,,……仍 为等比数列,公比为n q 二、求数列通项公式的方法 1、通项公式法:等差数列、等比数列 2、涉及前n项和S n 求通项公式,利用a n 与S n 的基本关系式来求。即 例1、在数列{n a }中,n S 表示其前n项和,且2 n n S =,求通项n a . 例2、在数列{n a }中,n S 表示其前n项和,且n n a 32S -=,求通项n a 3、已知递推公式,求通项公式。 (1)叠加法:递推关系式形如()n f a a n 1n =-+型 ???≥-===-) 2() 1(111n s s n a s a n n n

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

最新高中数学必修5第三章测试题含答案

高中数学必修5第三章测试题 一、 选择题 1.设a ,b ,c ∈R ,则下列命题为真命题的是( ) A .a >b ?a -c >b -c B.a >b ?ac >bc C.a >b ?a 2>b 2 D. a >b ?ac 2>bc 2 2.不等式02<-+y x 表示的平面区域在直线20x y +-=的( ) A.右上方 B.左上方 C.右下方 D .左下方 3.不等式5x +4>-x 2的解集是( ) A .{x |x >-1,或x <-4} B.{x |-4<x <-1} C.{x |x >4,或x <1} D. {x |1<x <4} 4.设集合{}20<≤=x x M ,集合{ } 0322 <--=x x x N ,则集合N M ?等于( )。 A.{}10≤≤x x B .{}20<≤x x C.{}10<≤x x D. {} 20≤≤x x 5.函数2 41x y -= 的定义域是( ) A .{x |-2<x <2} B.{x |-2≤x ≤2} C.{x |x >2,或x <-2} D. {x |x ≥2,或x ≤-2} 6.二次不等式2 0ax bx c ++> 的解集是全体实数的条件是( ). A .00a >???>? B .00a >???? D .00a --x x 的解集是( ) A.{}32>0,若x + 81 x 的值最小,则x 为( ). A . 81 B . 9 C . 3 D .18 10.已知2 2 π π αβ- ≤<≤ ,则 2 αβ -的范围是( ). A .(,0)2π- B .[,0]2π- C .(,0]2π- D .[,0)2 π - 11.在直角坐标系中,满足不等式x 2-y 2 ≥0的点(x,y )的集合(用阴影部分来表示)是( )B

2018年人教-高中数学必修五-第二章

必修五阶段测试二(第二章数列) 时间:120分钟满分:150分 一、选择题(本大题共12小题,每小题5分,共60分)1.(2017·山西朔州期末)在等比数列{}中,公比q=-2,且a 3a 7=4a 4,则a 8等于() A.16 B.32 C.-16 D.-32 2.已知数列{}的通项公式=错误!则a 2·a 3等于()A.8 B.20 C.28 D.303.已知等差数列{}和等比数列{}满足a 3=b 3,2b 3-b 2b 4=0,则数列{}的前5项和S 5为() A.5 B.10 C.20 D.404.(2017·山西忻州一中期末)在数列{}中,=-2n+29n+3,则此数列最大项的值是()

A.102 D.108 5.等比数列{}中,a 2=9,a 5=243,则{}的前4项和为()A.81 B.120 C.168 D.1926.等差数列{}中,a 10<0,a 11>0,且a 11> 10|,是前n项的和,则() A.S 1,S 2,S 3,…,S 10都小于零,S 11,S 12,S 13,…都大于零B.S 1,S 2,…,S 19都小于零,S 20,S

21,…都大于零 C.S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D.S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{}的前n项和=+(a,1 / 922b∈R),且S 25=100,则a 12+a 14等于() A.16 B.8 C.4 D.不确定8.(2017·莆田六中期末)设{}(n∈N)是等差数列,是其前* n项和,且S 5

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

(完整版)高中数学必修五第二章《数列》知识点归纳(可编辑修改word版)

s - s 一、等差数列与等比数列 数列知识点总结 2、涉及前n项和 S 求通项公式,利用 a 与 S 的基本关系式来求。即a = ?s 1 = a 1 (n = 1) n n n n ? ? n n -1 (n ≥ 2) 例 1、在数列{ a n }中, S n 表示其前n项和,且S = n ,求通项a . 2 例 2、在数列{ a n }中, S n 表示其前n项和,且S n = 2 - 3a n ,求通项a n 3、已知递推公式,求通项公式。 (1) 叠加法:递推关系式形如a n +1 - a n = f (n )型 n n

n 例 3、已知数列{ a n }中, a 1 = 1, a n +1 - a n = n ,求通项a n 练习 1、在数列{ a n }中, a 1 = 3 , a n +1 = a n + 2n ,求通项a (2) 叠乘法:递推关系式形如 a n +1 = f (n ) 型 a n n 例 4、在数列{ a n }中, a 1 = 1,a n +1 = n +1 a n ,求通项a n 练习 2、在数列{ a n }中, a 1 = 3 , a n +1 = a n ? 2n ,求通项a (3) 构造等比数列:递推关系式形如a n +1 = Aa n + B (A,B 均为常数,A ≠1,B ≠0) 例 5、已知数列{ a n }满足a 1 = 4 , a n = 3a n -1 - 2 ,求通项a n 练习 3、已知数列{ a n }满足a 1 = 3 , a n +1 = 2a n + 3 ,求通项a n (4) 倒数法 例 6、在数列{a n }中,已知a 1 = 1,a n +1 = 2a n a n + 2 ,求数列的通项a n 四、求数列的前 n 项和的方法 1、利用常用求和公式求和: 等差数列求和公式: S = n (a 1 + a n ) = na + n (n -1) d n 2 ? na 1 1 2 (q = 1) 等比数列求和公式: S = ? a (1 - q n ) a - a q n ? 1 = 1 n (q ≠ 1) ?? 1 - q 1 - q 2、错位相减法:主要用于求数列{a n ·b n }的前 n 项和,其中{a n }、{b n }分别是等差数列和等比数列 .[例 1] 求数列 2 , 4 2 22 , 6 ,? ? ?, 23 2n ,? ? ?前 n 项的和. 2n [例 2] 求和: S = 1 + 3x + 5x 2 + 7x 3 + ? ? ? + (2n - 1)x n -1 3、倒序相加法:数列{ a n }的第 m 项与倒数第 m 项的和相等。即: a 1 + a n = a 2 + a n -1 = = a m + a n -m +1 [例 3] 求sin 2 1 + sin 2 2 + sin 2 3 + ??? + sin 2 88 + sin 2 89 的值 [例 4] 函数f (x )对任x ∈ R 都有f (x )+ f (1- x ) = 1 ,求: 2 f (0)+ f ? 1 ? + f ? 2 ? + + f ? n -1? + f (1) n ? n ? n ? ? ? ? ? ? ? 4、分组求和法:主要用于求数列{a n + b n }的前 n 项和,其中{a n }、{b n }分别是等差数列和等比数列 1 1 1 1 [例 5] 求数列:1+ 2 ,2 + 4 ,3 + 8 , , n + 2 n , 的前 n 项和 n n

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

高中数学必修5(人教B版)第三章不等式3.5知识点总结含同步练习题及答案

描述:例题:高中数学必修5(人教B版)知识点总结含同步练习题及答案 第三章 不等式 3.5 二元一次不等式(组)与简单线性规划问题 一、学习任务 1. 能从实际情景中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域 表示二元一次不等式组. 2. 能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决. 二、知识清单 平面区域的表示 线性规划 非线性规划 三、知识讲解 1.平面区域的表示 二元一次不等式表示的平面区域 已知直线 :,它把坐标平面分为两部分,每个部分叫做开半平面,开半平面 与 的并集叫做闭半平面.以不等式解 为坐标的所有点构成的集合,叫做不等式表示的 区域或不等式的图象. 对于直线 : 同一侧的所有点 ,代数式 的符号相同,所 以只需在直线某一侧任取一点 代入 ,由 符号即可判断 出 (或)表示的是直线哪一侧的点集.直线 叫做这 两个区域的边界(boundary). 二元一次不等式组表示的平面区域 二元一次不等式组所表示区域的确定方法:①直线定界②由几个不等式组成的不等式组所表示的 平面区域,是各个不等式所表示的平面区域的公共部分. l Ax +By +C =0l (x ,y )l Ax +By +C =0(x ,y )Ax +By +C (,)x 0y 0Ax +By +C A +B +C x 0y 0A +B +C >0x 0y 0<0Ax +By +C =0画出下列二元一次不等式表示的平面区域. (1) ;(2). 解:(1)① 画出直线 ,因为这条直线上的点不满足 ,所以画 成虚线. ② 取原点 ,代入 ,所以原点在不等式 所表示的平 面区域内,不等式表示的区域如图. 3x +2y +6>0y ?3x 3x +2y +6=03x +2y +6>0(0,0)3x +2y +6=6>03x +2y +6>0

人教版高中数学必修五第二章单元测试(一)- Word版含答案

2018-2019学年必修五第二章训练卷 数列(一) 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。 2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。 4.考试结束后,请将本试题卷和答题卡一并上交。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在数列{}n a 中,12=a ,1=221n n a a ++,则101a 的值为( ) A .49 B .50 C .51 D .52 2.已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( ) A .15 B .30 C .31 D .64 3.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 4.等差数列{}n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于( ) A .160 B .180 C .200 D .220 5.数列 {} n a 中,37 ()n a n n +=∈N -,数列 {} n b 满足11 3 b = ,1(72)2n n b b n n +≥=∈N -且,若log n k n a b +为常数,则满足条件的k 值( ) A .唯一存在,且为1 3 B .唯一存在,且为3 C .存在且不唯一 D .不一定存在 6.等比数列{}n a 中,2a ,6a 是方程234640x x +=-的两根,则4a 等于( ) A .8 B .8- C .8± D .以上都不对 7.若{}n a 是等比数列,其公比是q ,且5a -,4a ,6a 成等差数列,则q 等于( ) A .1或2 B .1或2- C .1-或2 D .1-或2- 8.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 等于( ) A .3:4 B .2:3 C .1:2 D .1:3 9.已知等差数列{}n a 的公差0d ≠且1a ,3a ,9a 成等比数列,则139 2410 a a a a a a ++++等于 ( ) A . 1514 B . 1213 C . 1316 D . 1516 10.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( ) A .21 B .20 C .19 D .18 11.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y , Z ,则下列等式中恒成立的是( ) A .2X Z Y += B .()()Y Y X Z Z X =-- C .2Y XZ = D .()()Y Y X X Z X =-- 12.已知数列1,12,21,13,22,31,14 ,23,32,41,…,则5 6是数列中的( ) A .第48项 B .第49项 C .第50项 D .第51项 二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.21-与21+的等比中项是________. 14.已知在等差数列{}n a 中,首项为23,公差是整数,从第七项开始为负项, 则公差为______. 15.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是______秒. 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

相关文档
相关文档 最新文档